A NOTE ON ALMOST PERIODIC FUNCTIONS WITH VALUES IN LOCALLY CONVEX SPACES

MARKO KOSTIĆ*

Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, Serbia

Received February 3, 2025

Accepted February 16, 2025

Communicated by Gaston M. N'Guérékata

Abstract. It is well known that the almost periodic functions $F : \mathbb{R}^n \to Y$ form a vector space with the usual operations if Y is a Fréchet space. We extend this result to the almost periodic functions with values in an arbitrary locally convex space Y.

Keywords: ρ -almost periodic functions, locally convex spaces, integral equations.

2010 Mathematics Subject Classification: 42A75, 43A60, 35B15.

1 Introduction and preliminaries

The almost periodic functions $F : \mathbb{R}^n \to Y$, where Y is a Fréchet space, form a vector space with the usual operations (see [1,7]). In this short note, we will extend this result to the almost periodic functions with values in an arbitrary locally convex space Y, in a more general context, and present an illustrative application to the integral equations.

Let us recall, if Y is a locally convex space and W is a base of balanced neighbourhoods of zero in Y, then a continuous function $F : \mathbb{R}^n \to Y$ is said to be almost periodic if, for every $W \in W$, there exists a number l > 0 such that for each $\mathbf{t}_0 \in \mathbb{R}^n$ there exists a point $\tau \in B(\mathbf{t}_0, l)$ such that $F(\mathbf{t}+\tau)-F(\mathbf{t}) \in W$ for all $\mathbf{t} \in \mathbb{R}^n$. If this is the case, the range of $F(\cdot)$ is totally bounded in Y and $F(\cdot)$ is uniformly continuous; the space of all almost periodic functions, denoted by $AP(\mathbb{R}^n : Y)$, is translation invariant, closed under uniform convergence and closed under reflexions at zero (cf. [10] and [11] for some pioneering results established by G. M. N'Guérékata in this direction). It is also worth noting that, in the research articles [5] and [8], the almost periodicity in some non locally convex spaces, namely the so-called p-Fréchet spaces, where 0 , has been studied.

^{*}e-mail address: marco.s@verat.net

In our recent research article [4], we have considered several new classes of (metrically) ρ almost periodic type functions $F : I \times X \to Y$, where $\emptyset \neq I \subseteq \mathbb{R}^n$, X is an arbitrary non-empty set and Y is a locally convex space. In that paper, we have specifically introduced the following notion:

Definition 1.1 Suppose that (C1) holds, where:

(C1) $\emptyset \neq I \subseteq \mathbb{R}^n, \emptyset \neq I' \subseteq \mathbb{R}^n, I' + I \subseteq I, Y$ is a locally convex space over the field of complex numbers, the topology on Y is induced by the fundamental system \circledast_Y of seminorms, ρ is a binary relation on Y, X is an arbitrary non-empty set and \mathcal{B} is a collection of certain non-empty subsets of X such that for each $x \in X$ there exists $B \in \mathcal{B}$ with $x \in B$.

Let $F : I \times X \to Y$. Then we say that $F(\cdot; \cdot)$ is pre- (\mathcal{B}, I', ρ) -almost periodic if, for every $\epsilon > 0$, $\kappa \in \circledast_Y$ and $B \in \mathcal{B}$, there exists a finite real number L > 0 such that for each $\mathbf{t}_0 \in I'$ there exists $\tau \in B(\mathbf{t}_0, L) \cap I'$ such that, for every $\mathbf{t} \in I$ and $x \in B$, there exists an element $y_{\mathbf{t};x} \in \rho(F(\mathbf{t}; x))$ such that

$$\kappa(F(\mathbf{t}+\tau;x)-y_{\mathbf{t};x}) \le \epsilon, \quad \mathbf{t} \in I, \ x \in B.$$

If X is a topological space, then we say that $F(\cdot; \cdot)$ is Bohr (\mathcal{B}, I', ρ) -almost periodic if $F(\cdot; \cdot)$ is pre- (\mathcal{B}, I', ρ) -almost periodic and continuous; furthermore, if $\rho = cI$, where $c \in \mathbb{C} \setminus \{0\}$, then we say that $F(\cdot; \cdot)$ is (pre-)Bohr (\mathcal{B}, I', c) -almost periodic.

We omit the term " \mathcal{B} " from the notation if $X = \{0\}$, the term " ρ " from the notation if $\rho = I$ and the term "I" from the notation if I' = I.

We will use the following result (cf. [4, Theorem 2.4(ii)]):

Theorem 1.2 Suppose that $k \in \mathbb{N}$, X is a topological space, \mathcal{B} is any family of compact subsets of X, Y_i is a Fréchet space for $1 \le i \le k$ and the function $F_i : \mathbb{R}^n \times X \to Y$ is Bohr \mathcal{B} -almost periodic for $1 \le i \le k$. Then the function $(F_1, ..., F_k)(\cdot; \cdot)$ is Bohr \mathcal{B} -almost periodic.

2 The main results

If Y is a Fréchet space, then the Bochner criterion provides a necessary and sufficient condition for a bounded continuous function $F : \mathbb{R}^n \to Y$ to be almost periodic. This result is essentially important in the proof of the fact that the almost periodic functions $F : \mathbb{R}^n \to Y$, where Y is a Fréchet space, form a vector space with the usual operations (see [7, Theorem 9, Theorem 10] for more details in this direction; let us also note that G. M. N'Guérékata has considered the almost periodic functions with values in Fréchet spaces in his monograph [12]). In this paper, we extend the above-mentioned result to the almost periodic functions with values in an arbitrary locally convex space Y following a completely different approach with the use of local Banach spaces.

Unless stated otherwise, we will always assume henceforth that (C1) holds. If $\kappa \in \circledast_Y$, then we define $N_{\kappa} := \{y \in Y : \kappa(y) = 0\}$ and $\rho_{\kappa} := \{(x + N_{\kappa}, y + N_{\kappa}) : (x, y) \in \rho\}$. Let us consider now the vector space $Y_{\kappa} := \{y + N_{\kappa} : y \in Y\}$, equipped with the norm $||y + N_{\kappa}||_{\kappa} := \kappa(y)$ for all $y \in Y$, and the corresponding canonical mapping $q_{\kappa} : Y \to Y_{\kappa}$ defined by $q_{\kappa}(y) := y + N_{\kappa}$ for

all $y \in Y$. It is clear that ρ_{κ} is a binary relation on Y_{κ} . Further on, the local Banach space for the seminorm κ is the completion $(\hat{Y}_{\kappa}, \|\cdot\|_{\kappa})$ of the normed space $(Y_{\kappa}, \|\cdot\|_{\kappa})$, see [9, pp. 289–290] for more details on the subject.

We will use the following interesting construction of the completion $(\hat{Y}_{\kappa}, \|\cdot\|_{\kappa})$ given in the research report [13] by F. J. Sayas:

Let c_{κ} be the vector space of all Cauchy sequences $(x_m)_{m\in\mathbb{N}}$ in Y_{κ} and let $c_{0,\kappa}$ be the vector space of all sequences $(x_m)_{m\in\mathbb{N}}$ in Y_{κ} that converge to zero. Then the vector space $\hat{Y}_{\kappa} := \{(x_m)_{m\in\mathbb{N}} + c_{0,\kappa} : (x_m)_{m\in\mathbb{N}} \in c_{\kappa}\}$, equipped with the norm $||(x_m)_{m\in\mathbb{N}} + c_{0,\kappa}||_{\kappa} := \lim_{m\to+\infty} ||x_m||_{\kappa}, (x_m)_{m\in\mathbb{N}} \in c_{\kappa}$ is a Banach space, and this space is exactly the completion of $(Y_{\kappa}, || \cdot ||_{\kappa})$ since the mapping $K_{\kappa} : Y_{\kappa} \to \hat{Y}_{\kappa}$, given by $K_{\kappa}(x) := (x, x, ..., x, ...) + c_{0,\kappa}$ for all $x \in Y_{\kappa}$, is an isometry and $K_{\kappa}(Y_{\kappa})$ is dense in \hat{Y}_{κ} . If $T \in L(Y)$ and for each $\kappa \in \circledast_Y$ there exists c > 0 such that $\kappa(Ty) \leq c\kappa(y)$ for all $y \in Y$, then we can simply prove that $T(N_{\kappa}) \subseteq N_{\kappa}$ and, in this case, we can define the bounded linear operator $T_{\kappa} \in L(Y_{\kappa})$ by $T_{\kappa}(y + N_{\kappa}) := Ty + N_{\kappa}$, $y \in Y$. If we define $\hat{T}_{\kappa}((x_m)_{m\in\mathbb{N}} + c_{0,\kappa}) := (T_{\kappa}x_m)_{m\in\mathbb{N}} + c_{0,\kappa}, (x_m)_{m\in\mathbb{N}} \in c_{\kappa}$, then we have

$$\hat{T}_{\kappa} \in L(\hat{Y}_{\kappa}) \text{ and } \hat{T}_{\kappa}(K_{\kappa}(x)) = K_{\kappa}(T_{\kappa}x), \quad x \in Y_{\kappa}.$$
 (2.1)

Further on, we define $\hat{\rho_{\kappa}} := \{(K_{\kappa}(x+N_{\kappa}), K_{\kappa}(y+N_{\kappa})) : (x,y) \in \rho\}$, then $\hat{\rho_{\kappa}}$ is a binary relation on $\hat{Y_{\kappa}}$ and, if $\rho = T \in L(Y)$ satisfies the above properties, then $\hat{\rho_{\kappa}}$ is equal to the part of the operator $\hat{T_{\kappa}}$ in the dense subspace $K_{\kappa}(Y_{\kappa})$ of $\hat{Y_{\kappa}}$.

Now we are able to formulate the main result of this paper:

Theorem 2.1 Suppose that (C1) holds and $F : I \times X \to Y$. Then the following hold:

- (i) If the function F(·; ·) is pre-(B, I', ρ)-almost periodic, then for each κ ∈ ⊛_Y we have that the function F_κ : I × X → Ŷ_κ, given by F_κ(t; x) := (K_κ ∘ q_κ)(F(t; x)), t ∈ I, x ∈ X is pre-(B, I', ρ_κ)-almost periodic. Moreover, if X is a topological space and F(·; ·) is continuous, then F_κ(·; ·) is continuous as well.
- (ii) Suppose that for each $\kappa \in \circledast_Y$ the function $F_{\kappa} : I \times X \to Y_{\kappa}$, given by $F_{\kappa}(\mathbf{t}; x) := (K_{\kappa} \circ q_{\kappa})(F(\mathbf{t}; x)), \mathbf{t} \in I, x \in X$ is pre- $(\mathcal{B}, I', \hat{\rho_{\kappa}})$ -almost periodic. Then the function $F(\cdot; \cdot)$ is pre- (\mathcal{B}, I', ρ) -almost periodic provided that (ii.1) or (ii.2) holds, where:
 - (ii.1) $\rho = T \in L(Y)$ and for each $\kappa \in \circledast_Y$ there exists c > 0 such that $\kappa(Ty) \le c\kappa(y)$ for all $y \in Y$;
 - (ii.2) $\kappa(\cdot)$ is a norm on Y for every $\kappa \in \circledast_Y$.

Proof. Suppose that the function $F(\cdot; \cdot)$ is pre- (\mathcal{B}, I', ρ) -almost periodic and $\kappa \in \circledast_Y$ is fixed. Let $\epsilon > 0$ and $B \in \mathcal{B}$ be given. Then we know that there exists a finite real number L > 0 such that for each $\mathbf{t}_0 \in I'$ there exists $\tau \in B(\mathbf{t}_0, L) \cap I'$ such that, for every $\mathbf{t} \in I$ and $x \in B$, there exists an element $y_{\mathbf{t};x} \in \rho(F(\mathbf{t};x))$ such that $\kappa(F(\mathbf{t} + \tau;x) - y_{\mathbf{t};x}) \leq \epsilon$, $\mathbf{t} \in I$, $x \in B$. This implies $K_{\kappa}(y_{\mathbf{t};x} + N_{\kappa}) \in \hat{\rho_{\kappa}}(F(\mathbf{t};x))$, $\mathbf{t} \in I$, $x \in B$. Therefore, it suffices to show that

$$\left\| K_{\kappa} \big(F(\mathbf{t} + \tau; x) + N_{\kappa} \big) - K_{\kappa} \big(y_{\mathbf{t};x} + N_{\kappa} \big) \right\|_{\hat{Y}_{\kappa}} \leq \epsilon, \quad \mathbf{t} \in I, \ x \in B.$$

Since $K_{\kappa}(\cdot)$ is an isometry, this is equivalent to saying that $||F(\mathbf{t} + \tau; x) - (y_{\mathbf{t};x} + N_{\kappa}||_{\kappa} \le \epsilon$ for all $\mathbf{t} \in I$ and $x \in B$, *i.e.*, $\kappa(F(\mathbf{t} + \tau; x) - y_{\mathbf{t};x}) \le \epsilon$ for all $\mathbf{t} \in I$ and $x \in B$, which is true.

Clearly, if X is a topological space and $F(\cdot; \cdot)$ is continuous, then the continuity of $F_{\kappa}(\cdot; \cdot)$ follows immediately from the fact that $q_{\kappa}(\cdot)$ is continuous and $K_{\kappa}(\cdot)$ is an isometry.

Let us assume now that the requirements in part (ii) hold. Then, for every $\epsilon > 0$ and $B \in \mathcal{B}$, there exists a finite real number L > 0 such that for each $\mathbf{t}_0 \in I'$ there exists $\tau \in B(\mathbf{t}_0, L) \cap I'$ such that, for every $\mathbf{t} \in I$ and $x \in B$, there exists an element $G_{\kappa,x}(\mathbf{t}) \in \hat{\rho_{\kappa}}(K_{\kappa}(F(\mathbf{t};x) + N_{\kappa}))$ such that:

$$\left\| K_{\kappa} \big(F(\mathbf{t} + \tau; x) + N_{\kappa} \big) - G_{\kappa, x}(\mathbf{t}) \right\|_{\hat{Y}_{\kappa}} \le \epsilon, \quad \mathbf{t} \in I, \ x \in B.$$
(2.2)

Let $\mathbf{t} \in I$ and $x \in B$ be fixed. Then there exists $(Y_1(\mathbf{t}; x), Y_2(\mathbf{t}; x)) \in \rho$ such that $K_{\kappa}(F(\mathbf{t}; x) + N_{\kappa}) = K_{\kappa}(Y_1(\mathbf{t}; x) + N_{\kappa})$ and $G_{\kappa,x}(\mathbf{t}) = K_{\kappa}(Y_2(\mathbf{t}; x) + N_{\kappa})$. Since $K_{\kappa}(\cdot)$ is an injective isometry, the above implies $F(\mathbf{t}; x) + N_{\kappa} = Y_1(\mathbf{t}; x) + N_{\kappa}$; keeping in mind (2.2) and these equalities, we simply get

$$\left\|F(\mathbf{t}+\tau;x) - Y_2(\mathbf{t};x) + N_{\kappa}\right\|_{\kappa} \le \epsilon, \quad \mathbf{t} \in I, \ x \in B,$$
(2.3)

i.e.,

$$\kappa (F(\mathbf{t}+\tau; x) - Y_2(\mathbf{t}; x)) \le \epsilon, \quad \mathbf{t} \in I, \ x \in B.$$

Let (ii.1) hold. Then $T(N_{\kappa}) \subseteq N_{\kappa}$, $TY_1(\mathbf{t}; x) = Y_2(\mathbf{t}; x)$ and therefore

$$\kappa \big(F(\mathbf{t}+\tau;x) - Y_2(\mathbf{t};x) \big) = \kappa \big(F(\mathbf{t}+\tau;x) - TF(\mathbf{t};x) \big), \ \mathbf{t} \in I, \ x \in B.$$

This simply implies that $F(\cdot; \cdot)$ is pre- (\mathcal{B}, I', ρ) -almost periodic. On the other hand, if (ii.2) holds, $\mathbf{t} \in I$ and $x \in B$, then we have $F(\mathbf{t}; x) = Y_1(\mathbf{t}; x)$, where the pair $(Y_1(\mathbf{t}; x), Y_2(\mathbf{t}; x))$ satisfies the above requirements. This yields $Y_2(\mathbf{t}; x) \in \rho(F(\mathbf{t}; x))$ and completes the proof in a routine manner.

We will also clarify the following result:

Theorem 2.2 Suppose that (C1) holds, $F : I \times X \to Y$, $\rho = T \in L(Y)$ and for each $\kappa \in \circledast_Y$ there exists c > 0 such that $\kappa(Ty) \leq c\kappa(y)$ for all $y \in Y$. Then $F(\cdot; \cdot)$ is pre- (\mathcal{B}, I', T) -almost periodic if and only if for each $\kappa \in \circledast_Y$ the function $F_{\kappa} : I \times X \to \hat{Y}_{\kappa}$, given by $F_{\kappa}(\mathbf{t}; x) := (K_{\kappa} \circ q_{\kappa})(F(\mathbf{t}; x))$, $\mathbf{t} \in I$, $x \in X$, is pre- $(\mathcal{B}, I', \hat{T}_{\kappa})$ -almost periodic.

Proof. If $F(\cdot; \cdot)$ is pre- (\mathcal{B}, I', T) -almost periodic, then Theorem 2.1(i) immediately yields that for each $\kappa \in \bigotimes_Y$ the function $F_{\kappa}(\cdot; \cdot)$ is pre- $(\mathcal{B}, I', \hat{T}_{\kappa})$ -almost periodic since \hat{T}_{κ} is an extension of $\hat{\rho}_{\kappa}$. To prove the converse statement, it suffices to repeat verbatim the corresponding part of the proof of Theorem 2.1(ii); let us only emphasize that we can use the fact that $K_{\kappa}(\cdot)$ is an isometry and the equality stated in the second part of (2.1).

As an immediate corollary of Theorem 2.2, we have the following result:

Corollary 2.3 Suppose that (C1) holds, X is a topological space, $F : I \times X \to Y$ is continuous, $\rho = T \in L(Y)$ and for each $\kappa \in \circledast_Y$ there exists c > 0 such that $\kappa(Ty) \leq c\kappa(y)$ for all $y \in Y$. Then $F(\cdot; \cdot)$ is Bohr (\mathcal{B}, I', T) -almost periodic if and only if for each $\kappa \in \circledast_Y$ the function $F_{\kappa} : I \times X \to \hat{Y}_{\kappa}$, given by $F_{\kappa}(\mathbf{t}; x) := (K_{\kappa} \circ q_{\kappa})(F(\mathbf{t}; x)), \mathbf{t} \in I, x \in X$, is Bohr $(\mathcal{B}, I', \hat{T}_{\kappa})$ almost periodic. Keeping in mind Theorem 1.2, we can state the following important corollary:

Theorem 2.4 Suppose that X is a topological space, \mathcal{B} is any family of compact subsets of X, Y is a locally convex space, $\alpha \in \mathbb{C}$ and $\beta \in \mathbb{C}$. If the functions $F : \mathbb{R}^n \times X \to Y$ and $G : \mathbb{R}^n \times X \to Y$ are Bohr \mathcal{B} -almost periodic, then the function $(\alpha F + \beta G)(\cdot; \cdot)$ is likewise Bohr \mathcal{B} -almost periodic.

Proof. The proof immediately follows from Corollary 2.3 with T = I and $I = I' = \mathbb{R}^n$, by observing that for each $\kappa \in \circledast_Y$ we have $(K_\kappa \circ q_\kappa)((\alpha F + \beta G)(\mathbf{t}; x)) = \alpha(K_\kappa \circ q_\kappa)(F(\mathbf{t}; x)) + \beta(K_\kappa \circ q_\kappa)(G(\mathbf{t}; x)), \mathbf{t} \in I, x \in X.$

If $Y_1, ..., Y_k$ are locally convex spaces, then $Y_1 \times ... \times Y_k$ is a locally convex space and the fundamental system of seminorms which defines the topology on $Y_1 \times ... \times Y_k$ is given by $\kappa(y_1, ..., y_k) := \kappa_1(y_1) + ... + \kappa_k(y_k), y_1 \in Y_1, ..., y_k \in Y_k$, where $\kappa_j(\cdot)$ runs through the all seminorms in \circledast_j for $1 \le j \le k$. Now we are able to formulate the following result:

Theorem 2.5 Suppose that $k \in \mathbb{N}$, X is a topological space, \mathcal{B} is any family of compact subsets of X, Y_i is a locally convex space for $1 \le i \le k$ and the function $F_i : \mathbb{R}^n \times X \to Y_i$ is Bohr \mathcal{B} -almost periodic for $1 \le i \le k$. Then the function $(F_1, ..., F_k) : \mathbb{R}^n \times X \to Y_1 \times ... \times Y_k$ is Bohr \mathcal{B} -almost periodic.

Proof. If the function $F_i : \mathbb{R}^n \times X \to Y_i$ is Bohr \mathcal{B} -almost periodic for $1 \le i \le k$, then the function $F'_i : \mathbb{R}^n \times X \to Y_1 \times \ldots \times Y_k$ given by $F'_i(\mathbf{t}; x) := (0, 0, \ldots, F_i(\mathbf{t}; x), \ldots, 0), \mathbf{t} \in \mathbb{R}^n, x \in X$ is Bohr \mathcal{B} -almost periodic for $1 \le i \le k$. Applying Theorem 2.4 and the mathematical induction, it readily follows that the function $(F_1, \ldots, F_k) : \mathbb{R}^n \times X \to Y_1 \times \ldots \times Y_k$ is Bohr \mathcal{B} -almost periodic since $(F_1, \ldots, F_k)(\mathbf{t}; x) = F'_1(\mathbf{t}; x) + \ldots + F'_k(\mathbf{t}; x)$ for all $\mathbf{t} \in \mathbb{R}^n$ and $x \in X$.

It is clear that Theorem 2.2 and Corollary 2.3 enable one to reformulate many structural results already known for the Bohr (\mathcal{B}, I', c) -almost periodic functions with values in complex Banach spaces to the Bohr (\mathcal{B}, I', c) -almost periodic functions with values in locally convex spaces ($c \in \mathbb{C} \setminus \{0\}$). We can formulate the Maak criterion for almost periodic functions with values in locally convex spaces (see, *e.g.*, [2]) and we can consider the approximation of almost periodic functions with values in locally convex spaces by the trigonometric polynomials in the local Banach spaces (see, *e.g.*, [6] and references quoted therein); for example, we have the following result:

Theorem 2.6 Suppose that $F : \mathbb{R}^n \to Y$ is a bounded, continuous function. Then $F(\cdot)$ is Bohr almost periodic if and only if for each $\epsilon > 0$ and $\kappa \in \mathfrak{B}$ there exists a trigonometric polynomial $P : \mathbb{R}^n \to Y$ such that

$$\sup_{\mathbf{t}\in\mathbb{R}^n}\kappa\big(F(\mathbf{t})-P(\mathbf{t})\big)\leq\epsilon.$$

More details will appear somewhere else.

3 An application

In this section, we will provide an illustrative application of our results to the following integral equation:

$$u(\mathbf{t}) = f(\mathbf{t}) + \int_{-\infty}^{t_1} \int_{-\infty}^{t_2} \cdots \int_{-\infty}^{t_n} a(\mathbf{t} - \mathbf{s})u(\mathbf{s}) \, d\mathbf{s}, \quad \mathbf{t} \in \mathbb{R}^n,$$
(3.1)

where X = Y is a sequentially complete locally convex space, $f : \mathbb{R}^n \to Y$ is almost periodic, $a \in L^1((0,\infty)^n)$ and $u : \mathbb{R}^n \to Y$ is an unknown function; we can also consider the corresponding semilinear problem but we will skip all related details for the sake of brevity.

It can be easily shown that $AP(\mathbb{R}^n : Y)$ is a sequentially complete locally convex space when equipped with the family of seminorms $(\| \cdot \|_{\kappa,\infty})_{\kappa \in \circledast_Y}$, where $\|f\|_{\kappa,\infty} := \sup_{\mathbf{t} \in \mathbb{R}^n} \kappa(f(\mathbf{t}))$ for all $\kappa \in \circledast_Y$. Further on, the mapping $\Pi : AP(\mathbb{R}^n : Y) \to AP(\mathbb{R}^n : Y)$, defined by

$$\left[\Pi u\right](t) := f(\mathbf{t}) + \int_{-\infty}^{t_1} \int_{-\infty}^{t_2} \cdots \int_{-\infty}^{t_n} a(\mathbf{t} - \mathbf{s})u(\mathbf{s}) \, d\mathbf{s}, \quad \mathbf{t} \in \mathbb{R}^n, \ u \in AP(\mathbb{R}^n : Y).$$

is well-defined due to Theorem 2.4 and a simple argumentation concerning the invariance of almost periodicity under the action of the infinite convolution product considered above (see, *e.g.*, [4] and [6]). Suppose now that $\int_{(0,+\infty)^n} |a(\mathbf{s})| d\mathbf{s} < 1$, then the mapping $\Pi(\cdot)$ has a unique fixed point due to the well-known fixed point theorem of A. Deleanu and G. Marinescu [3, Theorem 1, p. 92]. This implies the required conclusion.

References

- D. Bugajewski, G. M. N'Guérékata, *Almost periodicity in Fréchet spaces*, Journal of Mathematical Analysis and Applications 299 (2004), pp. 534–549.
- [2] F. Chérif, A various types of almost periodic functions on Banach spaces: part I, International Mathematical Forum 6 (2011), pp. 921–952.
- [3] A. Deleanu, G. Marinescu, *Fixed point theorem and implicit functions in locally convex spaces*, Revue Roumaine de Mathématiques Pures et Appliquées **8** (1963), pp. 91–99 (in Russian).
- [4] V. E. Fedorov, M. Kostić, D. Velinov, *Metrically ρ-almost periodic type functions with values in locally convex spaces*, Chelyabinsk Physical and Mathematical Journal 10 (2025), 96–111. https://www.researchgate.net/publication/386983855.
- [5] S. Gal, G. M. N'Guérékata, Almost periodic functions with values in p-Frechet spaces, 0
- [6] M. Kostić, Selected Topics in Almost Periodicity, W. de Gruyter, Berlin, 2022.
- [7] M. A. Latif, M. I. Bhatti, Almost periodic functions defined on \mathbb{R}^n with values in locally convex spaces, Journal of Prime Research in Mathematics 4 (2008), pp. 181–194.
- [8] M. A. Latif, G. M. N'Guérékata, M. I. Bhatti, Almost periodic functions defined on \mathbb{R}^n with values in p-Fréchet spaces, 0 , Libertas Mathematica**29**(2009), pp. 83–100.

- [9] R. Meise, D. Vogt, *Introduction to Functional Analysis*, Translated from the German by M. S. Ramanujan and revised by the authors, Oxford Graduate Texts in Mathematics, Clarendon Press, New York, 1997.
- [10] G. M. N'Guérékata, Almost-periodicity in linear topological spaces and applications to abstract differential equations, International Journal of Mathematics and Mathematical Sciences 7 (1984), pp. 529–540.
- [11] G. M. N'Guérékata, *Notes on almost-periodicity in topological vector spaces*, International Journal of Mathematics and Mathematical Sciences **9** (1986), pp. 201–204.
- [12] G. M. N'Guérékata, Almost Periodic and Almost Automorphic Functions in Abstract Spaces, Springer-Verlag, New York, 2021.
- [13] F. J. Sayas, *The completion of a normed space*, https://team-pancho.github.io/ teaching/math806/Completion.pdf, 2015.