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Abstract. The main objective of this work is to study the existence and uniqueness of the square-
mean (p, v)-pseudo almost automorphic solution of class r in the a-norm for a stochastic partial
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1 Introduction

In this paper, we study the existence and uniqueness of square-mean (u, v)-pseudo almost automor-
phic solutions in the a-norm for the following stochastic differential equation

da(t) = [~ Az(t) + L(ze) + f(£)]dt + g(¢)dW (t) for t € R, (1.1)
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where —A: D(A) C H — H is the infinitesimal generator of a compact analytic semi-group
(T(t))t>0 on L?(P, H). Let H, = (D(A%),||.]la), and let C, = C([—7,0], Hy), with 0 < o < 1,
denote the space of continuous functions from [—r, 0] to H,, where A® is the fractional a-power of
A. (The operator A* and the space H,, will be described later.) We define the norm on C,, by

lelle, = 1A%l c(=r0,L2(P,H))-

For every ¢t > 0 and x € C, = C([—r,0], Hy), where r > 0, the history function z; is defined by
2(0) = z(t + 0) for —r < 6 < 0. Here, L is a bounded linear operator from C,, into L?(P, H),
and f: R — L?(P,H) and g: R — L?(P, H) are two stochastic processes. Finally, W () is a
two-sided standard Brownian motion defined on the filtered probability space (€2, F, P, F;) with
Fi = o{W(u) — W(v)|u,v < t}. Here, we assume that (H, ||.||) is a real separable Hilbert space
and L2(P, H) is the space of all H-valued random variables z such that

E||z|2 = / |z|2dP < +oo.
Q

The concept of almost automorphy is a generalization of the classical periodicity. This notion was
introduced in the literature by Bochner [8} 9l]. For a comprehensive treatment of almost automorphic
functions, we refer the reader to the books by G. M. N’Guérékata [23] [24] (see also [3]).

The notion of square-mean almost automorphic stochastic processes was introduced by Fu and
Liu; for more details see [L1] and the references therein. In addition, these authors defined the space
of pseudo-almost automorphic stochastic processes to study the existence, uniqueness, and stability
of solutions in the square-mean sense.

The aim of this work is to extend the results obtained in [[17, 21}, 29], where the authors studied
equation (I.1) in the deterministic setting. It is well-known that stochastic modelling plays a crucial
role in many fields, including physics, engineering, economics, and the social sciences. Accordingly,
stochastic differential systems have attracted considerable research attention in recent years, with
particular interest in their quantitative and qualitative properties, such as the existence, uniqueness
and stability of their solutions. For further details, the reader is referred to [14} 19, [18]] and the
references therein. In this context, recent contributions have focused on square-mean pseudo almost
automorphic solutions for abstract differential equations similar to equation (1.1)); see, for instance,
[4, 15,15 14} 22]] and the references therein.

In [13], M. A. Diop et al. studied the existence, uniqueness and stability of the square-mean
p-pseudo almost periodic and automorphic solutions of a stochastic evolution equation. In [20], the
authors used the Banach contraction principle and the techniques of fractional powers of operators
to study the existence and uniqueness of square-mean almost automorphic mild solutions for a
class of stochastic differential equations in a real separable Hilbert space. More recently, in [30],
L. Zabsonre and M. Kiema studied the existence and uniqueness of the square-mean (u, /)-pseudo
almost automorphic solutions of infinite class for a stochastic evolution equation. However, to the
best of the authors’ knowledge, the existence of square-mean (u, v)-pseudo almost automorphic
solutions of class r in the a-norm for equation has not yet been addressed in the literature,
which constitutes the main motivation of this paper.

This paper is organized as follows. In Section 2, we recall some preliminary results on analytic
semi-groups and fractional powers associated to their generators. In Section 3, we present the
spectral decomposition of the phase space and the variation of constants formula. In Section 4,
we study square-mean (u, v)-ergodic processes of class . In Section 5, we study square-mean



SQUARE-MEAN PAA SOLUTIONS OF CLASS r 63

(11, v)-pseudo almost automorphic processes. In Section 6, we discuss the existence and uniqueness
of square-mean (u, v)-pseudo almost automorphic solutions of class r. The final section is dedicated
to an application.

2 Analytic semi-group

Let (L?(P, H),||.||) be a Banach space, let o be a constant such that 0 < a < 1 and let — A be the
infinitesimal generator of a bounded analytic semi-group of linear operators (7°(t));>o on L*(P, H).
We assume without loss of generality that 0 € p(A). Note that if the assumption 0 € p(A) is not
satisfied, instead of the operator A one can consider the operator (A — oI) with o large enough such
that 0 € p(A — o). This allows us to define the fractional power A“ as a closed linear invertible
operator with domain D(A%) dense in L?(P, H). The closedness of A® implies that D(A%) is a
Banach space when endowed with the graph norm of A%, that is, |z| = ||z|| + ||A%«||. Since A®
is invertible, its graph norm |.| is equivalent to the norm ||z||, = ||A%x||. Thus, D(A®) equipped
with the norm |.|| is a Banach space, which we denote by L?(P, H,). For 0 < 8 < a < 1 the
imbedding L?(P, H,) < L?(P, Hg) is compact if the resolvent operator of A is compact. Also, the
following properties are well-known.

Proposition 2.1 ([26]]) Let 0 < o < 1. Assume that the operator — A is the infinitesimal generator
of an analytic semi-group (T (t))+>0 on the Banach space L*(P, H) such that 0 € p(A). Then, we
have

(i) T'(t): H— D(A®) for everyt > 0,
(i) T(t)A% = AYT(t)x for every x € D(AY) andt > 0,

(iii) for every t > 0 the operator AT (t) is bounded on H and there exist M, > 0 and w > 0
such that || AT (t)|| < Maoe ¥t fort > 0,

(iv) if 0 < a < B < 1, then D(AP) — D(A®),
(V) there exists No, > 0 such that ||(T(t) — I)A~%|| < Nut® fort > 0.

Recall that A~ is given by the following formula
1 oo
AT = —— / t* 1T (¢)dt,
0

where the integral converges in the uniform operator topology for every o > 0. Consequently, if 7'(¢)
is compact for each t > 0, then A~ is compact.

3 Spectral decomposition
To equation (1.1 we associate the following initial value problem

{ duy = [Aug + Lug + f(t)]dt + g(t)dW (t) for t > 0, A

’U,(]:QOGCQ,
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where f,g: Rt — L?(P, H) are two continuous stochastic processes.

For each ¢t > 0 we define the linear operator U/ (t) on C, by U(t) = v¢(., ), where v(., p) is the
solution of the following homogeneous equation

%v(t) = —Av(t) + L(v;) for t > 0,
Vo =@ € Ca.

Proposition 3.1 ([11) Let Ay be defined on C,, by

{ D(Ay) = {@ € Ca : ¢ € Carol0) € D(A), 9(0) € D(A) and o(0)' = —Ap(0) + L() }
Ay = ¢' € D(Au).

Then, Ay is the infinitesimal generator of the semi-group (U(t))i>0 on C.

Let (X() be the space defined by
(Xo) = {Xoc:ce L*(P,H)},
where the function Xyc is defined by

0, ifée[-r0),

(Xoe)(0) = {c if0 =0

Consider the extension ;l; of Ay defined on C,, & <X0> by

D(Ay) = { € CL([=1,0], L*(P, Ha)) : 9(0) € D(A) and (0 € D(A)},
Aup = Xo(Ap(0) + L) = ¢(0)).

We make the following assumption:

(Hop) The operator —A is the infinitesimal generator of an analytic semi-group (7'(t))¢>0 on the
Banach space L?(P, H) and satisfies 0 € p(A).

Lemma 3.2 ([2]) Assume that holds. Then, .;lzl satisfies the Hile—Yosida condition on C,, &
(Xo), that is, there exist M > 0, @ € R such that (@, +00) C p(Ay) and

IO = A) ™o <

(}\_]Wa})nforneNand)\>c~u.

Definition 3.3 We say a semi-group (U(t))>0 is hyperbolic if o(Ay) N iR = (.

For the sequel, we make the following assumption:

(Hy) (T'(t))e=>0 is compact on D(A) for ¢t > 0.
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The following result on the spectral decomposition of the phase space C,, is obtained.

Proposition 3.4 Assume that and hold. If the semi-group (U(t))¢>0 is hyperbolic, then
the space C,, can be decomposed as a direct sum Co, = S ® U of two U(t) invariant closed subspaces
S and U such that the restriction of (U(t))¢>o to U is a group and there exist positive constants M
and w such that

Ut plla < M| @lla fort>0andp € S,

() plla < Me|plla fort <0and g € U.

The subspaces S and U are called the stable and unstable space, respectively. Moreover, by I1° and
II* we denote the projection operators on S and U, respectively.

4 Square-mean (u, v)-ergodic of class r

In the following, A denotes the Lebesgue o-field of R, while M the set of all positive measures x
on N satisfying ;(R) = +oo and y([a,b]) < +oo forall a,b € R (a < b). Note that L?(P, H) is a
Hilbert space endowed with the following norm

1

2

lallys = ( / ||a:12dP) .
Q

Definition 4.1 ([13]) Let z: R — L%(P, H) be a stochastic process.

(1) x said to be stochastically bounded in square-mean sense, if there exists M > 0 such that

E||z(t)||? < M forall t € R.

(i1) x said to be stochastically continuous in square-mean sense if

%nnEHx(t) —z(s)||* < M forall t,s R,
—s
We denote by SBC (R, L%(P, H)) the space of all the stochastically bounded continuous processes.

Remark 4.2 ([13]) (SBC (R, L*(P, H)), ||.||o0) is a Banach space, where

2]l o0 = sup(E(||z(t)]12))?.
teR

Definition 4.3 Ler 1, v € M. A stochastic process f is said to be a-(p, v)-ergodic in square-mean
sense, if f € SBC(R, L?(P, H,)) and satisfies

i [ EIAO)Edu) —0.

T—+oo v([—T,T])

We denote by & (R, L?(P, Hy,), j1, v) the space of all such process.
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Definition 4.4 Let i, v € M. A stochastic process f is said to be a-(u,v)-ergodic of class r in
square-mean sense, if f € SBC(R, L*(P, H,)) and satisfies

i o [ s B0 = o

T—+oo V([_Tv T]) —7 0€t—r,t]

We denote by & (R, L?(P, Hy,), j1, v, 7) the space of all such process.

For 4 € M and a € R, we denote by 1, the positive measure on (R, \') defined by
pa(A) =p({a+b:be A}) for Ae N. 4.1

In what follows, we will need the following assumptions on pu, v € M.

(Hy) Let u,v € M be such that

fimn sup A7)
T,

=§ < 4o00.
T—+o00 V [_ 77'])

(H3) Forall a,b,c € Rsuchthat 0 < a < b < ¢, there exist g and g > 0 such that

|5| >0y = /'L(a+5ab+6) > O‘O:u(&c"{'é)'

(Hy) For all 7 € R there exist 8 > 0 and a bounded interval I such that

p({a+7:a€ A}) < Bu(A) for A € N satisfying AN T = 0.

Proposition 4.5 Assume that holds. Then, the space & (R, L*>(P, Hy), i, v, ) endowed with
the uniform topology norm is a Banach space.

Proof. We can see that &(R, L?(P, H,), u,v,r) is a vector subspace of SBC(R; L?(P, H,)).
To complete the proof it is enough to prove that &(R,L?(P, H,),u,v,r) is closed in
SBC(R,L*(P,H,)). Let (fu)n be a sequence in &(R,L?(P,H,),u,v,r) such that
limy, o0 frn = f uniformly in R. From v(R) = oo, it follows that v([—7,7]) > 0 for 7
sufficiently large. Let || f||2, ,, = sup;er E[| f(2)]|2. and let ng € N be such that for all n. > ng we
have

+7
vd—lw])/_ <e§[}‘_p ﬂEllf<9>lli>du<t>
1 +7
- - sup  E||fn(0) — f(0)]12 | du(t
eyl <ee[t€,ﬂ 1£:6)~ £ ) (o)
IR S A ,
" v([=77]) /—T (%[t—%t]Ean(e)Ho‘) dp(t)

+7
== (;gﬂgmfm - f(9)H§>du(t)

IN

IN
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to [ o BIRO Jau)
V([_T7T]) —7 \O€[t—rit] “
2 p([=7,7]) 1 a 0)112
Y e M= <e§?€,t]E”f”( ”““)d’”‘(t) |
This implies that

1 /+T )
—_ sup E|f(0)]5 |du(t) < de forany £ > 0.
) ) <ee[t_r,t] 1700 Jdud

The proof is complete.

The following theorem is a characterization of square-mean «-(u, v)-ergodic processes
Theorem 4.6 Suppose that holds. Let p,v € M and let I be a bounded (possibly empty)
interval. Assume that f € SBC(R, L?(P, H,)). The following conditions are equivalent

(i) f € &R, L* (P, Hy), p,v,7)

1
i) lm ——m——— 0)|12 =0,
(i) lim v([—r, 7]\ 1) /[m]\[< sup | f( )Ha>du(t) 0

oclt—r,t]
(iii) for any € > 0 we have

. p({t e [-n 7\ E|f(O)Z >e}) _ 0
T—+00 V([_Ta T]\I) .

Proof. The proof follows the same arguments as in the proof of [12, Theorem 2.22]

First, we will show the equivalence Let A = pu(I) and

2
B[ (9:[33 S >||a>du<t>.

Since the interval [ is bounded and the process f is stochastically bounded and continuous, both A
and B are finite. For 7 > 0 such that I C [—7, 7] and v([—7, 7] \ I) > 0 we have

oclt—r,t]

W/[ N( sup E\f(ﬁ!i)du(t)

:[—1]—14 /[ ]< sup Enf(e)ni)du(t)_B

Oelt—rt]

v([—,7]) 1 9 B B
‘u[—aﬂ—A_u([—T,TD/[T,T]< el w”“)‘i““) A

oc(t—rt] =T, T]) '
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From above equalities and the fact that v(R) = 400, we deduce is equivalent to

. 1 / )
lim ———— sup E|f(0)|5 |du(t) =0,
T—+o0 v([-T,T]) [—7,7] (96[t—r,t] | |

which is precisely condition [(i)]
Now, we will prove the implication [(iii)] = Denote by A and B: the following sets

A5 = {t €l—rr\I: sup E|f@)2 > }

oc(t—rt]

and
B: = {t e[-rm7]\I: sup E|f(O)|> < 5}.
oc(t—rt]
Assume that holds. Then,
1(A7) 42)

e A VD

From the equality

/ ( sup Enf(e)Hi)du(t)
[—7,7I\I \ O€[t—r,t]

=/ ( sup ||f(9)|!p>du(t)+/ ( sup EHf(H)Hi)du(t),
Az Be \ bc[t—r,t]

oelt—r,t]

we deduce that for 7 sufficient large we have

”([_Tlﬂ\n /[— Y (aes[ﬁp f ]E\|f(9)||§> dpu(t)

) n(A) p(Bs)
< ||f||oo,a I/([—T,T]\I) +€y([—7',7']\1).

Since 1(R) = v(R) = +o00, and by |(H2)\ it follows that for all € > 0 we have

v([—7, 7]\ 1) /[—T,T]\J (96[t—€,t]E||f(0)|a> du(t) < oe.

Consequently, [(iD)] holds.
Finally, we will show the implication From|[(ii)] we have

/[_ 1\1( sup E\\f(e)\\§>du(t)2[45 (968[2113t}EHf(G)Hi)d,u,(t)_

oelt—r,t]

Hence,
1 su 2 1(AZ)
v([—7, 7]\ I) /[—T,T]\I (96[t—pr,t] }E\|f(9)||a> du(t) 2 el/([_T, T\ 1)
and
(A7)

1 2
/[_W< sup Eufw)rra)dmwzV([_H]\D.

ev([-r, 7]\ 1) feft—r.d]

Since this holds for sufficiently large 7, we obtain (4.2), that is,
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Definition 4.7 Let f € SBC (R, L?(P, H,)) and 7 € R. We denote by f, the function defined by
f-(t) = f(t+7) fort € R. Asubset F of SBC (R, L?(P, H,)) is said to be translation invariant
ifforall f € F, we have f; € % forall T € R.

Definition 4.8 Let 11, o € M. We say that i is equivalent to o, denoted by iy ~ po, if there exist
constants o, 3 > 0 and a bounded (possibly empty) interval I such that iy (A) < pa(A) < Bui(A)
for every A € N satisfying AN T = ().

Remark 4.9 The relation ~ is an equivalence relation on M.

Theorem 4.10 Let ji1,v1, ji2, v2 € M. If i1 ~ po and vy ~ v, then & (R, L?(P, Hy), i1, v1,7) =
&R, L2(P, Hy), pio, V2, 7).

Proof. Since 11 ~ uo and vy ~ 19, there exist some constants a1, ao, 81, S2 > 0 and a bounded
(possibly empty) interval I such that ajpi(A) < pa(A) < Biui(A) and agri(A) < 1r(A) <
Bovy (A) for each A € N satisfying AN I = (). Clearly, we can then write

1 < 1 < 1
Bavi(A) ~ 1n(A) ~ i (A)

Since 1 ~ p2 and N is the Lebesgue o-field, for sufficiently large T we obtain

arpn ({t € [=7, 7]\ I = supgep_ g EllF(O) ]2 > €})
Bopio([=7, 7]\ I)

_ ra({t € [ r\ T suppeprg ENS(O)]G > €})
B va([=7, 7]\ 1)

_ Bun({t € -7 7]\ L : suppeprg EIS(O)S > <})
- agv([=7, 7]\ I) '

By Theorem we deduce that & (R, L2(P, Hy), p1,v1,7) = &(R, L2(P, Hy,), ji2, v2, 7). O

For p,v € M we set cl(p,v) = {wl,wg EM:pu ~wi,v~ wg}.

Lemma 4.11 ([7]) Let 1 € M satisfy Then, the measures |1 and i are equivalent for all
TeR

Lemma 4.12 ([7]) Condition implies that for all o > 0 we have

lim sup wl=r = 0,7 +0) < 400.
rotoo (=T, 7))

Theorem 4.13 Assume that holds. Then, &(R, L?(P, H,), j1, v, r) is invariant under transla-
tions.
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Proof. The proof is inspired by the proof of [6, Theorem 3.5]. Let f € &(R, L*(P, Hy), p, v, 7)
and a € R. Since v(R) = +o0, there exists ag > 0 such that v([—7 — |a|, 7+ |a|]) > 0 for |a| > ao.
Set

1 T
M, (1) = / < sup E||f(6’)||i> dpg(t) forallT > 0anda € R,

Va([TaT]) —7 \ O€[t—r,t]

where v, is the positive measure define by equation (@.1)). By Lemma[.11] it follows that v and
v, are equivalent, as are 1 and u,. Hence, by Theoremwe have & (R, L2(P, Hy), fta, Va,T) =
& (R, L*(P,H,), p, v, 7). Therefore, f € &R, L*(P, Hy), lta, Va, ), that is, limy oo My (7) =0
forall a € R.

For A € N we denote by x 4 the characteristic function of A. By the definition of y,, we obtain

/[_w] Y (t)dpa(t) = /[_m Wl +a) = [ xa(t)dpia(t).

[-T+a,7+a]

Since ¢ > supgep—r. 4 Ell f (6)]|? is the pointwise limit of an increasing sequence of function (see [27,
Theorem 1.17, p. 15]), we deduce that

/ sup Ellf(ﬁ)llidua(t)z/ sup  E[f(0)]*du(t).
[— [—T+a,7+a] O€]

7,7] O€[t—r,t] t—a—r,t—al
Let a™ = max(a,0) and a~ = max(—a,0). Then, we have |a| + a = 2a™, |a| — a = 2a~ and
[-7+a—la|l,7+a+|a|]] = [-7 — 2a~, 7 + 2a™]. Therefore, we obtain

1
My(T + |a]) = E|f(0))2du(t). 4.3
(T |a|) V([iT —2a7,7+ 26L+]) /[TZ(L,TJrQaﬂ BG[t—Sczl—Ii,t—a] Hf( )H H( ) 3

From (4.3)) and the following inequality

L /[ sup  E|£(0)[2du(t)

V([_T7 T]) —71,7] 0€[t—a—r,t—al]

— ! / u R 2
= v([-7,7]) Sup FO)|du(t),
I/([ ) ]) [-7—2a—,74+2a™] 6€[t—a—r,t—a] H ( )H ( )

we obtain

v([—lw])/[_} sup  E|f(0)|[3du(t)

oe[t—a—rt—al

v([-7 —2a",7 + 2a™])

< X My (T + |al).
) (7 + lal)
This implies that
1 / s E| £(0)l|5du(t)
[ up adp
v([=7,7]) Ji—r1 6cft—a—rt—a] (4.4)
. v([=7 = 2lal, 7+ 2|al)) M, (7 + |al).

V([_T7 T])
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From equations (#.3)—#.4) and Lemma[4.12] we deduce that

- sup | F(0))2du(t) =0,
V([fTv T]) [=7,7] O€[t—a—r,t—al] H ( )” :U’( )

which is equivalent to

1
/[ o B0 - a)dut) =0

V([_T7 T]) 0c(t—rt]

Hence, f, € &R, L?(P, H,), i1, v,r). We have proved that if f € &(R, L?(P, H,), i, v,7), then
foa € &R, L*(P,H,), u,v,r) for all a € R, that is, &(R, L?(P, Hy), i, v, ) is invariant under
translations. ]

Proposition 4.14 The space SPAA(R, LP (), H), i, v, 1) is invariant under translations, that is,
fa € PAAR,LP(QY, H), u,v,r) foralla € Rand f € SPAAR, LP(Q, H), p, v, ).

5 Square-mean (u, v)-pseudo almost automorphic process

This section is devoted to defining square-mean a-(u, v)-pseudo almost automorphic processes and
studying their properties.

Definition 5.1 ([10]) A continuous stochastic process f: R — L2(P, H) is said to be almost auto-
morphic process in the square-mean sense, if for every sequence of real numbers (Su,)men there
exist a subsequence (s, )nen and a stochastic process g: R — L?(P, H) such that

li_}rn E||f(t + sn) — g(t)||> = 0 for each t € R

and
lim El|lg(t — s,) — f(t)||*> = 0 for eacht € R.
n— o0

We denote by SAA(R, L?(P, H)) the space of all such stochastic processes.

Lemma 5.2 ([10]) The space SAA(R, L*(P, H)) of square-mean almost automorphic stochastic
processes equipped with the norm ||.|| is a Banach space.

Definition 5.3 ([10]) A bounded continuous stochastic process f: R — L2(P, H) is said to be
compact almost automorphic process in the square-mean sense, if for every sequence of real numbers
(Sm)meN there exist a subsequence (sy,)nen and a stochastic process g: R — L*(P, H) such that

lim E|f(t+ s,) — g(t)||> =0 forall t € R
n—oo

and
h_)m Ellg(t — sn) — f(t)]|> = 0 forall t € R,

uniformly on compact subsets of R. We denote by SAA.(R, L?(P,H)) the space of all such
stochastic processes.
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Lemma 5.4 ([10]) The space SAA.(R, L?(P, H)) equipped with the norm ||.||s is a Banach space.

Definition 5.5 ([10]) A function f: R x L?>(P,H) — L*(P, H), (t,z) — f(t,), which is jointly
continuous, is said to be almost automorphic in the square-mean sense int € R for each x €
L2(P, H), if for every sequence of real numbers (s, )men there exist a subsequence (sy)nen and a
stochastic process g: R x L*(P,H) — L?(P, H) such that

lim E||f(t + sp,2) — g(t,2)||> = 0 forall t € R
n—oo

and
le E|g(t — sp,x) — f(t,2)|> =0 forall t € R.

We denote by SAA(R x L*(P, H), L*(P, H)) the space of all such stochastic processes.

Definition 5.6 ([10]) A bounded function f: R x L*(P,H) — L*(P,H), (t,x) v f(t, ), which
is jointly continuous, is said to be compact almost automorphic process in the square-mean sense, if

for every sequence of real numbers ($y,)men there exist a subsequence (s, )nen and a stochastic
process g: R x L>(P,H) — L?(P, H) such that

le E||f(t+ sn,x) — g(t,z)||* =0 forall t € R

and
lim E|g(t — sn,x) — f(t,z)||* = 0 forall t € R,
n—oo

uniformly on compact subsets of R. We denote by AA.(R x L?(P,H), L>(P, H)) the space of all
such stochastic processes.

Definition 5.7 Let i,v € M. A continuous stochastic process f: R — L*(P, H) is said to be
a-(u, v)-square-mean pseudo almost automorphic process, if it can be decomposed as follows
f =g+ ¢ where g € SAAR,L*(P,H,)) and ¢ € &(R,L*(P,Hy),p,v). We denote by
SPAA(R, L*(P, H,), i, v) the space of all such stochastic processes.

Definition 5.8 Let j1,v € M. A continuous stochastic process f: R — L*(P, H) is said to be
compact a-(u, v)-square-mean pseudo almost automorphic process, if it can be decomposed as
follows f = g+ ¢, where g € SAA.(R, L?>(P, H,)) and ¢ € &(R, L*(P, H,), 1, v). We denote by
SPAA.(R,L*(P, Hy,), j1,v) the space of all such stochastic processes.

Definition 5.9 Let ji,v € M. A bounded continuous stochastic process f: R — L*(P, Hy,)
is said to be a-(u,v)-square-mean pseudo almost automorphic process of class r (respectively,
compact o-(ju, v)-square-mean pseudo almost automorphic process of class r), if it can decom-
posed as follows f = g + ¢, where g € SAA(R, L?>(P, H,)) and ¢ € &(R,L*(P, Hy), j1,v,7)
(respectively, g € SAA.(R,L*(P,H,)) and ¢ € &(R,L*(P,H,),pu,v,r)). We denote by
SPAA(R, L?(P, Hy), j1,v,7) (respectively, SPAA.(R, L*(P, H,), u, v, 7)) the space of all such
stochastic processes.

Theorem 5.10 Let p,v € M and let f € SPAAR,L*(P,Hy,),p,v,r) be such that
f = g+ ¢ where g € SAAR,L*(P,H,)) and ¢ € &(R,L*(P,Hy),p,v,7). If
SPAA(R, L*(P, H,), u,v,r) is invariant under translations, then {f(t) : t € R} D {g(t) : t €
R}.
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The proof of Theorem [5.10]is similar to the proof of [6, Theorem 4.1].

Theorem 5.11 Let j1, v € M and assume that|(Hy)|holds. The space SPAA(R, L?(P, Hy,), j1, v, )
endowed with the uniform topology norm is a Banach space.

The proof of Theorem [5.11]is similar to the proof of [6, Theorem 4.9].

Next, we study the composition of square-mean «-(j, )-pseudo almost automorphic processes.
Definition 5.12 Let j1,v € M. A function f: R x L*(P,H,) — L*(P,H,), (t,x) — f(t,z),
which is jointly continuous, is said to be square-mean o-(u, v)-pseudo almost automorphic of
class rint € R for any v € L*(P,H,), if it can decomposed as follows f = g + ¢, where

g€ SAAR x L*(P, H,), L*(P,H,)) and ¢ € &(R x L*(P, H,), L>(P, Hy,), j1, v, 7). We denote
by SPAA(Rx L?(P, H,), L*(P, Hy), i, v, 7) the set of all such stochastically continuous processes.

Lemma 5.13 Assume that holds and let f € SBC(R,L*(Q,H)). Then, f €
&R, L?(P,Hy), u,v,r) if and only if for any € > 0,

lim N(M'r,a(f))

T=+oo v([—T,7])

=0,

where

M, — {t €lorr]: swp EIfO)2 > }
oe[—rt]

Proof. Suppose that f € &(R, L?(P, H,), it, v, 7). Then, we have

+7
e | (a2 o

_ ([_1]) /M . <Hes[upt]EHf(9)Hi>du(t)

1
P S / sup EI|f(0)]2 | du(t)
V([_Ta 7—]) [—7,7)\Mr.c(f) \O€[—T,1t]

( sup E!!f(H)Hi)du(t)
< (f)

\%
<

famn
L=

i

3

o

oc[—rt]
€
D ™)
ep(Mre(f))
— v(l=m7])
Consequently,
im AM(D)
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Now, suppose that f € SBC(R, L?(P, H,)) is such that for any € > 0 we have

f BMo(£)

T—too v([—T,7])

We assume that E| f(¢)||2 < N forall ¢ € R. Using[(H)| we have
e [ s B2 ) uee)
V([_T’ T]) —7 \O€[—nt] “
P L7612 ) dutt)
= sup o |du
v([=7.7]) o) \bel—ra

1 / 9
+ —— sup E|f(0)|l5, |du(t)
v([=7,7]) Jier Moo () <9€[r,t] 17l (

N €
l/([—T, T]) /M-r,e(f) du(t) " V([_T7 T]) /[—T,T]\M-r,a(f) du(t)

NM(MT,E) 5#([_77 T])
S U=nr) ven)

=0.

IN

This implies that
' 1 +7 )
Jim s /_ T (0:[11%1&” f(a)ua) du(t) < 6z forany & > 0.
Therefore, f € &R, L2(P, Hy), i, v, 7). O

Theorem 5.14 ([18]) Let f: R x L?(P,H) — L*(P,H), (t,x) v f(t,z), be almost automorphic
)y

in square-mean sense int € R for each x € L*(P, and assume that f satisfies the Lipschitz
condition in the following sense:

E|lf(t,2) — f(t.y)l* < Lz -yl

forall z,y € L*(P, H) and for each t € R, where L is independent of t. Then, for any square-mean
almost automorphic process x: R — L*(P, H) the stochastic process F': R — L?(P, H) given by
F(t) = f(t,z(t)) is square-mean almost automorphic.

Theorem 5.15 Let j1,v € M. Also, let p = ¢ + ¢o € PAAR x L*(P, H,), L*>(P, Hy), j1,v,7)
with o1 € SAAR x L?(P,H,), L*(P,H,)) and ¢3 € &R x L*(P,H), L*(P, Hy), ji, v, 7).
Finally, let h € PAA(R, L*(P, H,), u, v, 7). Assume that:
(i) ¢1(t, z) is uniformly continuous on any bounded subset uniformly for t € R,
(ii) there exists a non negative function Ly € LP(R) (1 < p < 400) such that
E|l6(t,z) — 6(t,y)llz < Le(t)Ellz - yll3 (5.1)
forallt € R and for all xz,y € L*(P, Hy,).
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I
. 1 ’
B = lim / ( sup L¢(9))d,u(t) < +o0, (5.2)

T+ V([_Tv T]) —7 \O[—r,t]

then the function t — ¢(t, h(t)) belongs to SPAA(R x L*(P,H,), L*>(P, H), ji, v, 7).

Proof. Suppose that ¢ = ¢ + ¢2, h = hy + hg, where ¢ € SAA(R x L?(P, H,), L>(P, H,)),
¢ € &R x L*P/H,),L*(P,H,),p,v,r), hy € SAAR,L*(P,H,)) and hy €
&(R,L?(P, Hy), j1, v, 7). Consider the following decomposition

¢(t, h(t)) = o1t hi(t)) + [6(E, h(t)) — &t ha ()] + 2(t, ha(t)).

From [[14], it follows that ¢1 (., h(.)) € SAA(R, LP(Q, H)). To complete the proof it remains to
show that both ¢(., h(.)) — #(., h1(.)) and ¢2(., h(.)) belong to & (R, L2(P, Hy,), i1, v, 7). Clearly,
t = ¢(t, h(t))—¢(t, h1(t)) is bounded and continuous. Assume that E||¢(t, h(t)) —é(t, h1(t))]|2 <
N for all t € R. Since h(t), h1(t) are bounded, we can choose a bounded subset B C R such that
h(R), h1(R) C B. Under assumption|(i)} for a given & > 0 if E||z — y||2 < ¢, then

Ell¢(t, ) — ¢(t, )5 < eLg(t) forall ¢ € R.

Since n € &(R, L?(P, Hy), j1,v,7), Lemmamyields that

. 1 B
(M) = 0.

Consequently,

o/ ( up EJ6(0,h(0)) - ¢<9,h1<0>>ui>dﬂ<t>

T\ 0€[—r,t]

:uq—lwb/M <>< S E‘W(@ah(@))—¢<0,h1<e>>||i>du<t>

oe[—r,t]

oe[—rt]

R N ) 2
M /MT’EM)\[T’T( p E||6(6, h(9)) ¢<e,h1<e>>||a>du<t>

IN

N g
v / Mre(n) WO /[—T,T}\Mf,sm) (éﬁ% !L¢(«9)I> e
e
T o PO g (ees[gg’ﬂ |L¢<9>\> au(t)

NIU’(MT,E(T])) 5 “u
: V([_T’ T]) ’ V([_Tv T]) /[—T,T] (96[1;),75} ‘Ld)(e)’) du(t).

We deduce that for any € > 0 we have

IN

lim 1/T< sup Eyy¢(9,h(a))—¢(9,h1(9))\§>du(t) <ef.

T—F V([—T, T]) —7 \O€[—r,t]
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This shows that ¢ — ¢(t, h(t)) — ¢(t, hi(t)) is (u, v)-ergodic of class .

Now, to complete the proof we need to show that ¢t — ¢o(t, h(t)) is (u, v)-ergodic of class 7.
Since ¢+ is uniformly continuous on the compact set A = {h(t) : t € R} with respect to the second
variable z, we deduce that for a given € > 0 there exists 6 > 0 such that for all t € R and £1,&2 € A
one has E|[¢2(t, &1(t)) — ¢2(&, &(1))]|% < &, provided that E|[&; — & |2 < §. Therefore, there exist
n(e) and {z,}f:(i) C A such that

n(e)
A C | Bs(2i,0).

i=1

And then

n(e)

Ellgo(t, (D)2 < e+ Y Ellga(t, z0)]la-

i=1

Since
1 T
lim [ ( swp Bloa@. @) dutt) =0
T—+oo V([_T7 T]) -7 (96[—r,t]

forevery i € {1,...,n(e)}, for any € > 0 we get

thUp([_i’TD/T < sup EH@(Q,hl(e))”i) du(t) <e.

T—+4oc0 V —7 \ O€[—r,t]

This implies that

1 T
lim / sup El[¢o(6, h1(0))% |du(t) = 0.
Pﬁquﬂﬂ)7<%gm]” (0@l Jaut®
Consequently, ¢ — ¢o(t, hi(t)) is (u, v)-ergodic of class 7. O

6 Square-mean pseudo almost automorphic solution of class r

Lemma 6.1 (Ito’s Isometry, see [25]) Let W: [0,T] x © — R denote the canonical real-valued
Wiener process defined up to time T > 0 and let X : [0,T] x Q@ — R be a stochastic process that is
adapted to the natural filtration F\V of the Wiener process. Then,

T 2 T
([ )] o ]
0 0
where [E denotes expectation with respect to the classical Wiener measure.

We make the following assumption:

(H5) g is a stochastically bounded process.

Theorem 6.2 Assume that(Ho)| (H;)|and|(Hs)|hold and that the semi-group (U (t))¢>0 is hyperbolic.
If f is bounded on R, then there exists a unique bounded solution u of equation (L.1)) on R given by

u = lim t U (t — s)IT°(BrXof(s))ds

A—=+oo J_ o
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t

+ lim U (t — s)IT(ByXo f(s))ds
A——+o00 +oo
+ lim t U (t — s)I1°(BxXog(s))dW (s)

A=+o00 J

t

+ lim U (t — s)IT*(BxXog(s))dW (s),

where E)\ = MA — Ay)~! for X > @, and TI*, TI* are projections of C,, onto the stable and
unstable subspaces, respectively.

Proof. Let

t ~

ur = v(t) + ,\hT U (t — s)II°(BrXog(s))dW (s)
—+o00 J_oo
t ~

+ lim U(t — s)II*(BrXog(s))dW (s),

where
t - t ~
v(t) = lim Ut — s)II*(By\Xo f(s))ds + lim U*(t — s)IT*(BrXo f(s))ds
A—=+o00 J_ A—=+oo J Lo

Let us first prove that u, exists. The existence of v was proved in [[1]. Now, we show that the limit

lim t U (t — $)IT*(ByXog(s))dW (s)

A=+o00 J_

exists. Using Ito’s isometry for the stochastic integral for ¢ € R we have

2

E / t U (t — $)IT*(BrXog(s))dW (s)

— 00

(67

—th s)
<E(/ M I ]| (B Xog(s)) HQdS)

— t ewi(tfs) PSP )
<I°E / CI|[(B Xog(s))||ds

o (E—9)
N t —2w(t—s)
T2 2171812 € 2
< -
< AP E(/oo oy ol ds)

— o~ i t=n+1 ,—2w(t—s) )
<WPIPE Y E( [ G lalas

n=1 -n

t e—Qw(t_S)
§ (/ (t_s)zaHQ(S)Hst>

< M2M2‘HS‘2
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t—n+1 672w(tfs)
+2E< | an@npds)].

Then, using Holder’s inequality, we obtain

2

E / Ut )T (B Xog(s)) AW (s)

—00

«

t e—4w(t—s) % t . %
—ds x E s)||*ds
= | ta
o0 t—n—+1 6—4w(t—s) % t—n+1 A %
+ / —  —ds XE/ g(s)||*ds
2\, oo e
M M2 118 2E 2 4w
. (4’1 )r Ellg(s)] K /0 d)
w) 2
4 3
+ / —58—4ad8
Z( 4w(n—1) ) ]
M M2 118 2E 2 4w
<L )’1 llg(s)] K / d)
w) 2 0

N Z </4wn (n B 1)_4a(4w)—4o¢d8)

dw(n—1)

1
2177812 2 4w 2
_ AT PEo(s)| [t
(dw) 2 0
o 4wn
+ Z (n— 1)_4a/ e % (4w)~*ds
n—2 4w(n—1)
2177812 2 4w
 TAPITPEo(s)| [ s
(dw) 2 0

T2 721778 (2 2 o 4uwn
APPSR S ([,
(4w)§ dw(n—1)

< M2M2’Hs’2

[NIES

N

[NIE

|

[N

|

N |=

[V

n=2

1

M M? 118 2E 2 4w 2
 RPEGOIE ([ iy,
(4w) 2 0
A2 AT217Ts 12 2 o0
+ M M |H | I?HQ(S)H (e4w _ 1)% Ze—an
(du)

n=2
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1

T2 NT217TTs 12 2 4w 2
. MM PE lg(5)] ( / essmds)
0

(4w) 1724(,%
—2 00
M M2 118 QE 2
+ | | ng(S)H (e4w + 1)% Zewin‘
(4’(1]) 2 n=2
Since the series
oo
Z 6—2um
n=2

is convergent, it follows that
2

<K, (6.1)

[0}

E

[ o Bxogtsnaw s

where

-

—2
M"M>|1I*|’E 20 ’
K T°PElg(s)| ( / .
0

(1) "
=27 o)
M M2 118 ZE 2
+ | | » ||g(8)” (6410 + 1)% Z ewin'
(4’LU)5 n=2

Using Ito’s isometry for the stochastic integral, for sufficiently large n and o < ¢ we obtain

2

E

| -9 (B Xog(s)aw s)

a

1
o 6—4w(t—s) 2 t
———ds|] xE / g(s)||*ds
(/ﬂ(ts)w ) <Hu<>u )
o t—n+1 e—4w(t—s) % o—n+1 A %
+n§/t 7(t_5)4ads x E /M lg(s)]|*ds

—n

2

< M2M2|Hs|2

[SIE

T2 A2 12 2 dw(t—o+1)
. MM PE g (5)] K / eS(t_a)4a(4w)4ad8>
4

(4'LU) 1724& w(t—o)
1
ol 4w (t—o+n) 2
+ Z / e 5t — o +n—1)"14w) 1 ds
n—2 \Y4w(t—o+n-1)
1
Wvia Ve w(t—o 2
< TPTLEN o [ )
N (4’(0)% dw(t—o)

Nl

2721178 (2 2 4w(t—o+n)
IEREEGI o [ e
(4w)§ dw(t—o+n—1)
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72 —,
o MMPIEPE|lg(s)]?

(4w)? (t—0) 72 (1 — eh0)zem2ult=)
4w)2
72/\-/
n M M2|HS’2EH9(S)H2 (e4w + 1)56—211;(15—0) i e—2um
1
(4w)2 —

< Kl(t _ U)—Qae—Qw(t—U) + K2e—2w(t—0)’

where M2M2‘Hs‘2E” ,
K — : g(s)|l (1= e—iw)}
(dw)?
e M M2 PPE | g(s) |12
Ky — 9(s)ll (¢4 4 1)},

(4w)?

Set F(n, s,t) = Us(t — s)I1*(BxXog(s)) for n € Nand s < ¢. It follows that for sufficiently large
n and m and o < ¢ we have

2
E

/t F(n,s, t)dW(s) — /too F(m, s, t)dW (s)

— 00

o

<E / " Fns, )dW(s) + / " Fln, s, AW (s)

2

_/J F(m,s,t)dW(S)—/JtF(mwS»t)dW(S)

—0o0

«

2
+ 3E

2
<3E

/_ ; F(n,s,t)dW (s)

/ " F(m, s, 0)dW (s)

—00

o «

2

+ 3E /t F(n,s,t)dW(s) — /t F(m,s,t)dW (s)

< 6K, (t— 0)720‘67‘”2(75*0) + K2672w(tfg)

2

[ F(n,s,6)dW(s) - /t F(m, s,t)dW (s)

[

+ 3E

Since
2
Iim E

n—-+o0o

/U " Fln, s, AW (s)

«

exists, we get

2
limsup E

n,m—-+oo

/ " Flns ) dW(s) — / " Fms )dW(s)

—00 —0o0

«
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< 6(K1(t — 0)_20‘6_2“’(t_‘7) + KQe—Qw(t—U)).

If o — —o0, then

2
limsup E =0.

n,m—-+00

/too F(n, s, t)dW (s) — /too Fm, 5. 8)dW(s)

[0}

We deduce that
t 2 t 2
im E / F(n,s,0dW(s)| = lm E / U (1 — $)TT* (B Xog(s))dIV (s)

—00 —0oQ0

«
exists. Therefore, the limit

lim U (t — $)IT°(Bp Xog(s))dW (s)

n—-+4o0o — oo

exists. Moreover, from equation we can see that the function

2
n:t— lim E
n—

+o0

/ U (t — $)IT°(Bp Xog(s))dW (s)

— 00

(03
is bounded on R. Similarly, we can show that the function

2
+00 .
my:t— lim E U (t — s)IT*(B,rXog(s))dW (s)

n—-+00 ¢

«

is well-defined and bounded on R. OJ

Theorem 6.3 Assume that holds. Let p,v € M and ¢ € SPAA.(R,L*(P,Hy,), ju,v,7).
Then, the function t — ¢; belongs to SPAA.(C([~r,0], L*(P, Hy)), i, v, 7).

Proof. Assume that ¢ = g+ h, where g € SAA.(R, L*(P, H,)) and h € &R, L*(P, Hy,), p, v, 7).
Then, we can see that ¢y = g; + h; and that g; is a square-mean almost automorphic process. Firstly,
we show that g; € SAA.(R, L*(P, H,)). Let (s;)men be a sequence of real numbers. Fix a
subsequence (s, )nen and v € SBC(R, L?(P, H,)) such that g(s + s,) — v(s) uniformly on
compact subsets of R. Let K C [—L, L]. Fore > 0fix N. 1, € Nsuch that E|[g(s+s,)—v(s)[|2 < e
for s € [-L, L] whenever n > N, 1. Fort € K and n > N, 1, we have

El\gi+s, —v(s)lla < sup Ellg(0 + s,) —v(s)|5 < e
e[—L,L]

Hence, g¢+s, converges to v; uniformly in K. Similarly, we can show that v, s, converges to vy
uniformly in K. Thus, the function s — g, belongs SAA.(R, L?(P, H,)).

Finally, we show that h, € &(R, LP(P, Hy), p, v, 7). Let
My = ———— sup  E[h(0)5dpa(t),

l/a([_Tv T]) —7 O€[t—r,t]



82 Djendode Mbainadji and Issa Zabsonre, J. Nonl. Evol. Equ. Appl. 2025 (2025) 61-98]

where /i, and v, are the positive measures defined by equation (#.I)). By Lemma[4.T1] it follows that
1 and i, are equivalent, and so are v and v,. By Theorem we get &(R, L2(P, Hy), p, v, 1) =
&(R,L?(P, Hy), fta; Va, 7). Therefore, h € &(R, L2(P, Hy,), jta, Va, T), that is, im0 M, (7) =
0 forall a € R.

On the other, hand for 7 > 0 we have

1 T
- E||h(0 2 14
) /TQS[F%QS“EO I *5)’6“) #

< ( sup  E[[h(0 H2> ()
oelt—2r,t]
< / ( sup  E[R(O)]2 + sup EHh(@)Hi)du(t)
-7,7]) J_r 0€[t—2r,t—r] oet—r.t|
S sup  E||R(0)|2 |du(t
TT /T(GGt 2r,t—r] H ()’> ()

b | ( sup EJho ||2>du()

Oelt—r,t]

< sup E| (0] |du
V( -7, T /7‘ r<9€[t r,t] H H ) ()
TR - / < sup E[h(0 ||2> u(t)
-, T —7 \O€[t—r,t]
< / sup E[R(O)2 |du(t +r)
V( oe[t—rt]

o <Sup 1h (6 Hg)dﬂ(t)
TT —T oelt—r,t

1/([ T—71,7+7]) T “ 5 .
= v([-7,7]) <1/([ T—r,7+7]) /—T—r <9€[t€,t] EHh(e)HO‘) e+ )>

o L <@e[t_pr,ﬂ E”hw)”“>d““)'

Consequently,

! / sup <sup Ellh(9+£)lli>du(t)

V([_Tv T]) —7 0€ft—r,t] \ 0€[—7,0]

AET = ) ey L /( sup Enh(e)ni)du(w.

I (rka) v([=77]) Jor \oelt—rg
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By Lemmas and this shows that ¢; belongs to SPAA.(C[—r,0], L*(P, H,)), i, v, 7).
The proof is complete. O

Theorem 6.4 Assume that holds. Let f,g € SAA.(R, L?>(P, H,)), and let V be the mapping
defined fort € R by

V(f,9)(t) = [ lim /t U (t — $)TT*(BrXo f(s))ds

A—=+o0o J_ o

t

+ lim Ut — )IT(ByXo f(s))ds
t ~
+ lim U (t — s)II° (B Xog(s))dW (s)
A—=+oo J_ o
t ~
+ lim U(t — s)IIT*(BxrXog(s))dW (s) | (0).

Then, V(f,g) € SAA.(R, L*(P, H,)).

Proof. We can see that ¥(f, g) € SBC (R, L?(P, H,)). In fact,

E[(f,9) B2

t ~
=E| | lim / UP(t — s)II°(BrXo f(s))ds
A—=+oo | o
t ~
+ lim U (t — s)IT*(BrXof(s))ds
t ~
+ lim UP(t — s)IT* (B Xog(s))dW (s)
A—=+o0 J_ o
. 2
+ lim Uu“(t — s)H“(BAXOg(s))dW(s)] (0)
A—)-‘FOO +00 o
. 2
<J4E| lim / Us(t — s)II°(BrXo f(s))ds
A—=+oo J_ o
. 2
+4E|| lim Ut — s)IT*(BrXof(s))ds
. 2
+ 4E|| lim U (t — s)II* (B Xog(s))dW (s)
A—+o00 — 0o
. 2
+ 4E|| lim U (t — s)IT*(BxrXog(s))dW (s)
A—=r+o0 J Lo N
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Using Ito’s isometry for the stochastic integral, we obtain

E|¥(f,9)(®)]3

o t G—Qw(t—s)
< 4B 31°0F° / T IR £ (s)) s

oo (t—8)2
+4E <M2M2 /:OO mmuﬁnﬂs)n?ds)
+4E <M2]\72 /; wnslz\g(s)wds) 62)
+4E <M2]\72 /:OO m|ﬂu\2\|g(s)||2ds>

SAUL IR + 912 ([ s 20
<
<[, e

SA(If113 + llgll%)
(Bw)i2o (1—-2a) < 400,

where A = max (7~ M2[I1%|2, M~ M2|I14)2).

For a given sequence (S;,)men Of real numbers, fix a subsequence (sp)nen and v, h €
SBC(R, L*(P, H)) such that f(t + s,) converges to v(t) and g(t + s,,) converges to h(t) uni-
formly on compact subsets of R. Let

w(t+ sp) = [ lim /t U (t — $)II°(BxXof (s + sn))ds

A=+oo J

t

+ lim Ut — s)ITY(BrXof (s + sn))ds
t ~
+ lim UP(t — s)TT°(BrXog(s + sn))dW (s)
A—=+o00 J_
t ~
+ lim U (t — s)IT*(BrXog(s + spn))dW (s) |-
A—=+o00 J 1o

By equation and the Lebesgue dominated convergence theorem, it follows that w(t + s,)
converges to

A(t) = [A tim /_ U= )T (B Xou(s))ds

t

+ lim U (t — s)IT*(ByXov(s))ds
t ~
+ lim U (t — s)IT°(BaXoh(s))dW (s)

A—=+oo J
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+ lim t U (t — )TT(ByXoh(s))dW (s)].

Now, it remains to show that this convergence is uniform on all compact subset of R. Let X' C R be
an arbitrary compact set and let ¢ > 0. Fix L > 0 and N, € N such that K C [—%, %] with

“+00
/ e ¥s72%s < ¢,

L

2
E|f(s + sn) —v(s)||> < eforn > N. and s € [ L, L] (6.3)

and
E|lg(s 4 sn) — h(s)||*> < e forn > N. and s € [~ L, L]. (6.4)

Then, for each t € K, we get

Ellw(t + s,) — 2(t)|2

=E| lim /t U (t — s)IT°(BxXof (s + sn))ds

A=+oo J_

t ~
+ lim U (t — s)IT*(BrXof(s+ sn))ds

t

+ lim U (t — $)IT5(BrXog(s + sp))dW (s)
A—=+o00 J_ g
t ~
+ lim L{“(t — S)HU(B)\Xog(S + Sn))dW(S)

A——+o00 +00

t

— lim US(t — s)ITI*(ByXou(s))ds
A—=+o00 J_ o
t ~
— lim U (t — s)IT* (B Xov(s))ds

A——+o00 +oo

t

— lim U (t — $)IT3(B)Xoh(s))dW (s)
A—=+o0 J_
: 2
— lim U (t — s)IT*(BrXoh(s))dW (s)

2

t ~
<A4E| lim / UP(t — s)II*(BAXo(f (s + sn) — v(s))ds
A=+oo J_ o
t ~ 2
+ 4E|| lim U (t — s)IT*(BrXo(f (s + sp) —v(s))ds
A—=r+oo J o @

‘ 2

+4E|| lim U (t — s)TT°(BxXo(g(s + sn) — h(s))dW (s)

A—=+oo J_ o

a
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" 2

lim Ut — $)TT(BrXo(g(s + sn) — h(s))dW (s)

+4E

(6%
=4(v1 +72 + 73+ 74)-

Firstly, we evaluate ;. We have

2
t ~
n=E| lim_ / Ut — )T (BrXo(f(s + 5n) — v(s))ds
oy b e—2w(t—s) .9 )
<A [ G PR+ 50) —o(s) s
oy o —-L €—2w(t—s) )
< M™M= / mEH(f(S—FSn)—U(S))H ds
oy ) t 6—2w(t—s) )
AP / E T EN(f (s + s) — v(s))]|%ds.
—r (t—s)

Similarly, we have

2

+oo ~
v =E AET U (t — s)IT°(BaXo(f (s + sn) — v(s))ds
o0 Jt
2y b 2w(t—s) .19 9
< TN / G T PEI s+ ) —v(s))ds
oy —L 6Qw(s—t) 9
SAPIPIP [ B (s 4 50) = o)

T bt p2w(s—t) )
ST [ E Bl (f s+ ) = ().

Secondly, by Ito’s isometry for the stochastic integral, we obtain

2
t ~
1 =E| lim [ U= T (BaXlo(s + ) ~ bW (s)
—+00 J
2y t —2w(t—s) .1 9
< PN /oo oy TP (s + s0) = ki) Pds
o ) —L o—2w(t—s) 9
SIPAPICE [ T Bl(a(s + ) = () s

2y t e—2w(t—s) )
SRR [ S B+ ) = b)) s

Finally, applying Ito’s isometry for stochastic integrals once again, we get
2

im [ U (t — $)ITY(BrXo(g(s + sn) — h(s))dW (s)

1u=E
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9 t 6—2w(t s)
SV [ PB4 50) — (s)Pds

o —L _—2w(t—s)
< MQMQH“P/ :

_ mEH(Q(S + 5,) — h(s))||%ds

—2w(t—s)

+M2J\72\H“]2/ ? E||(g(s + 5n) — h(s))[2ds.

.y t— 5)2&

Consequently, we have

Ellw(t + s,) — 2(t)|2

i —L o—2w(t—s) 9
<4\ [T B (s ) — o(a)) s
90—y ) t 672w(t75) )
FIPPIE [ (s ) - o(s)) s
.y (t — 8)

o 400 2w(s—t)
+ M M2 / R
¢ (t—s)

—L 672w(t78)

E||(f(s + s) — v(s))[*ds

— 9~ s
SNPIPIE [ C Bl (gl ) = o) s
oy t 672w(t75) )
AIPPIE [ Bl s+ )~ h(s)) s

L (t S)

00 ,—2w(t—s)

mEH(Q(S + sn) — h(s))szS]

72/\/
<4 ZeM MAITE M /+OO e Ss72%ds
- (2w)t—2 +L

+M2M2Hu’2/
t

A2 (T8 12 Hu2 e (- S)E B 24
+ (JTE°}2 + [11}%) . [(f(s =+ sn) —v(s))[|"ds

272 (177812 vl e 2w (t=s) 2
+ MM (I + 112 . 5 E[l(g(s + sn) — h(s))]|"ds

TR2AT21TT8(2 oo
o o 2EM M o520
= (2w)1 20 L

2

72/'\/
2eM M2(|HS‘2 + |Hu‘2) oo —s —2ad
(2w)1_2a ) e S S

72N
SM M2 ‘HSP—I—‘H“’Z

Since the last estimate is independent of ¢ € K, this proves that the convergence is uniform on K.

A
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Proceeding as before, one can similarly prove that z(t — s,,) converges to w uniformly on compact
subsets of R. The proof is complete. O

Theorem 6.5 Assume that and hold. Let f,g € &(R,L*(P,Hy),u,v,7). Then,
U(f,9) € &R, L2(P, Hy), p, v, 7).

Proof. Let
t ~
U(f,g)(t) = lim U (t — s)TT*(BaXof(s))ds
A=+oo J
t ~
+ lim U“(t — s)II"(BrXo f(s))ds
t ~
+ lim Us(t — s)II°(BrXog(s))dW (s)
A=+oo J_
t ~
+ lim U(t — s)II*(BrxXog(s))dW (s).
Then,

BIR ()01 <[ lim [ (- 90 (B X (3))ds

+ lim t Ut — s)IT*(BaXof(s))ds

+ lim t U (t — $)IT3(ByXog(s))dW (s)

A—=+o0 J_ o

‘ 2

+ lim U (t — s)TT(BxXog(s))dW (s)

«

Consequently, by Ito’s isometry for stochastic integrals, we have

/ ' <9€s[tup S, g><e>||i> (1)

< arre( [ Gk
> sup S S
—r \Oeft—rt] oo (00— 5)

0 o2w(0-s) . ) 0 o—2w(0—s) , ,
— II™ e
+/Oo TRl ds+/oo @y L lla(s) ds

0 eQw(G—s) — 2 duls
[ g Plate)IPas ) | Jaut)

oo (
<are [ Pl g 2ds |d
< cup e P 9) 1705 ) auto)

—7 \O€t—r,t] J —oc0 (6
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T 0 e2w(0 s) ) )
+ / sup / o PR f(5)] s | )
—7 \O€[t—r,t] J —o0 (3 )
T 0 e—2w(9 s) .1 5
+ / sup / e IIPE|g(s)2ds | du(t)
—r \Beft—r] J—oo (8 — 5)%
T 0 e2w(6’ s) ) )
+ / sup / s I PEllg(s) s ) dp(t)
—7 \O€[t—rt] J —c0 (s —0)%
/ ' / O ) + Ellg(s)2)ds | dutt)
su —_—_— S + S S
-7 ee[t—a,t} —oo (0= 8)% g a

T 0 2w(0—s) )
+f (9;;% [ ISR +Elgtol )d3>du >]

where A = max(40° M2|TI*[2, AN M2[TT42).

<A

By Fubini’s theorem, we have

/T sup /9 w(EHﬂS)HQ+EH9(3)|’2)d5 dp(t)
—r \oeft—ri] J—oo (0 —5)*

o +oo e—2ws
</ ( J sga(E||f<e—s>||2+E||g<e—s>||2)ds>dﬂ<t>

oelt—rt]

“+oo 6—2ws T
<) ( w/ T(E”f<9—s>||2+E||g<e—s>||2)du<t>>ds.

§ ocft—rt] J—

Moreover, by the Lebesgue dominated convergence theorem and Theorem [4.13] we deduce that

e—Qws 1

lim sup / " EIF6 - )|+ Ellg(6 — 5)]?)du(t) = 0

To4oo  §2¢ I/([—T,T])ee[tw,t] -7

forall s € RT, and

672ws 1

0 v([=7,7]) ol / " (BIF0 )P + Ellg0 — )])du(t

oct—rt) J—7

—2ws

< T e g2,

s2* y([-7,7])

Since the functions f and g are bounded, we infer that

(i)
s y([-7,7])

belongs to L'([0, +00]). In view of the Lebesgue dominated convergence theorem, it follows that

S —

(1113 + Nlgl1%)

+o00 e—Qws 1 T
lim sup / E| f(8 — s)||* + E||g(8 — s)||*)dpu(t) |ds = 0.
dim [ (GGM [ (BI6 = )1 +Bl(0 — )|)autt
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Similarly, we obtain

+oo ,—2ws T
lim ¢ ! ( sup / (E|f(0—|—s)||2+E|g(c9—|—s)|2)du(t))d8:0.

T=+o0 Jo 52 V([_T7T]) oclt—rt| J—7

Consequently,

lim 1/T< sup EH‘If(f,g)W)Hi)du(t)—O-

oo v([(—7,7)]) J_r oelt—ry]

Thus, we obtain the desired result. OJ

To prove the existence of a square-mean compact pseudo almost automorphic solution of class r,
we need the following condition:

(Hg) f,9: R — L%(P, H) are compact a-cl (1, v)-pseudo almost automorphic of class 7.

Theorem 6.6 Assume that [(Hy)| [(Hy)| [Hs)| and [Hg)| hold. Then, equation (I.1) has a unique

compact a-cl(p, v)-pseudo almost automorphic solution of class r.

Proof. Since f and g are (1, v)-pseudo almost automorphic functions, we can write f = f1 + f2 and
g = g1 + go, where f1,91 € SAA.(R, L>(P,H,)) and f3,g2 € &R, L?(P, H,), 1, v,r). Using
Theorem [6.2] Theorem [6.4]and Theorem [6.5] we get the desired result. a

Our next objective is to show the existence of square-mean «o-(u, v)-pseudo almost automorphic
solutions of class 7 for the following problem

da(t) = [—Az(t) + L(zy) + f(t,u)]dt + g(t, us)dW () for t € R, (6.5)

where f,g: R x C, — L?(P, H) are two continuous stochastic processes. To do this we will need
the following assumptions.

(H7) Let pu,v € M, andlet f: R x C([-r,0], L?>(P, H,)) — L?*(P, H) be a square-mean cl (1, v)-
pseudo almost automorphic of class r such that there exists a positive constant Ly such
that

E||f(t, ¢1) — f(t, 62)[* < LyEllé1 — b2ll2
forall t € R and ¢1, g2 € C([—7,0], L?(P, Hy)).

(Hg) Let u,v € M, and let g: R x C([-r,0], L3(P,H,)) — L?*(P, H,) be a square-mean
cl(p, v)-pseudo almost automorphic of class 7 such that there exists a positive constant L,
such that

Ellg(t, ¢1) — 9(t, d2)[1* < LoEd1 — ¢2[3
forall t € R and ¢1, o € C([-7,0], L*(P, Hy)).

(Hy) The unstable space is trivial, that is, U = {0}.
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Theorem 6.7 Assume that [(Ho)HHy)| and [(H)HHy)| hold. If
9N M2|IT*|2(Ls + L)
(2’[1)) 1—2«

I(l1-2a)<1,

then equation (6.5) has a unique compact a-cl(p, v)-square-mean pseudo almost automorphic
solution of class r.

t — x belongs to SPAA.(C([-r,0], L?(P, Hy,)), i1, v, 7). Hence, Theorem [5.15|implies that the
function g(.) = f(.,z) isin SPAA.(R, L*(P, H,), u,v,7). Since by the unstable space is
trivial, that is, U = {0}, if follows that |[II"| = 0. Consider the mapping

H: SPAA.(R,L*(P, Hy), p,v,7) — SPAAR, L*(P, Hy), 1, v, 7)
defined for ¢t € R by

Proof. Let z be a function in SPAA.(R, L*(P, H,), i, v,7). From Theo the function
5.15)

t ~
(Hx)(t) = [)\EI-EOO /_Oous(t — s)II*(B)\Xo f(s,x5))ds

A—=+oo J_

+ lim t Us(t—s)HS(E)\XOg(s,xS))dW(s)] (0).

From Theorem[6.2] Theorem[6.4]and Theorem [6.3] it suffices to show now that the operator 7{ has a
unique fixed point in SPAA.(R, L2(P, H,), pi, v, 7). Let x1, 29 € SPAA.(R, L2(P, Hy), p, v, 7).
Then, we have

E[[(Ha1) — (Hao)|l2

. N 2
<2t [ (= 0 (BXo(f(s.a1,) = f(s.220))ds
' 2
2|t [ U= I (BrXo(g(s. 210 — g(5,22.)) W ()

By Ito’s isometry, it follows that

) oy ) b o—2w(t—s) )
() - (e < DERPICE [ Tt B, — s
—0oQ

90—y ) t —2w(t—s) )
NI / 5 LE|x1s — 224 2ds
oo (t— )2

72’\/
IN M2\ 2 (L + L e
< | ’_( f 9) / e Ss2%ds ||$1_x2|’c2>oa
<2w)1 2c 0 ,

— 9~
2M M2 1% (Ly + Ly)

— <2w)1—2a
This means that H is a strict contraction. Thus, by Banach’s fixed point theorem, H has a unique

fixed point u in SPAA.(R, L?(P, Hy), j1, v, 7). We conclude that equation (6.3)) has one and only
one compact a-cl (i, v)-square-mean pseudo almost automorphic solution of class r. O

P(1 - 20) 21 - 22l
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7 Application

As an illustration, we propose to study the existence of solutions for the following model
dz(t, x)
2

= —883722(@ x)dt +

/0 G(0)=(t + 0, 2)d6 + sin( L )

. 2 + cost + cos /2t

0
dt +

+ arctan(t) +/

-Tr

0 1
h{0, —=z(t + 6, do i .
< 8:62( $)> xsm<2+cost+cos\/§t> 7.1

h<0, ((fz(t +0, z))dﬁ] dW(t) fort € Rand z € [0, 7],
x

0

+ cos(t) + /

=T

2(t,0) = 2(t,7) =0 fort € Rand z € [0, 7],

where G: [—r,0] — R is a continuous function and h: [—r,0] x R — R is Lipschitz continuous
with the respect to the second argument. For example, we can take

6% — 1
5 for 6 € [—r,0]

0= Eripe

and
h(0,z) = 62 + sin (%) for (0, 2) € [~r,0] x R.

We can see that G is continuous, and |h(6, 1) — h(0,z2)| < %]wl — x2|, which implies that A is
Lipschitz continuous with the respect to its second argument. W () is a two-sided standard Brownian
motion defined on the filtered probability space (2, F, P, F;) with Fy = o {W (u) — W (v) | u,v <
t}.

To rewrite equation (7.1) in abstract form, we introduce the space H = L?*((0,7)). Let
A: D(A) — L?((0,7)) be defined by

D(A) = H?(0,7) N H(0,7),
Ay(t) = y"(t) for t € (0,7) and y € D(A).

Then, the spectrum o (A) of A equals to the point spectrum o, (A) and is given by
o(A) = ap(4) = {—n®: n =1},

and the associated eigenfunctions ((,),>1 are given by

Cu(s) = \/Esin(ns), s € [0, ).

Consequently, the operator A takes the form

Ay = " n*(y,¢n)Cn, y € D(A).

n=1
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For each
yelmﬁ):{yGH:EZM%%KﬁeH}
n=1

we define the fractional power
:D(A2)CH > H

D=

A
by

N
N

A2y = " n(y,Cu)n, y € D(A2).
n=1

It is well-known that — A is the generator of a compact analytic semi-group (7'(¢))¢>0 on H which is
given by

o

T(tyu=Y e (u,Ca)Cny u € H.

n=1
This means that[(Hy)| and [(Hy)] are satisfied.
Here, we choose o = 5. Moreover, we define f: R x C1 — L?((0,7)) and L: C1 — L?(P, H)
2 2
as follows

1
2 + cost + cos V2t

f@@@:xm( >+mmmw

0
—1—/_ h(@, aigb(@)(x))d@ forz € (0,7)and t € R

1
2—|—cost+cosx/§t

g@@m:xm( >+mW)

+ /0 h(&, aid)(@)(x))dﬁ forx € (0,7)andt € R

and
0

L(¢)(z) = G(0)¢p(0)(x)dé for —r <@ and x € (0, ).

T
Lemma 7.1 ([28]) Ify € D(A%), then y is absolutely continuous, y' € L*(P, H) and |y'| = ]A%y\

Let us set v(t) = z(t, z). Then, equation (7.1) takes the following abstract form
dv(t) = [—Av(t) + L(ve) + f(t, v)]dt + g(t, v, )dW (t) for ¢t € R. (7.2)

Consider the measures p and v whose Randon—-Nikodym derivatives p; and pg are given by

pi(t) =

1 fort>0,
et fort <0

and po(t) = |t| for t € R, respectively. Then, du(t) = p1(t)dt and du(t) = pa(t)dt, where dt
denotes the Lebesgue measure on R. In other words,

J(A) = /A p1(£)dt and v(A) = /A po()dlt for A € A,
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From [[7]], it follows that p, v € M satisfy condition Moreover,

1 1 1
Az | zsin = sin
< <2+cost+cos\/§t>> <2+cost+cos\/§t>

and

NI

A

. 1 ) 1
X S1n = Sin .
( <2+cost+cos\/§t>) <2+cost+cos\/§t>

Then,

1 1
t— sin< ) and t+— sin( )
2 + cost + cos V2t 2+ cost + cos /3t
are a-almost automorphic. We have also

0 T
/ etdt—i—/ dt _
—_r 0 1+€T+T

li M([_7_7 T]) =1 =1

1m  ———— = 111msup T = l1msup 2

Mo T, T
0

=0 < o0,

which implies that is satisfied.

Obviously,—1 < sinf < 1 for 8 € R. Hence, by Lemmal(7.1] we have

_ sup [E|cos(0)|1du(t
Ar ) ) g5 Moo @t

1 /T 1 2
=—— sup E|A2 cos(0)|“du(t
rrl) )y g, AT costOFdntt)

S / " sup E|sin(0)2du(t)

V([_T’ T]) —7 O€t—r,t]

S5
SM%O%T%—FO&

This means that ¢ — cos(t) is a-(u, v)-ergodic of class r. Similarly, we have

sup [E|arctan(6)|3 du(t)
2

1 /T
V([_Ta T]) —1 O€t—r,t]

= 1/ sup E|A% arctan(8)|2du(t)
V([_Tv T]) —7 O€t—r,t]

2
dp(t)

_1/T sup ]E‘
V([_TvT]) —7 O€[t—r,t] 1+ 62

T

IN

dp(?)

V([_Ta T]) -7

7.7]) —0as T — +oo.

v([=7,7])

IN
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Thus, t — arctan(t) is a-(u, v)-ergodic of class r. Consequently, f and g are uniformly compact
(1, v)-pseudo almost automorphic of class 7. Moreover, L is a bounded linear operator from C1 to
2

L2(P, L2(0, 7).

Let Lj, be the Lipschitz constant of h. Then, for every ¢1, o € C1 we have
2

E|f(t, é1)(x) — f(t, 62) ()]

/0 h<0, (,igbl(ﬁ)(:v)) - h<9, £U¢2(0)(3:)>d0

-T

2
=E

2

0 dé

<12 /0 EH(%@(@)@) — 5. 22(0)()

T

2

2 4 dx

0
<ii [ sup Bl 2 a0)@) - 5 ol0))

—r —r<6<0

<rLj sup E[¢1(0)(x)— ¢2(0)(x)|2

—r<0<0
< rLiNE| @1 () — ¢o(w)||? for certain \ € R,
Similarly,
Ellg(t, ¢1)(w) — g(t, d2)(@)|* < rLiAE||¢1(2) — ¢a(w)||5 for certain X € Ry

Consequently, we conclude that f and g are Lipschitz continuous and «a-cl(u, v)-pseudo almost
automorphic of class r.

Moreover, since h is Lipschitz continuous and therefore bounded, there exists a positive real
number M such that |h(6, x)|| < M. Consequently, for t € R* and = € [0, 7], we have

2
dé

Blott o) <awt+3+3 [ B[n(0. o))

<3(m* 4 14 rM3?) = M.

This implies that g satisfies

For hyperbolycity, we assume that:

0
(Hio) |G(9)]|d6 < 1.

'

Lemma 7.2 ([16]) Assume that holds. Then, the semi-group (U(t))¢>0 is hyperbolic and the
unstable space is trivial, that is, U = {0}.

We can see that

)

02 —1
(62 +1)2

o[ O
e+ 1 ., 241
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and

KDQWM
:/0 02 _ 1

21 0 —p2+1 r
anww5/2M+/szyu_<L

L (@) SN

ifr > 1.

Theorem 7.3 Assume that hold. If Lip(h) is small enough, then equation (1.2)) has a
unique compact a-cl(p, v)-square-mean pseudo almost automorphic solution v of class r.
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