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Abstract. In this work, we first discuss the existence of a mild solution of the Caputo fractional
non-instantaneous impulsive integro-differential equation and then discuss its stability in the sense
of Ulam-Hyers. We establish our main results by using the well-known Banach fixed point theorem.
Two suitable examples are presented to authenticate the results. In addition, with the help of the
obtained results, the bound for a non-instantaneous impulsive fractional-order RLC circuit current
is estimated, and it is found that the bound primarily depends upon the bandwidth and the fractional
order of the RLC system. Further, for a given bandwidth, we show how the fractional order of the
system influences the behavior and magnitude of the current.
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1 Introduction

Although the theory of impulsive differential equations has been considered to be of paramount
importance for a very long time, its actual importance has been realized only in the 1980s since
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when a substantial development in this regard has taken place. More advancement has presently
been taking place as evident from the works in [3, 7, 8, 14, 48]. Such development has allowed
more accurate modeling of some real-world problems through the consideration of impulsive dif-
ferential equations. Consequently, impulsive differential equation has carved a niche for itself in
tackling physical phenomena that arise in almost all disciplines of science and engineering such as
biophysics, chemical engineering, electrical engineering, population dynamics, financial mathemat-
ics [5, 9, 17, 21, 31], to name a few. Usually, there are two familiar impulses that are considered for
most of the works, viz., instantaneous impulses and non-instantaneous impulses. An instantaneous
impulse is an impulse in which the length of time interval of the action is vanishingly small. On the
other hand, a non-instantaneous impulse is an impulse that comprises an impulsive action starting
at some arbitrary fixed time and remaining active for a finite duration (for details, one can refer
to [6,39]). The impetus to study impulsive differential equations may be judged from a practical ex-
ample as follows. While considering the hemodynamical equilibrium of a human, imagine a simple
but practical situation: in the case of the occurrence of a decompensation, say, high level of sugar,
an intravenous drug (usually insulin) may be injected. Consequently, the introduction of drug in the
bloodstream and the associated absorption by the body can be considered as gradual and continuous
processes. This can be seen as an impulsive action with an abrupt start but which stays active for a
finite period of time. Obviously, this situation can indeed be mathematically expressed in terms of
a non-instantaneous impulsive differential equation as can also be found in [1, 10, 28, 35, 43].

It may be deemed natural to pose a fundamental question arising in mathematical analysis: What
may be the condition(s) under which a mathematical object that satisfies a certain property approxi-
mately is very likely to be close to another object which satisfies the property exactly? Considering
a functional equation, the above may take the form: when must its solution that differs slightly
from a given solution be close to it? A fundamental question like this is pivotal while studying
the stability feature of functional equations for which Ulam [42] initiated a problem. He derived
some conditions so as to ensure the existence of a linear function closer to an approximately linear
function. In continuation and response to it, Hyers [19] considered Ulam’s problem by accounting
for additive functions on Banach spaces as follows:
Consider real Banach spaces (U, ||.||U ) and (V, ||.||V ). Further, assume that, with ε > 0 and for
every function h : U → V satisfying

||h(u1 + u2)− h(u1)− h(u2)||V ≤ ε, ∀u1, u2 ∈ U,

there exists a unique additive function L : U → V obeying

||h(u1)− L(u1)||V ≤ ε, ∀u1 ∈ U.

After Hyers published the above result, a good number of researchers started considering exten-
sions to Ulam’s problem to different functional equations, and also generalizing Hyers’ result from
different perspectives (e.g., [20] and [22]).

Hernández et al. [18] presented a new idea for a class of abstract differential equations subject
to non-instantaneous impulses in which the existence of both mild and classical solutions was ac-
complished. Wang et al. [46] came up with the concept of a piecewise (PC) mild impulsive Cauchy
problem by defining the notion of a mild solution and compared the weak and classical solutions. An
abstract impulsive differential equation can be considered by associating abrupt and instantaneous
impulses. Researchers have investigated such problems and examined the existence and the other
qualitative properties of the solutions from different perspectives. For a comprehensive study on
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Caputo fractional differential equations with non-instantaneous impulses, one can refer to Agarwal
et al. [2].

Wang et al. [44] studied the following nonlinear instantaneous impulsive Caputo fractional dif-
ferential equation to examine the Ulam-Hyers stability in a finite interval J = [0, T ]:

C
0 Dα

θ x(θ) = f(θ, x(θ)) θ ∈ J ′ = J \ {θ1, θ2, . . . , θm},
∆x(θk) = x(θ+k )− x(θ−k ) = Ik(x(θ

−
k )), k = 1, 2, . . . ,m,

x(0) = x0,

where α ∈ (0, 1), f : J× R → R is jointly continuous, Ik : R → R and θk satisfy 0 = θ0 < θ1 <
· · · < θm < θm+1 = T , x(θ+k ) = lim

ϵ→0+
x(θk + ϵ) and x(θ−k ) = lim

ϵ→0−
x(θk + ϵ).

Zhou et al. [45] studied the Caputo fractional linear differential equation by taking into account
a periodic boundary condition as follows:

C
0 Dα

θ x(θ) = f(θ, x(θ)), θ ∈ (ϱi, θi+1], i = 0, 1, 2, . . . , N, (1.1)

x(θ) = gi(θ, x(θ)), θ ∈ (θi, ϱi], i = 1, 2, . . . , N,

x(0) = x(a),

where 0 < α < 1, 0 = θ0 = ϱ0 < θ1 ≤ ϱ1 ≤ θ2 < · · · < θN ≤ ϱN < θN+1 = a are given
fixed numbers, J = [0, a]. Here, gi ∈ C

(
[θi, ϱi] × R,R

)
, i = 1, 2, . . . , N , and f : J × R →

R is a given function. They introduced a general framework to find the solutions for impulsive
fractional boundary value problems and established some sufficient conditions for the existence of
the solutions by using fixed point theorem.

Lin et al. [27], by utilizing Banach fixed point theorem and assuming suitable conditions on
the functions, established the existence of a solution for a new class of non-instantaneous impulsive
integro-differential equations and also the generalized Ulam-Hyers-Rassias stability:

x′(θ) = f
(
θ, x(θ),

∫ θ

0
k(ϱ, x(ϱ)) dϱ

)
, θ ∈ (ϱi, θi+1], i = 0, 1, 2, . . . ,m, (1.2)

x(θ) = gi
(
θ, x(θ),

∫ θ

0
l(ϱ, x(ϱ)) dϱ

)
, θ ∈ (θi, ϱi], i = 1, 2, 3, . . . ,m, (1.3)

x(0) = x0, (1.4)

where 0 = θ0 = ϱ0 < θ1 ≤ ϱ1 ≤ θ2 < · · · < θm ≤ ϱm < θm+1 = T are given fixed numbers,
J = [0, T ]. Here, gi ∈ C

(
[θi, ϱi] × R × R,R

)
, i = 1, 2, . . . ,m, f : J × R × R → R and

k, l : J× R → R are given functions.

In a similar manner, Rus [38] deduced a fundamental Ulam-Hyers stability result for ordinary
differential equations. Ding [15] investigated the existence, uniqueness and Ulam-Hyers stability
for a Caputo fractional impulsive delay differential equation. For a detailed study on the concepts
for Ulam-Hyers stability for functional equations, readers are referred to the works by Ulam [42],
Rassias [37], Hyers [19] and Jung [22]. On the other hand, with respect to the stability analysis
for various classes of fractional differential equations with a non-singular kernel fractional differen-
tial operators, Khan et al. [24] established the existence and stability of the solution in the sense
of Ulam-Hyers for a nonlinear fractional differential equation involving a non-singular kernel frac-
tional differential operator. Fuentes et al. [16] analysed the dynamics and Lyapunov stability of a
general class of fractional order differential system with non-singular kernel by using the Laplace
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transform and Lyapunov functions. By using the comparison theorem, they established some bound
estimation for the solution of the system.

Motivated by the above works on Ulam-Hyers stability, our objective is to examine the existence
and uniqueness, along with Ulam-Hyers stability, of the mild solution of the following Caputo
fractional integro-differential equation subject to non-instantaneous impulses:

C
0 Dα

θ v(θ) = G
(
θ, v(θ),

∫ θ

0
g(ϱ, v(ϱ)) dϱ

)
, θ ∈ (ϱi, θi+1], 0 ≤ i ≤ m, (1.5)

v(θ) = Hi

(
θ, v(θ),

∫ θ

0
h(ϱ, v(ϱ)) dϱ

)
, θ ∈ (θi, ϱi], 1 ≤ i ≤ m, (1.6)

v(0) = v0, (1.7)

where 0 < α < 1, 0 = θ0 = ϱ0 < θ1 ≤ ϱ1 ≤ θ2 < · · · < θm ≤ ϱm < θm+1 = T are fixed given
numbers, J = [0, T ]. Here, Hi ∈ C

(
[θi, ϱi] × R × R,R

)
, i = 1, 2, . . . ,m, G : J × R × R → R

and g, h : J× R → R are given functions.

In the above considered system given by (1.5)-(1.7), a Caputo fractional-order differential op-
erator C

0 D is taken into consideration since, compared to the other fractional-order differential oper-
ators, a system containing the Caputo fractional-order differential operator conveys a clear physical
meaning of initial conditions such as v(0), v′(0) and so on. It makes a system more realistic be-
cause of an initial condition with physical meaning. Inspired by the nature of the Caputo derivative
operator, we pose an initial condition to the considered system at the initial time 0. One may pose
the initial condition at any other initial time too, say θ0, not equal to 0. To the best of the authors’
knowledge, the stability in the sense of Ulam-Hyers has not been studied till date for such a class of
non-instantaneous fractional-order integro-differential equations (1.5)-(1.7). Further, after estab-
lishing the theoretical results for the system given by (1.5)-(1.7), and estimating the Ulam-Hyers
constant, we are motivated by a number of works such as [13,15,16,41] to estimate the bound for the
solution corresponding to the initial value problem (1.5)-(1.7). This article also provides a bound
estimation for the circuit current of the non-instantaneous fractional-order RLC circuit in terms of a
Ulam-Hyers constant and this shows the practical applicability of the Ulam-Hyers constant in some
important problems. This work has the potential to occupy an important place in fractional-order
RLC circuit problems as well as in the application of Ulam-Hyers stability.

The paper is structured as follows. In Section 2, mathematical preliminaries are given. In
Section 3, some useful inequalities are derived, and the main theoretical results are established under
suitable assumptions. In Section 4, two suitable examples are provided to illustrate the obtained
results. In Section 5, an application to fractional-order RLC circuits is presented to illustrate the
importance and novel significance of the proposed results. Finally, conclusions are drawn in Section
6.

2 Preliminary results

Define

PC(J,R)
=
{
Φ : J → R : Φ ∈ C

(
(θi, θi+1],R

)
, i = 0, 1, . . . ,m; Φ(θ+i ),Φ(θ

−
i ) exist withΦ(θi) = Φ(θ−i )

}
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which is a Banach space with the norm

∥Φ∥PC = sup
θ∈J

|Φ(θ)|.

Now, some definitions and properties of fractional operator are recalled [25, 29, 34] since they will
be required during the course of establishing the results.

Definition 2.1 [25] Let us denote by ACn(I) (n = 1, 2, . . ., I an interval) the space of those
functions Φ having continuous derivatives up to order (n − 1) on I with Φ(n−1) ∈ AC(I), where
AC(I) is the space of absolutely continuous functions in I.

Definition 2.2 [25] The Gamma function Γ(z) is defined by

Γ(z) =

∫ ∞

0
e−ϱϱz−1 dϱ, (2.1)

with the integral converging in the right half of the complex plane, i.e., Re(z) > 0.

Definition 2.3 [25] The Riemann-Liouville left-sided fractional integral aIα
θ of order α > 0 of the

function v ∈ L1([a, b],R) is defined by

aIα
θ v(θ) =

1

Γ(α)

∫ θ

a
(θ − ϱ)α−1v(ϱ) dϱ, θ > a. (2.2)

Definition 2.4 [25] The Riemann-Liouville fractional-order derivative aDα
θ of order α of a func-

tion v ∈ ACn([a, b],R) where n = ⌊α⌋+ 1, is defined as

aDα
θ v(θ) =


1

Γ(n− α)

dn

dθn

∫ θ

a
(θ − ϱ)n−α−1v(ϱ) dϱ, n− 1 < α < n,

dnv(θ)

dθn
, α = n.

(2.3)

Definition 2.5 [34] The Caputo fractional derivative C
a Dα

θ of order α of a function v ∈
ACn([a, b],R), where n = ⌊α⌋+ 1, is defined by

C
a Dα

θ v(θ) =


1

Γ(n− α)

∫ θ

a
(θ − ϱ)n−α−1v(n)(ϱ) dϱ, n− 1 < α < n,

dnv(θ)

dθn
, α = n,

(2.4)

where v(n)(θ) =
dnv(θ)

dθn
.

Lemma 2.1 [11] Let K ∈ C(J,R). Then, a function v ∈ C(J,R) is termed a solution of the
integral equation

v(θ) = vb −
1

Γ(α)

∫ b

0
(b− ϱ)α−1K(ϱ) dϱ+

1

Γ(α)

∫ θ

0
(θ − ϱ)α−1K(ϱ) dϱ, (2.5)

iff v satisfies the following fractional Cauchy problem:
C
0 Dα

θ v(θ) = K(θ), θ ∈ J = [0, T ], (2.6)

v(b) = vb, 0 < b < T. (2.7)
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Theorem 2.1 [11] (Banach fixed point theorem) Let (N, dN ) be a complete metric space and
Λ : N → N be a contraction map with the Lipschitz constant L < 1. Suppose there exists a non-
negative integer k satisfying dN (Λk+1y,Λky) < +∞ for some y ∈ N . Then,
(i) The sequence

{
Λny

}
converges to a fixed point x∗ of Λ.

(ii) x∗ is the unique fixed point of Λ in N∗ =
{
z ∈ N |dN (Λky, z) < ∞

}
.

(iii) For z ∈ N∗, one has dN (z, x∗) ≤ 1
1−LdN (Λz, z).

3 Main Results

3.1 Background

Here we introduce some definitions, lemmas and theorems connected to problem (1.5)−(1.7) which
will be required for establishing the stability for the problem undertaken in the sense of Ulam-Hyers.

Definition 3.1 A function v ∈ PC(J,R) is called a mild solution of problem (1.5) − (1.7) if v
satisfies

v(θ) =



v0 +
1

Γ(α)

∫ θ

0
(θ − ϱ)α−1G

(
ϱ, v(ϱ),

∫ ϱ

0
g(ρ, v(ρ)) dρ

)
dϱ, θ ∈ [0, θ1],

Hi

(
θ, v(θ),

∫ θ

0
h(ϱ, v(ϱ)) dϱ

)
, θ ∈ (θi, ϱi], i = 1, 2, 3, . . . ,m,

Hi

(
ϱi, v(ϱi),

∫ ϱi

0
h(ϱ, v(ϱ)) dϱ

)
(3.1)

− 1

Γ(α)

∫ ϱi

0
(ϱi − ϱ)α−1G

(
ϱ, v(ϱ),

∫ ϱ

0
g(ρ, v(ρ)) dρ

)
dϱ

+
1

Γ(α)

∫ θ

0
(θ − ϱ)α−1G

(
ϱ, v(ϱ),

∫ ϱ

0
g(ρ, v(ρ)) dρ

)
dϱ, θ ∈ (ϱi, θi+1].

Let ε > 0 and consider the following inequalities:{
|C0 Dα

θw(θ)− G
(
θ, w(θ),

∫ θ
0 g(ϱ, w(ϱ)) dϱ

)
| ≤ ε, θ ∈ (ϱi, θi+1], 0 ≤ i ≤ m,

|w(θ)−Hi

(
θ, w(θ),

∫ θ
0 h(ϱ, w(ϱ)) dϱ

)
| ≤ ε, θ ∈ (θi, ϱi], 1 ≤ i ≤ m.

(3.2)

Theorem 3.1 [3] A function w ∈ PC(J,R) is a solution of the inequalities (3.2) if and only if
there exist a function H ∈ PC(J,R) and a sequence {Hi}, i = 1, 2, . . . ,m, (which depends on v)
such that
(i) |H(θ)| ≤ ε, θ ∈ J, and |Hi| ≤ ε, i = 1, 2, . . . ,m,
(ii) C

0 Dα
θw(θ) = G

(
θ, w(θ),

∫ θ
0 g(ϱ, w(ϱ)) dϱ

)
+H(θ), θ ∈ (ϱi, θi+1],

(iii) w(θ) = Hi

(
θ, w(θ),

∫ θ
0 h(ϱ, w(ϱ)) dϱ

)
+Hi, θ ∈ (θi, ϱi], 1 ≤ i ≤ m.

Lemma 3.1 Suppose G ∈ C(J × R × R,R), Hi ∈ C([θi, ϱi] × R × R,R), i = 1, 2, . . . ,m, and
g, h : J × R → R are continuous. If w ∈ PC(J,R) is a solution of the inequalities (3.2), then it
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satisfies the following integral inequalities:

|w(θ)− w(0)− 1
Γ(α)

∫ θ
0 (θ − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ
0 g(ρ, w(ρ)) dρ

)
dϱ| ≤ εθα1

Γ(α+1) , θ ∈ (0, θ1],

|w(θ)−Hi

(
θ, w(θ),

∫ θ
0 h(ϱ, w(ϱ)) dϱ

)
| ≤ ε, θ ∈ (θi, ϱi], 1 ≤ i ≤ m,

|w(θ)−Hi

(
ϱi, w(ϱi),

∫ ϱi
0 h(ϱ, w(ϱ)) dϱ

)
+ 1

Γ(α)

∫ ϱi
0 (ϱi − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ
0 g(ρ, w(ρ)) dρ

)
dϱ

− 1
Γ(α)

∫ θ
0 (θ − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ
0 g(ρ, w(ρ)) dρ

)
dϱ|

≤
(
1 +

ϱαi +θαi+1

Γ(α+1)

)
ε, θ ∈ (ϱi, θi+1], i = 1, 2, 3, . . . ,m.

(3.3)

Proof. From Lemma 2.1 and by Theorem 3.1, for θ ∈ [0, θ1], we can get

w(θ) = w(0) +
1

Γ(α)

∫ θ

0
(θ − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ

0
g(ρ, w(ρ)) dρ

)
dϱ

+
1

Γ(α)

∫ θ

0
(θ − ϱ)α−1H(ϱ) dϱ.

Then,

|w(θ)− w(0)− 1

Γ(α)

∫ θ

0
(θ − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ

0
g(ρ, w(ρ)) dϱ

)
dϱ| ≤ εθα1

Γ(α+ 1)
.

For θ ∈ (θi, ϱi], i = 1, 2, . . . ,m, we have

|w(θ)−Hi

(
θ, w(θ),

∫ θ

0
h(ϱ, w(ϱ)) dϱ

)
| ≤ |Hi| ≤ ε, θ ∈ (θi, ϱi], 1 ≤ i ≤ m.

For θ ∈ (ϱi, θi+1], i = 1, 2, . . . ,m, we get

w(θ) =
1

Γ(α)

∫ θ

0
(θ − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ

0
g(ρ, w(ρ)) dρ

)
dϱ+Hi

− 1

Γ(α)

∫ ϱi

0
(ϱi − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ

0
g(ρ, w(ρ)) dρ

)
dϱ · 1

Γ(α)

∫ θ

0
(θ − ϱ)α−1H(ϱ) dϱ

+Hi

(
ϱi, w(ϱi),

∫ ϱi

0
h(ϱ, w(ϱ)) dϱ

)
− 1

Γ(α)

∫ ϱi

0
(ϱi − ϱ)α−1H(ϱ) dϱ.

Thus,

|w(θ)−Hi

(
ϱi, w(ϱi),

∫ ϱi

0
g(ϱ, w(ϱ)) dϱ

)
+

1

Γ(α)

∫ ϱi

0
(ϱi − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ

0
g(ρ, w(ρ)) dρ

)
dϱ

− 1

Γ(α)

∫ θ

0
(θ − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ

0
g(ρ, w(ρ)) dρ

)
dϱ| ≤

(
1 +

ϱαi + θαi+1

Γ(α+ 1)

)
ε.

Hence, the result is established. □

Definition 3.2 The problem comprising equations (1.5) − (1.7) is termed stable in the sense of
Ulam-Hyers if there exists some constant cα > 0 such that, for each ε > 0 and for every solution
w ∈ PC(J,R) of (3.2), there exists a solution v ∈ PC(J,R) (mild solution) of (1.5)− (1.7) with

|w(θ)− v(θ)| ≤ cαε, for all θ ∈ J.



52 Shankar and Bora, J. Nonl. Evol. Equ. Appl. 2024 (2024) 45–65

3.2 Existence and stability of the problem

To establish the desired results on the existence and stability of the solution of the problem under
consideration, we take into account some hypotheses as follows:
(A1) G ∈ C(J× R× R,R) and there exists LG > 0 satisfying

|G(θ, x1, y1)− G(θ, x2, y2)| ≤ LG(|x1 − x2|+ |y1 − y2|)

for each θ ∈ J, and for all x1, x2, y1, y2 ∈ R.
(A2) Hi ∈ C

(
[θi, ϱi]× R× R,R

)
and there exists LHi > 0, i = 1, 2, . . . ,m, satisfying

|Hi(θ, x1, y1)−Hi(θ, x2, y2)| ≤ LHi(|x1 − x2|+ |y1 − y2|)

for each θ ∈ (θi, ϱi], and for all x1, x2, y1, y2 ∈ R.
(A3) g, h ∈ C(J× R,R) and there exist Gg > 0 , Hh > 0 satisfying

|g(θ, x1)− g(θ, x2)| ≤ Gg|x1 − x2|, |h(θ, y1)− h(θ, y2)| ≤ Hh|y1 − y2|

for each θ ∈ J, and for all x1, x2, y1, y2 ∈ R.

We are now in a position to proceed to establish our objectives with respect to problem (1.5)−
(1.7) through the concept of Ulam-Hyers stability.

Theorem 3.2 Assume that assumptions (A1), (A2) and (A3) hold and

Θ = max
1≤i≤m

{
LGθ

α
1

Γ(1 + α)

(
1 +

θ1Gg

1 + α

)
, LHi

(
1 + ϱiHh

)
+

LG
Γ(1 + α)

(
ϱαi + θαi+1

)
+

GgLG
Γ(2 + α)

(
ϱα+1
i + θα+1

i+1

)}
< 1.

Then, the problem (1.5) − (1.7) is Ulam-Hyers stable, i.e., there exists a unique mild solution
v∗ ∈ PC(J,R) for the problem (1.5)− (1.7) such that

v∗(θ) =



v0 +
1

Γ(α)

∫ θ
0 (θ − ϱ)α−1G

(
ϱ, v∗(ϱ),

∫ ϱ
0 g(ρ, v∗(ρ)) dρ

)
dϱ, θ ∈ [0, θ1],

Hi

(
θ, v∗(θ),

∫ θ
0 h(ϱ, v∗(ϱ)) dϱ

)
, θ ∈ (θi, ϱi], i = 1, 2, 3, . . . ,m,

Hi

(
ϱi, v

∗(ϱi),
∫ ϱi
0 h(ϱ, v∗(ϱ)) dϱ

)
+ 1

Γ(α)

∫ θ
0 (θ − ϱ)α−1G

(
ϱ, v∗(ϱ),

∫ ϱ
0 g(ρ, v∗(ρ)) dρ

)
dϱ

− 1
Γ(α)

∫ ϱi
0 (ϱi − ϱ)α−1G

(
ϱ, v∗(ϱ),

∫ ϱ
0 g(ρ, v∗(ρ)) dρ

)
dϱ, θ ∈ (ϱi, θi+1],

(3.4)

and for each w ∈ PC(J,R) satisfying the inequality (3.2) with w(0) = v0, we have

|w(θ)− v∗(θ)| ≤ rε

1−Θ
, for all θ ∈ J,

where r = max
1≤i≤m

{ θα1
Γ(1 + α)

, 1 +
ϱαi + θαi+1

Γ(1 + α)

}
.

Proof. We consider
N = PC(J,R), (3.5)
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with the metric

dN (u1, u2) = ||u1 − u2||PC = sup
θ∈J

|u1(θ)− u2(θ)|, u1, u2 ∈ N. (3.6)

Define an operator Λ : N → N by

Λv(θ) =



v0 +
1

Γ(α)

∫ θ
0 (θ − ϱ)α−1G

(
ϱ, v(ϱ),

∫ ϱ
0 f(ρ, v(ρ)) dρ

)
dϱ, θ ∈ [0, θ1],

Hi

(
θ, v(θ),

∫ θ
0 g(ϱ, v(ϱ)) dϱ

)
, θ ∈ (θi, ϱi], i = 1, 2, 3, . . . ,m,

Hi

(
ϱi, v(ϱi),

∫ ϱi
0 g(ϱ, v(ϱ)) dϱ

)
− 1

Γ(α)

∫ ϱi
0 (ϱi − ϱ)α−1G

(
ϱ, v(ϱ),

∫ ϱ
0 f(ρ, v(ρ)) dρ

)
dϱ

+ 1
Γ(α)

∫ θ
0 (θ − ϱ)α−1G

(
ϱ, v(ϱ),

∫ ϱ
0 f(ρ, v(ρ)) dρ

)
dϱ, θ ∈ (ϱi, θi+1].

Next, we prove that the operator Λ is a contraction map. Let u1, u2 ∈ N . For θ ∈ [0, θ1], we have

|Λu1(θ)− Λu2(θ)|

≤ 1

Γ(α)

∫ θ

0
(θ − ϱ)α−1|G

(
ϱ, u1(ϱ),

∫ ϱ

0
g(ρ, u1(ρ)) dρ

)
− G

(
ϱ, u2(ϱ),

∫ ϱ

0
g(ρ, u2(ρ)) dρ

)
| dϱ

≤ LGθ
α
1

Γ(α+ 1)

(
1 +

θ1Gg

α+ 1

)
dN (u1, u2).

Thus,

||Λu1 − Λu2||C([0,θ1],R) ≤
LGθ

α
1

Γ(α+ 1)

(
1 +

θ1Gg

α+ 1

)
||u1 − u2||PC . (3.7)

For θ ∈ (θi, ϱi], i = 1, 2, . . . ,m, we have

|Λu1 − Λu2| = |Hi

(
θ, u1(θ),

∫ θ

0
h(ϱ, u1(ϱ)) dϱ

)
−Hi

(
θ, u2(θ),

∫ θ

0
h(ϱ, u2(ϱ)) dϱ

)
|

≤ LHi

(
1 + ϱiHh

)
dN (u1, u2).

Therefore,
||Λu1 − Λu2||C((θi,ϱi],R) ≤ LHi

(
1 + ϱiHh

)
||u1 − u2||PC . (3.8)

For θ ∈ (ϱi, θi+1], i = 1, 2, . . . ,m, we get

|Λu1 − Λu2|

≤ |Hi

(
ϱi, u1(ϱi),

∫ ϱi

0
h(ϱ, u1(ϱ)) dϱ

)
−Hi

(
ϱi, u2(ϱi),

∫ ϱi

0
h(ϱ, u2(ϱ)) dϱ

)
|

+
1

Γ(α)

∫ ϱi

0
(ϱi − ϱ)α−1|G

(
ϱ, u1(ϱ),

∫ ϱ

0
g(ρ, u1(ρ)) dρ

)
− G

(
ϱ, u2(ϱ),

∫ ϱ

0
g(ρ, u2(ρ)) dρ

)
| dϱ

+
1

Γ(α)

∫ θ

0
(θ − ϱ)α−1|G

(
ϱ, u1(ϱ),

∫ ϱ

0
g(ρ, u1(ρ)) dρ

)
− G

(
ϱ, u2(ϱ),

∫ ϱ

0
g(ρ, u2(ρ)) dρ

)
| dϱ.

Consequently,

|Λu1 − Λu2| ≤
[
LHi

(
1 + ϱiHh

)
+

LG
Γ(1 + α)

(
ϱαi + θαi+1

)
+

GgLG
Γ(2 + α)

(
ϱα+1
i + θα+1

i+1

)]
dN (u1, u2),
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which ultimately gives

||Λu1 − Λu2||C([ϱi,θi+1],R) (3.9)

≤

[
LHi

(
1 + ϱiHh

)
+

LG
Γ(1 + α)

(
ϱαi + θαi+1

)
+

GgLG
Γ(2 + α)

(
ϱα+1
i + θα+1

i+1

)]
× ||u1 − u2||PC .

Thus, we observe that

dN (Λu1,Λu2) ≤ ΘdN (u1, u2), for all u1, u2 ∈ N. (3.10)

By assumption, we know that Θ < 1 and hence, Λ is a contraction map. Subsequently, Banach
fixed point theorem confirms that there exists a unique mild solution v∗ ∈ N as defined in (3.4) to
the problem (1.5)− (1.7).

Stability:
We consider a function w ∈ N which satisfies the inequality (3.2) with w(0) = v0. Then,
according to Lemma 3.1, we obtain for θ ∈ [0, θ1],

|Λw(θ)− w(θ)| ≤ |w(θ)− 1

Γ(α)

∫ θ

0
(θ − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ

0
g(ρ, v(ρ)) dρ

)
dϱ− v0|

≤ εθα1
Γ(α+ 1)

.

Thus,

||Λw − w||C([0,θ1],R) ≤
εθα1

Γ(α+ 1)
. (3.11)

Similarly, for θ ∈ (θi, ϱi], i = 1, 2, . . . ,m, we have

|Λw(θ)− w(θ)| ≤ |w(θ)−Hi

(
θ, w(θ),

∫ θ

0
h(ϱ, w(ϱ)) dϱ

)
| ≤ ε.

This gives us

||Λw − w||C((θi,ϱi],R) ≤ ε. (3.12)

For θ ∈ (ϱi, θi+1], i = 1, 2, 3, . . . ,m, we get

|Λw(θ)− w(θ)| ≤ |w(θ)−Hi

(
ϱi, w(ϱi),

∫ ϱi

0
h(ϱ, w(ϱ)) dϱ

)
+

1

Γ(α)

∫ ϱi

0
(ϱi − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ

0
g(ρ, w(ρ)) dρ

)
dϱ

− 1

Γ(α)

∫ θ

0
(θ − ϱ)α−1G

(
ϱ, w(ϱ),

∫ ϱ

0
g(ρ, w(ρ)) dρ

)
dϱ| ≤

(
1 +

ϱαi + θαi+1

Γ(α+ 1)

)
ε.

Therefore, we obtain

||Λw − w||C((ϱi,θi+1],R) ≤
(
1 +

ϱαi + θαi+1

Γ(α+ 1)

)
ε. (3.13)

Hence, from above inequalities (3.11)− (3.13), we have

dN (Λw,w) ≤ rε < +∞. (3.14)
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Here, if k = 0, then we consider the space

N∗ =
{
z ∈ N |dN (w, z) < ∞

}
. (3.15)

Taking z(θ) = w(θ), it follows that dN (w,w) = 0 < ∞ which implies w ∈ N∗. Hence, by
Theorem 2.1 (part (iii)), if v∗ is a unique fixed point of the operator Λ, the following is obtained:

|w(θ)− v∗(θ)| ≤ dN (Λw,w)

1−Θ
≤ rε

1−Θ
, for all θ ∈ J. (3.16)

Therefore, it can be concluded that problem (1.5)− (1.7) is Ulam-Hyers stable. □

4 Examples

Two examples are presented to authenticate the results obtained in the preceding section.

Example 4.1 The following Caputo fractional differential equation with non-instantaneous impulse
is considered: C

0 D
1
3
θ v(θ) =

1
5+3θ2

(
|v(θ)|+

∫ θ
0

|v(ϱ)|
10+7ϱ2

dϱ
)
, θ ∈ (0, 1] ∪ (2, 3],

v(θ) = 1
(5+3(θ−1)2)(1+|v(θ)|)

(
|v(θ)|+

∫ θ
0

|v(ϱ)|
15+11ϱ2

dϱ
)
, θ ∈ (1, 2],

(4.1)

and the corresponding non-instantaneous impulsive fractional differential inequalities with impulse
interval (1,2], and for ε > 0, is given by |C0 D

1
3
θ v(θ)−

1
5+3θ2

(
|v(θ)|+

∫ θ
0

|v(ϱ)|
10+7ϱ2

dϱ
)
| ≤ ε, θ ∈ (0, 1] ∪ (2, 3],

|v(θ)− 1
(5+3(θ−1)2)(1+|v(θ)|)

(
|v(θ)|+

∫ θ
0

|v(ϱ)|
15+11ϱ2

dϱ
)
| ≤ ε, θ ∈ (1, 2].

(4.2)

Here, J = [0, 3] and 0 = θ0 = ϱ0 < θ1 = 1 < ϱ1 = 2 < θ2 = 3, f(θ, v(θ)) = |v(θ)|
10+7θ2

with F = 1
10

and

G
(
θ, v(θ),

∫ θ

0
f(ϱ, v(ϱ)) dϱ

)
=

1

5 + 3θ2

(
|v(θ)|+

∫ θ

0

|v(ϱ)|
10 + 7ϱ2

dϱ
)

with LG = 1
5 . Also, g(θ, v(θ)) = |v(θ)|

15+11θ2
with G = 1

15 , and

G1

(
θ, v(θ),

∫ θ

0
g(ϱ, v(ϱ)) dϱ

)
=

1

(5 + 3(θ − 1)2)(1 + |v(θ)|)

(
|v(θ)|+

∫ θ

0

|v(ϱ)|
15 + 11ϱ2

dϱ
)
,

with LG1 = 1
5 for θ ∈ (1, 2]. Now,

Θ = max

{
θα1LG

Γ(1 + α)

(
1 +

θ1F

1 + α

)
, LG1

(
1 + ϱ1G

)
+

LG
Γ(1 + α)

(
ϱα1 + θα2

)
+

FLG
Γ(2 + α)

(
ϱα+1
1 + θα+1

2

)}
.

Then,

Θ = max

{ 1
5

Γ(43)

(
1 +

3

40

)
,
1

5

(
1 +

2

15

)
+

1
5

Γ(43)

(
3
√
2 +

3
√
3
)
+

1
50

Γ(73)

(
2

3
√
2 + 3

3
√
3
)}

,
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which implies

Θ = max
{
0.240767, 0.946876905

}
= 0.946876905 ∼= 0.947 < 1.

Here, r = max
{

1
Γ( 4

3
)
, 1 +

3√2+ 3√3
Γ( 4

3
)

}
= max

{
0.89297951, 4.02601637

}
, i.e., r = 4.02601637 ∼=

4.03. Theorem 3.2 confirms that there exists a unique solution v∗ : [0, 3] → R such that

v∗(θ) =



u0 +
1

Γ( 1
3
)

∫ θ
0 (θ − ϱ)−

2
3

1
5+3ϱ2

(
|v∗(ϱ)|+

∫ ϱ
0

|v∗(ρ)|
10+7ρ2

dρ
)
dϱ, θ ∈ [0, 1],

1
(5+3(θ−1)2)(1+|v∗(θ)|)

(
|v∗(θ)|+

∫ θ
0

|v∗(ϱ)|
15+11ϱ2

dϱ
)
, θ ∈ (1, 2],

1
8(1+|v∗(2)|)

(
|v∗(2)|+

∫ 2
0

|v∗(ϱ)|
15+11ϱ2

dϱ
)

− 1
Γ( 1

3
)

∫ 2
0 (2− ϱ)

−2
3

1
5+3ϱ2

(
|v∗(ϱ)|+

∫ ϱ
0

|v∗(ρ)|
10+7ρ2

dρ
)
dϱ

+ 1
Γ( 1

3
)

∫ θ
0 (θ − ϱ)−

2
3

1
5+3ϱ2

(
|v∗(ϱ)|+

∫ ϱ
0

|v∗(ρ)|
10+7ρ2

dρ
)
dϱ, θ ∈ (2, 3],

(4.3)

with
|v(θ)− v∗(θ)| ≤ rε

1−Θ
= 76.04ε, for all θ ∈ J = [0, 3],

where v(θ) is the solution of the fractional differential inequalities (4.2).

Example 4.2 Consider the following Caputo fractional differential equation:
C
0 D

1
4
t u(t) =

u(t)
5 + 1

8

∫ t
0

u(ϱ)
3+ϱ dϱ+ F (t), t ∈ (0, 1] ∪ (2, 3],

u(t) = sin(u(t))
5 + 1

6

∫ t
0

u(ϱ)
2+ϱ dϱ+G1(t), t ∈ (1, 2],

u(0) = 1,

(4.4)

where F (t) and G1(t) are functions of t chosen such that

u(t) =


(t+ 3)( t

10 − t0.25

4 + 1), t ∈ [0, 1],

(t+ 2)(t0.25 + 1), t ∈ (1, 2],

(t+ 3)( t
10 − t0.25

4 + 1) + 21
21.75

− 2, t ∈ (2, 3],

(4.5)

is the solution of problem (4.4). Clearly, the function in equation (4.5) is a unique solution for
problem (4.4) by Theorem 3.2, since Θ = 0.833 < 1, and all the conditions are satisfied. Further,
the Ulam-Hyers constant is given by

cf,α =


6.59, t ∈ [0, 1],

5.98, t ∈ (1, 2],

22.49, t ∈ (2, 3].

(4.6)

Thus, by Theorem 3.2, problem (4.4) is Ulam-Hyers stable which means that the inequality
|v(t) − u(t)| ≤ cf,αε holds for all t ∈ J = [0, 3] and any solution v(t) satisfying the inequalities
(3.2). Subsequently, according to Theorem 3.1, it is the solution of{

C
0 D

1
4
t v(t) =

v(t)
5 + 1

8

∫ t
0

v(ϱ)
3+ϱ dϱ+ F (t) +G(t), t ∈ (0, 1] ∪ (2, 3],

v(t) = sin(v(t))
5 + 1

6

∫ t
0

v(ϱ)
2+ϱ dϱ+G1(t) + u1 t ∈ (1, 2],

(4.7)

where G ∈ PC(J,R) and u1 ∈ R with |G(t)| ≤ ε, t ∈ J , |u1| ≤ ε. In particular, for ε = 0.5, take
G(t) = ε, u1 = ε. We plot the graphs of the solution u(t) of problem (4.4) and the solution v(t) of
problem (4.7) in figure 1. We also present the difference function |v(t)− u(t)| for ε = 0.5 and the
upper bound cf,αε graphically in figure 2. It points towards a difference which is almost uniform.
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Figure 1: Solution u(t) of the problem (4.4) and solution v(t) of the problem (4.7) for ε = 0.5.
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Figure 2: The difference function |v(t)− u(t)| and upper bound cf,αε for ε = 0.5.

5 An Application to Fractional-order RLC

RLC circuit is one of the most basic and fundamental circuits in various electronic devices and
there is a huge literature describing the RLC circuit concerning integer-order differential equa-
tions. Fractional-order RLC circuit model is the generalization of the classical integer-order RLC
circuit. This fractional model has a number of advantages over its integer-order counterpart because
of the fractional order. This provides substantial flexibility in the design and control of circuit which
enhances the performance and exhibits the novel behavior. Radwan et al. [36] presented a broad
view of the fractional-order RLC circuit model and illustrated that it was not possible to observe
some novel phenomena in the absence of the fractional-order model. They also established that the
fractional-order impedance was purely imaginary, and it enabled the modeling of a huge capaci-
tance/inductance by considering a very small fractional order. Under the variant and non-variant
voltage source, Khader et al. [23] carried out a numerical study of the fractional-order RLC circuit
and graphically compared the solution of the fractional-order circuit with the corresponding integer-
order one. For complete information on fractional-order RLC circuit, the readers are referred to
the works in [4, 40, 47]. Shankar and Bora [41] estimated the bound for the difference between
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the fractional-order and the integer-order non-instantaneous impulsive RLC circuit currents. They
established that the bound was primarily dependent on the bandwidth of the circuit.

Dhaneliya et al. [13] computed the analytical solution of the fractional-order RLC circuit in
terms of an infinite series in which, each term was a generalized Mittag-Leffler function. Hence, it
is a challenging task to estimate the bound for the solution; and computation of the solution may
increase the round-off error. Therefore, to overcome such problems, we propose to find some bound
estimate for the solution. The following non-instantaneous fractional impulsive RLC circuit under

 

Figure 3: Fractional-order RLC circuit under input voltage V, with fractional-order influence on
the inductance

a given input voltage V (θ) is considered:

Lα
C
0 D

α
θ Iα(θ) +RIα(θ) +

1

C

∫ θ

0
Iα(ϱ) dϱ = V (θ), θ ∈

(
0,

1

4

]
∪
(1
2
, 1
]
, (5.1)

RIα(θ) +
1

C

∫ θ

0
Iα(ϱ) dϱ = V (θ), θ ∈

(1
4
,
1

2

]
, (5.2)

Iα(0) = 0, (5.3)

where Lα, R and C are inductor, resistor and capacitor, respectively. Here 0 = ϱ0 < θ1 = 1
4 <

ϱ1 =
1
2 < θ2 = 1, and we also assume that R2 = 4Lα/C. In the above circuit (Fig. 3), for the time

interval
(
1
4 ,

1
2

]
, the effect of the inductor is negligible but its effect is clearly visible when the time

interval
(
1
2 , 1
]

is considered.

Theorem 5.1 Consider the non-instantaneous impulsive fractional-order RLC circuit (5.1)−(5.3)
and assume that the input voltage V (θ) is bounded, i.e., there exists B > 0 such that |V (θ)| < B,

for all θ ∈ [0, 1]. Let the bandwidth a =
R

2Lα
of the RLC circuit satisfy

a

2

[
1 +

a

4
+

2

Γ(1 + α)

{
a2

1 + α

(
1 +

1

2α+1

)
+

1

2α
+ 1

}]
= Θ < 1. (5.4)

Then, the circuit current Iα of the system (5.1)− (5.3) is bounded, i.e.,

|Iα(θ)| ≤ LUB, for all θ ∈ [0, 1], (5.5)

where LU =

1 +
(1 +

1

2α
)

Γ(1 + α)

1−Θ
.
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Proof. Here,

G
(
θ, Iα(θ),

∫ θ

0
g(ϱ, Iα(ϱ)) dϱ

)
=

1

Lα

(
V (θ)−RIα(θ)−

1

C

∫ θ

0
Iα(ϱ) dϱ

)
,

with LG = max
{ R

Lα
,

1

CLα

}
. By using the given condition Θ < 1, it implies that a < 1. Under

the given assumption R2 = 4Lα/C, we get CLα =
1

a2
. Thus, we have

LG = max{2a, a2} = 2a. (5.6)

Further,

H1

(
θ, Iα(θ),

∫ θ

0
h(ϱ, Iα(ϱ)) dϱ

)
=

1

R

(
V (θ)− 1

C

∫ θ

0
Iα(ϱ) dϱ

)

with LH1 =
1

RC
=

a

2
. We also take Gg =

1

CLα
= a2 and Hh =

1

RC
=

a

2
. Here, we observe that

Θ = max

{
LGθ

α
1

Γ(1 + α)

(
1 +

θ1Gg

1 + α

)
, LH1

(
1 + ϱ1Hh

)
+

LG
Γ(1 + α)

(
ϱα1 + θα2

)
+

GgLG
Γ(2 + α)

(
ϱα+1
1 + θα+1

2

)}
= max

{
2a

4αΓ(1 + α)

(
1 +

a2

4(1 + α)

)
,
a

2

(
1 +

a

4

)
+

2a

Γ(1 + α)

(
1 +

1

2α

)
+

2a3

Γ(2 + α)

(
1 +

1

2α+1

)}

=
a

2

[
1 +

a

4
+

2

Γ(1 + α)

{
a2

1 + α

(
1 +

1

2α+1

)
+

1

2α
+ 1

}]
. (5.7)

By given condition (5.4), we have Θ < 1. Thus, by Theorem 3.2, the fractional-order RLC system
(5.1)− (5.3) is Ulam-Hyers stable with a Ulam-Hyers constant given by

LU =

1 +
(1 + 1

2α )

Γ(1 + α)

1−Θ
. (5.8)

Now, take Iα(θ) = I(θ) = 0, for all θ ≥ 0, in the system (5.1)− (5.3) to get

|Lα
C
0 D

α
θ Iα(θ)+RIα(θ)+

1

C

∫ θ

0
Iα(ϱ) dϱ−V (θ)| = |V (θ)| ≤ B, θ ∈

(
0,

1

4

]
∪
(1
2
, 1
]
, (5.9)

and

|RIα(θ) +
1

C

∫ θ

0
Iα(ϱ) dϱ− V (θ)| = |V (θ)| ≤ B, θ ∈

(1
4
,
1

2

]
. (5.10)

Thus, we take ε = B, and from equations (5.9), (5.10), we observe that the function I(θ) = 0
satisfies the inequality (3.2). Thus, by Theorem 3.2, we have the following bound for the fractional-
order RLC circuit current Iα(θ):

|Iα(θ)| = |Iα(θ)− I(θ)| ≤ LUB, for all θ ∈ [0, 1], (5.11)

where LU is a Ulam-Hyers constant given in equation (5.8). □
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Figure 4: Graph of Ulam-Hyers constant LU given by (5.8) for a = a0 = 0.3621315 (threshold
value).

Remark 5.1 From the numerical computation, we observe that, for a ≤ 0.3621315, the condition
(5.4) of Theorem 5.1 holds for all α ∈ [0, 1]. So, we call a0 = 0.3621315 the threshold value of
the bandwidth a in the sense that, for a ≤ a0, the condition (5.4) of Theorem 5.1 holds for all
α ∈ [0, 1].

First, we plot the graph of the Ulam-Hyers constant LU with α ∈ [0, 1] and for a = a0. From Fig. 4,
we observe the graph of LU attains its maximum point at α = 0.119612, which means that, if the
bandwidth a of the given RLC system (5.1)−(5.3) is equal to the threshold value a0 = 0.3621315,
then from inequality (5.5) and under the given input voltage, the absolute value of the circuit current
is maximum for α = 0.119612, compared to the fractional order α ∈ [0, 1] \ {0.119612} of the
system.

Next, we study the behavior of the Ulam-Hyers constant for the bandwidth a closer to the thresh-
old value a0. From Fig. 5, we observe that the variation of the Ulam-Hyers constant is sensitive for
the bandwidth a closer to the threshold value a0. For each value of a, LU attains its maximum value
for the fractional order satisfying 0.1 < α < 0.2.

Next, we plot the graph of the Ulam-Hyers constant LU for different values of a < a0. From
Fig. 6, it is clear that the maximum value of LU is not as high as compared to the case when the
values of the bandwidth are near the threshold value a0. In comparison to the larger values of the
bandwidth, the values of LU on 0 ≤ α ≤ 1 are smaller corresponding to the smaller values of the
bandwidth. In other words, if we denote LU (a, α) as the Ulam-Hyers constant for a given bandwidth
a on 0 ≤ α ≤ 1, then LU (a1, α) < LU (a2, α) for all 0 ≤ α ≤ 1 with a1 < a2 ≤ a0. Here, we
also observe that, for smaller values of a(≪ a0), LU remains almost constant, which means that,
for smaller values of the bandwidth, the absolute values of the circuit current Iα are bounded with a
bound independent of the fractional-order α.

Finally, from the above observations, we conclude that the absolute values of the circuit current
Iα of the fractional-order RLC system (5.1)− (5.3) are large corresponding to larger values of the
bandwidth a(< a0), and for each value of a(≤ a0), the absolute value of the circuit current Iα is
the maximum for the fractional order 0.1 < α < 0.2. In particular, for a = a0 and α = 0.119612,
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Figure 5: Graph of Ulam-Hyers constant LU given by (5.8) for the bandwidth close to the threshold
value a0

under a given input voltage, we can generate the circuit current with the largest absolute value for the
fractional order α = 0.119612, compared to the fractional order α ∈ [0, 1]\{0.119612}. This shows
that the fractional-order RLC circuit model has many advantages over its integer-order counterpart
because of the inclusion of the order α included in the model which affects the performance and
enhances the novel behavior lending more flexibility in the design and control of the circuit. Further,
this shows the practical applicability of the Ulam-Hyers constant in some important problems. We
firmly believe this finding has the potential to occupy an important place in fractional-order RLC
circuit problems as well as in the application of Ulam-Hyers stability.

6 Conclusion

In this work, we have displayed the existence and Ulam-Hyers stability results of the mild solution of
the fractional non-instantaneous impulsive integro-differential equation with Caputo derivative. The
main result was established by using Banach fixed point theorem under appropriate assumptions.
Two demonstrated examples ascertain the applicability of the obtained results. The main result
was used to estimate the bound for the non-instantaneous impulsive fractional-order RLC circuit
current Iα, and it is found that the bound mainly depends on the bandwidth and fractional-order of
the system. Further, by understanding the behaviour of the Ulam-Hyers constant LU numerically,
we determined that the absolute values of the circuit current Iα of the fractional-order RLC system
are larger for larger values of the bandwidth a(< a0), and for each value of a(≤ a0), the absolute
value of the circuit current Iα is the maximum for the fractional order between 0.1 < α < 0.2. In
particular, for a = a0 and α = 0.119612, under a given input voltage, we can generate the circuit
current with the largest absolute value for the fractional order α = 0.119612, in comparison to the
fractional-order α ∈ [0, 1] \ {0.119612}.
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Figure 6: Graph of Ulam-Hyers constant LU given by (5.8) for the bandwidth a < a0
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