J. Nonl. Evol. Equ. Appl. 2025 (6), pp. 99-111, published on December 12, 2025:

Approximations to solutions of stochastic partial integrodifferential equations in Hilbert spaces


Moustapha Dieye1 Amadou Diop2,3 and Mamadou Moustapha Mbaye4,

1 Ecole Polytechnique de Thiès, Département Tronc commun, Thiès, Sénégal. Sénégal
2 Classes Préparatoires aux Grandes Écoles de Thiès (CPGE), BP A10, Thiès, Sénégal.
3 Laboratoire d’Analyse Numérique et Informatique, Université Gaston Berger, Saint-Louis, Sénégal.
4 Département de Mathématiques, Faculté des Sciences et Technique, Université Cheikh Anta Diop, BP-5005, Dakar-Fann, Sénégal.

Received on March 6, 2025,
Accepted on April 22, 2025

Communicated by Gaston M. N'Guérékata

Abstract.  This work investigates the existence and uniqueness of mild solutions for a specific class of stochastic partial integrodifferential equations in Hilbert spaces by developing Picard-type approximate sequences. We provide approximate results based on Taniguchi conditions. Additionally, we apply these abstract findings to the Heath-Jarrow-Morton-Musiela (HJMM) equation to reinforce the theoretical framework.
Keywords: Stochastic processes, stochastic evolution equations, Pseudo S-asymptotically Bloch type periodic functions.
2010 Mathematics Subject Classification:   34K07, 45D05, 60H20.

Download Full Text: JNEEA-vol.2025-no.6.pdf [275 KB]