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1 Introduction

In this paper, we are interested in the following fractional evolution equation:
∂ρ

∂t
(x, t) + v

∂ρ

∂x
(x, t) +D(−∆)sρ(x, t) = f(x, t) (x, t) ∈ (0, L)× (0, T ),

ρ(0, t) = ρ(L, t) = 0 t ∈ (0, T ),
ρ(x, 0) = g(x) x ∈ (0, L),

(1.1)

where T > 0, v ∈ R , D > 0 and L > 0. The functions g : [0, L]→ R and f : [0, L]× [0, T ]→ R
are given. The operator (−∆)s, 0 < s < 1 denotes the fractional Laplace operator formally given
for a suitable function ψ by [3, 8]

(−∆)sψ = F−1|x|2sFψ(x),

where F and F−1 stand for the Fourier transform and the inverse of Fourier transform operators
respectively.

Model (1.1) can be viewed as an advection-diffusion equation involving the Laplace fractional
operator of order 0 < s < 1. Such a model can be used to describe the diffusion and the transport
of pollutants in porous media.

Fractional derivatives are an excellent tool to describe memory and heredity effects of various
materials and processes. They have been successfully applied by many researchers during the last
decade in several scientific fields such as biology, physics, chemistry and even finance.

Many authors have been interested in the methods of numerical resolution of the fractional
advection-diffusion problem. In [4], Sadia Arshad et al. consider the following fractional advection-
diffusion problem involving the Riesz-space fractional operators:

Dα
t ρ(x, t) = K1

∂β1

∂|x|β1
ρ(x, t) +K2

∂β2

∂|x|β2
ρ(x, t) + f(x, t) (x, t) ∈ (0, L)× (0, T ),

ρ(0, t) = ρ(L, t) = 0 t ∈ (0, T ),
ρ(x, 0) = g(x) x ∈ (0, L),

(1.2)
where 0 < α, β1 < 1, 1 < β2 < 2, K1 ≥ 0, K2 > 0 and Dα

t stands for the time fractional Caputo

derivative of order α. The operators
∂β1

∂|x|β1
and

∂β2

∂|x|β2
are respectively the Riesz-space fractional

derivatives of order β1 and β2. The real functions f and g are suitably given. Using a combination
of left and right fractional Riemann-Liouville derivatives to approximate the Riesz-space fractional
operators, they constructed a numerical scheme which combines a finite difference method with
the trapezoidal method to solve (1.2). They also proved the stability and the convergence to sec-
ond order in space of their scheme. Considering the same combination of left and right fractional
Riemann-Liouville derivatives to approach the Riesz-space fractional operators, Shujun Shen et
al. [5] constructed an explicit and an implicit finite difference method to solve (1.2). They proved
that their scheme is stable and converges to first order in time and second order in space. F. Liu et
al. [3], consider the problem (1.2) with f ≡ 0. They provided three numerical methods to deal with
the fractional derivatives in Riesz space, namely the L1/L2 approximation method which consists
in approximating the diffusion and advection terms, the standard Grünwald/offset method which
consists in discretizing the fractional Riesz derivative and finally the matrix transformation method
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to approximate the fractional Riesz diffusion equation. Jingjun Zhao et al. [6] consider a multi-term
space and time fractional Riesz advection-diffusion problem which has the space spacial terms as
in (1.2) but where the Caputo time fractional derivative Dα

t has been replaced by a combination of
Caputo time fractional derivatives of different orders between 0 and 2. They gave an efficient finite
element method for the considered advection-diffusion problem using the Diethelm fractional back-
ward finite difference method developed in [7] to discretize the time multiterm. The existence and
uniqueness of solution are obtained by means of Lax-Milgram theorem. They proved the stability
and convergence of their scheme and also gave some numerical examples to illustrate their results.
Note that in all the above papers, the convection term involves the Riesz-space fractional operator
of order α ∈ (0, 1).

In this paper, we are interested in the problem (1.1) which involves a fractional Laplace operator
and a classical gradient operator in one dimension in space. Observing that the fractional Laplace
operator can be written as a combination of left and right fractional Riemann-Liouville derivatives
(see [3, Lemma 1]), we constructed a numerical scheme of Euler explicit type to solve (1.1). We
prove that our scheme is stable and converges to the first order in time and in space.

The rest of the paper is organized as follows. In Section 2, we recall some definitions of frac-
tional integral and fractional derivative of Riemann-Liouville. Section 3 is devoted to the construc-
tion of the numerical scheme for (1.1). We prove the stability and the convergence of the numerical
scheme in Section 4 for 1/2 < s < 1 and perform numerical tests to verify the orders of conver-
gence of the numerical scheme in Section 5.

2 Preliminaries

Let L > 0 be a real number and f : [0, L]→ R be a given function.

Definition 2.1 [4, 9, 10] Let a, L ∈ R. Then the left and right Riemann–Liouville fractional inte-
grals of order α > 0 of f , are defined, respectively, by:

(aI
α
x f)(x) :=

1

Γ(α)

∫ x

a
(x− t)α−1f(t) dt, (x > a)

and

(xI
α
Lf)(x) :=

1

Γ(α)

∫ L

x
(t− x)α−1f(t) dt, (x < L),

provided that the integrals exist.

Definition 2.2 [9–11] Let a, L ∈ R. Then the left and right Riemann–Liouville fractional deriva-
tives of order α ∈ (1, 2) of f , are defined, respectively, by:

(aD
α
xf)(x) :=

d2

dx2
(aI

2−α
x f)(x) =

1

Γ(2− α)

d2

dx2

∫ x

a
(x− t)1−αf(t) dt, (x > a), (2.1)

and

(xD
α
Lf)(x) :=

d2

dx2
(xI

2−α
L f)(x) =

1

Γ(2− α)

d2

dx2

∫ L

x
(t− x)1−αf(t) dt, (x < L), (2.2)

provided that the integrals exist.
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We recall the following result [3, Lemma 1].

Lemma 2.1 Let 0 < α < 1. Then for any real function u defined on R, the following equality
holds:

(−∆)αu(x) =
1

2 cos(
πα

2
)

[
−∞D

2α
x u(x) + xD

2α
+∞u(x)

]
=

∂2α

∂|x|2α
u(x), (2.3)

provided that the right and left Riemann-Liouville fractional derivatives xD
2α
+∞u and −∞D2α

x u
exist.

3 The finite difference scheme

In this section, we are concerned with the numerical analysis of (1.1). In the interval [0, L], we take
the mesh points xi = ih, i = 0, 1, · · · , N and tn = nτ, n = 0, 1, · · · ,M, where h = L/N and
τ = T/M are respectively the uniform spatial step size and temporal step size. Then, we can write

ρni ≈ ρ(ih, nτ), for i = 0, · · · , N and n = 0, · · · ,M. (3.1)

Since the solution of (1.1) is such that ρ(0, t) = ρ(L, t) for almost every t ∈ (0, T ), using (2.1),
(2.2) and (2.3), we have as in [8, 13] that

(−∆)sρ(x, t) =
0D

2s
x ρ(x, t) + xD

2s
L ρ(x, t)

2 cos(sπ)
, (x, t) ∈ (0, L)× (0, T ), (3.2)

provided that the right and left Riemann- Liouville fractional derivatives xD2s
L ρ and 0D

2s
x ρ exist.

In order to construct our numerical scheme, we need to approximate the fractional Laplace
operator (−∆)sρ and thus the right and left Riemann- Liouville fractional derivatives xD

2s
L ρ and

0D
2s
x ρ.

Observing that for any ζ ∈ C such that |ζ| ≤ 1, we can write

(1− ζ)2s =

∞∑
k=0

(−1)k

(
2s
k

)
ζk,

where

(
2s
k

)
=

(2s)!

k!(2s− k)!
.

We set

g
(2s)
k = (−1)k

(
2s
k

)
(3.3)

and the following relation between g(2s)k and g(2s)k−1 holds true: g
(2s)
k = (1− 1 + 2s

k
)g

(2s)
k−1, ∀k = 1, 2, · · ·

g
(2s)
0 = 1.
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Moreover, we have from Lemma 2.3 in [2, 12] that
g
(2s)
0 = 1, g

(2s)
1 = −2s < 0, g

(2s)
2 =

2s(2s− 1)

2
,

1 ≥ g(2s)2 ≥ g(2s)3 ≥ · · · ≥ 0,
∞∑
k=0

g
(2s)
k = 0,

m∑
k=0

g
(2s)
k < 0, m ≥ 1,

(3.4)

because 1/2 < s < 1.

We assume that ρ is regular enough and we then consider as in [1, 2], the following approxi-
mation of the Riemann-Liouville fractional derivatives of order 2s, 1/2 < s < 1 of the function
ρ:

0D
2s
x ρ(xi, t

n) = h−2s
i+1∑
k=0

w
(2s)
k ρ(xi−k+1, t

n) +O(h2)

and

xD
2s
L ρ(xi, t

n) = h−2s
N−i+1∑
k=0

w
(2s)
k ρ(xi+k−1, t

n) +O(h2),

where the sequence (w
(2s)
k )k∈N is defined as follows:

w
(2s)
0 = s and w(2s)

k = sg
(2s)
k + (1− s)g(2s)k−1, ∀k ≥ 1, (3.5)

with the sequence (g
(2s)
k )k∈N defined as in (3.3). Note that from Lemma 2.8 in [2], the sequence

(w
(2s)
k )k∈N satisfies the following properties:

w
(2s)
0 = s > 0, w

(2s)
1 = 1− s− 2s2 < 0, w

(2s)
2 = s(2s2 + s− 2),

1 ≥ w(2s)
0 ≥ w(2s)

3 ≥ w(2s)
4 ≥ ... ≥ 0,

∞∑
k=0

w
(2s)
k = 0;

n∑
k=0

w
(2s)
k < 0, ∀n ≥ 2.

(3.6)

Consequently,

(−∆)sρ(xi, t
n) =

h−2s

2 cos(sπ)
(

i+1∑
k=0

w
(2s)
k ρ(xi−k+1, t

n)+

N−i+1∑
k=0

w
(2s)
k ρ(xi+k−1, t

n))+O(h2). (3.7)

To approach the convection term, we use the upwind scheme. This means that we approach the first
order derivative of ρ by:

∂ρ

∂x
(xi,t

n) =
ρ(xi+1,t

n)− ρ(xi,t
n)

h
+O(h) if v < 0,

∂ρ

∂x
(xi,t

n) =
ρ(xi,t

n)− ρ(xi−1,t
n)

h
+O(h) if v > 0.

(3.8)

We define the function H(v) as follows:

H(v) =

{
1 if v ≥ 0,
0 if v < 0.

(3.9)
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Since
∂ρ

∂t
(xi,t

n) =
ρ(xi,t

n+1)− ρ(xi,t
n)

τ
+O(τ),

using (3.7) and (3.8), we have this approximation of the first equation in (1.1),

τ f(xi, t
n)

= ρ(xi,t
n+1)− ρ(xi,t

n)(1− C)− C
[
(1−H(v))ρ(xi+1,t

n) +H(v)ρ(xi−1,t
n)
]

(3.10)

−B
( i+1∑
k=0

w
(2s)
k ρ(xi−k+1, t

n) +

N−i+1∑
k=0

w
(2s)
k ρ(xi+k−1, t

n)
)

+ τ (O(h2) +O(τ) +O(h)),

where

B =
−Dτ

2 cos(sπ)h2s
and C =

τ |v|
h
. (3.11)

Remark 3.1 Note that B > 0 because cos(sπ) < 0 for 1/2 < s < 1.

Using (3.10) and (3.1), we have that,

ρn+1
i − ρni (1− C) = C

[
(1−H(v))ρni+1 +H(v)ρni−1

]
+B

( i+1∑
k=0

w
(2s)
k ρni−k+1 +

N−i+1∑
k=0

w
(2s)
k ρni+k−1

)
+ τfni , (3.12)

and consequently the following numerical scheme for (1.1):

ρn+1
i = (1− C)ρni + C[(1−H(v))ρni+1 +H(v)ρni−1]

+B
( i+1∑
k=0

w
(2s)
k ρni−k+1 +

N−i+1∑
k=0

w
(2s)
k ρni+k−1

)
+τfni , i = 1, · · · , (N − 1), n = 0, · · · ,M,

ρn0 = ρnL = 0, n = 0, · · · ,M,
ρ0i = gi, i = 1, · · · , N.

(3.13)

4 Stability and convergence analysis

In this section, we assume without loss of generality that f 6= 0.

Theorem 4.1 Let 1/2 < s < 1. Let C and B be the reals defined by (3.11) and (w
(2s)
k )k∈N be

defined as in (3.5). Assume that the initial condition g in (1.1) is bounded. Then the scheme (3.13)
is stable if the following condition holds:

0 < C − 2Bw
(2s)
1 < 1. (4.1)

Proof. We proceed by induction.

Since the initial condition g is bounded, there exists a real M > 0 such that
∣∣ρ0i ∣∣ ≤ M for

i = 1, · · · , N .
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Assume that

|ρni | ≤M, i = 1, · · · , N for some n ≥ 1. (4.2)

Then using (3.13), we can write

ρn+1
i = (1− C)ρni + C

[
(1−H(v))ρni+1 +H(v)ρni−1

]
+B

( i+1∑
k=0

w
(2s)
k ρni−k+1 +

N−i+1∑
k=0

w
(2s)
k ρni+k−1

)
= (1− C)ρni + C

[
(1−H(v))ρni+1 +H(v)ρni−1

]
+B

(
w

(2s)
0 ρni+1 + w

(2s)
1 ρni + w

(2s)
2 ρni−1

)
+B

i+1∑
k=3

w
(2s)
k ρni−k+1

+B
(
w

(2s)
0 ρni−1 + w

(2s)
1 ρni + w

(2s)
2 ρni+1

)
+B

N−i+1∑
k=3

w
(2s)
k ρni+k−1.

This means that

ρn+1
i = [1− (C − 2Bw

(2s)
1 )]ρni + C

[
(1−H(v))ρni+1 +H(v)ρni−1

]
+Bρni−1(w

(2s)
2 + w

(2s)
0 )

+Bρni+1(w
(2s)
0 + w

(2s)
2 ) +B

i+1∑
k=3

w
(2s)
k ρni−k+1 +B

N−i+1∑
k=3

w
(2s)
k ρni+k−1. (4.3)

Observing that from the definition of H given by (3.9),

(1−H(v))ρni+1 +H(v)ρni−1 =

{
ρni−1 if v ≥ 0,
ρni+1 if v < 0,

we have that ∣∣(1−H(v))ρni+1 +H(v)ρni−1
∣∣ =

{
|ρni−1| if v ≥ 0,
|ρni+1| if v < 0.

Therefore using the fact that C > 0, we deduce that,

|C[(1−H(v))ρni+1 +H(v)ρni−1]| =

{
C|ρni−1| if v ≥ 0,
C|ρni+1| if v < 0,

which in view of (4.2), gives

|C[(1−H(v))ρni+1 +H(v)ρni−1]| ≤ CM (4.4)

because v ≥ 0 or v < 0. Since, from (3.6), we have that,

i+1∑
k=3

w
(2s)
k ≥ 0,

N−i+1∑
k=3

w
(2s)
k ≥ 0 and w(2s)

0 + w
(2s)
2 > 0,
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using (4.1), (4.2) and (4.4), we obtain that,

|ρn+1
i | ≤ [1− (C − 2Bw

(2s)
1 )]|ρni |+ |C[(1−H(v))ρni+1 +H(v)ρni−1]|+B|ρni−1|(w

(2s)
2 + w

(2s)
0 )

+B|ρni+1|(w
(2s)
0 + w

(2s)
2 ) +B

i+1∑
k=3

w
(2s)
k |ρni−k+1|+B

N−i+1∑
k=3

w
(2s)
k |ρni+k−1|

≤ [1− (C − 2Bw
(2s)
1 )]M + CM + 2BM(w

(2s)
2 + w

(2s)
0 )

+BM
i+1∑
k=3

w
(2s)
k +BM

N−i+1∑
k=3

w
(2s)
k ,

which can be rewritten as,

ρn+1
i ≤ [1− (C − 2Bw

(2s)
1 )]M + CM + 2BM(w

(2s)
2 + w

(2s)
0 )

+BM

i+1∑
k=0

w
(2s)
k +BM

N−i+1∑
k=0

w
(2s)
k − 2BM(w

(2s)
0 + w

(2s)
2 )− 2BMw

(2s)
1 .

This means that,

ρn+1
i ≤ [1− (C − 2Bw

(2s)
1 )]M + (C − 2Bw

(2s)
1 )M +BM

i+1∑
k=0

w
(2s)
k +BM

N−i+1∑
k=0

w
(2s)
k .

In view of (3.6), we have on the one hand that C − 2Bw
(2s)
1 > 0 because w(2s)

1 < 0 and C > 0,

and on the other hand that,
i+1∑
k=0

w
(2s)
k < 0 and

N−i+1∑
k=0

w
(2s)
k < 0. Therefore,

ρn+1
i ≤ [1− (C − 2Bw

(2s)
1 )]M + (C − 2Bw

(2s)
1 )M = M,

because 0 < C − 2Bw
(2s)
1 < 1 and thus 0 < 1− (C − 2Bw

(2s)
1 ) < 1. �

Remark 4.1 Note that for 1/2 < s < 1, we have that
Dw

(2s)
1

2 cos(sπ)h2s
> 0 because w(2s)

1 < 0

and cos(sπ) < 0. Therefore, using the definition of B and C given by (3.11), we have from the
condition of stability (4.1) that the time step is reduced by the explicit character of the fractional
Laplace operator and the upwind scheme for the convection:

τ <
1

|v|
h +

Dw
(2s)
1

2 cos(sπ)h2s

.

Theorem 4.2 Let 1/2 < s < 1. Let C and B be the reals defined by (3.11) and (w
(2s)
k )k∈N be

defined as in (3.5). Assume that the initial condition g in (1.1) is bounded and that (4.1) holds.
Then, the scheme (3.13) is convergent and its error is first order in time and space.

Proof. Let ρ(xi, t
n) (i = 1, 2, · · · , N−1;n = 1, 2, · · · ,M) be the exact solution of equation (1.1)

at mesh point (xi, t
n) and denote the error by

eni = ρ(xi, t
n)− ρni for i = 1, 2, · · · , N − 1 and n = 0, · · · ,M − 1. (4.5)
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Then in view of (3.13) and (4.5) we have that,

e0i = 0 for i = 1, 2, · · · , N − 1. (4.6)

Using (3.10) and (3.12), we obtain that,

∆ t(f(xi, t
n)− fni )

= (ρ(xi, t
n+1)− ρn+1

i )− (1− C)(ρ(xi, t
n)− ρni )

− C(1−H(v))(ρ(xi+1, t
n)− ρni+1)− CH(v)(ρ(xi−1, t

n)− ρni−1)

−B
( i+1∑
k=0

w
(2s)
k (ρ(xi−k+1, t

n)− ρni−k+1) +
N−i+1∑
k=0

w
(2s)
k (ρ(xi+k−1, t

n)− ρni+k−1)
)

= en+1
i − (1− C)eni − C[(1−H(v))eni+1 +H(v)eni−1]

−B
( i+1∑
k=0

w
(2s)
k eni−k+1 +

N−i+1∑
k=0

w
(2s)
k eni+k−1

)
+ τ (O(h2) +O(τ) +O(h)).

Since f(xi, t
n)− fni = 0, we have that,

en+1
i = (1− C)eni + C[(1−H(v))eni+1 +H(v)eni−1]

+B
( i+1∑
k=0

w
(2s)
k eni−k+1 +

N−i+1∑
k=0

w
(2s)
k eni+k−1

)
+ τ (O(h2) +O(τ) +O(h)). (4.7)

To complete the proof of Theorem 4.2, we need to prove that there exists K > 0 such that,

max
1≤i≤N−1

|eni | ≤ K(O(τ) +O(h));n = 1, 2, · · · ,M − 1.

To this end, we proceed by induction.

So, for n = 0, using (4.6), we have that,

|e1i | = τ |(O(h2) +O(τ) +O(h))| = τ R, i = 1, · · · , N − 1, (4.8)

with R = |(O(h2) +O(τ) +O(h))|.

For n = 1,

e2i = (1− C)e1i + C[(1−H(v))e1i+1 +H(v)e1i−1]

+B
( i+1∑
k=0

w
(2s)
k e1i−k+1 +

N−i+1∑
k=0

w
(2s)
k e1i+k−1

)
+ τ (O(h2) +O(τ) +O(h))

= (1− C + 2Bw
(2s)
1 )e1i + C[(1−H(v))e1i+1 +H(v)e1i−1]

+Be1i−1(w
(2s)
0 + w

(2s)
2 ) +B

i+1∑
k=3

w
(2s)
k e1i−k+1 +B

N−i+1∑
k=3

w
(2s)
k e1i+k−1

+Be1i+1(w
(2s)
0 + w

(2s)
2 ) + τ (O(h2) +O(τ) +O(h)).

Using the definition of H given by (3.9) and the fact that C > 0, we have that

|C[(1−H(v))e1i+1 +H(v)e1i−1]| =

{
C|e1i−1| if v ≥ 0,
C|e1i+1| if v < 0,



28 Martin Nitiema and Somdouda Sawadogo, J. Nonl. Evol. Equ. Appl. 2023 (2023) 19–33

which in view of (4.8) and the fact that v ≥ 0 or v < 0, gives

|C[(1−H(v))e1i+1 +H(v)e1i−1]| ≤ Cτ R, i = 1, · · · , N − 1. (4.9)

Using (4.1) and (3.6), we can write

|e2i | ≤ (1− C + 2Bw
(2s)
1 )|e1i |+ |C[(1−H(v))e1i+1 +H(v)e1i−1]|

+B|e1i−1|(w
(2s)
0 + w

(2s)
2 ) +B

i+1∑
k=3

w
(2s)
k |e1i−k+1|+B

N−i+1∑
k=3

w
(2s)
k |e1i+k−1|

+B|e1i+1|(w
(2s)
0 + w

(2s)
2 ) + τ |(O(h2) +O(τ) +O(h))|,

which in view of (4.8) and (4.9), gives

|e2i | ≤ [1− (C − 2Bw
(2s)
1 )]∆ tR+ C∆ tR+ 2B∆ tR(w

(2s)
0 + w

(2s)
2 )

+B∆ tR
i+1∑
k=0

w
(2s)
k +B

N−i+1∑
k=0

w
(2s)
k − 2B∆ tR(w

(2s)
0 + w

(2s)
2 )− 2B∆ tRw

(2s)
1 + τ R.

Using (3.6), we obtain that,

|e2i | ≤ [1− (C − 2Bw
(2s)
1 )]∆ tR+ ∆ tR(C −Bw(2s)

1 ) + τ R,

which in view of (4.1) implies that, |e2i | ≤ 2τ R.

Now assume that for some n ≥ 1,

|eni | ≤ nτ R, for i = 1, 2, · · · ,M − 1. (4.10)

Then in view of (4.7), we have that,

en+1
i = (1− C)eni + C[(1−H(v))eni+1 +H(v)eni−1]

+B
( i+1∑
k=0

w
(2s)
k eni−k+1 +

N−i+1∑
k=0

w
(2s)
k eni+k−1

)
+ τ (O(h2) +O(τ) +O(h))

= [1− (C −Bw(2s)
1 )]eni + C[(1−H(v))eni+1 +H(v)eni−1] +Beni+1(w

(2s)
0 + w

(2s)
2 )

+B
i+1∑
k=3

w
(2s)
k eni−k+1 +B

N−i+1∑
k=3

w
(2s)
k eni+k−1

+Beni−1(w
(2s)
0 + w

(2s)
2 ) + τ (O(h2) +O(τ) +O(h)).

Using the definition of H given by (3.9) and the fact that C > 0, we get

|C[(1−H(v))eni+1 +H(v)eni−1]| =

{
C|eni−1| if v ≥ 0,
C|eni+1| if v < 0,

which in view of (4.10) and the fact that v ≥ 0 or v < 0, gives

|C[(1−H(v))eni+1 +H(v)eni−1]| ≤ Cnτ R, i = 1, · · · , N − 1. (4.11)
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Hence, using (4.1) and (3.6), we obtain that,

|en+1
i | ≤ [1− (C −Bw(2s)

1 )]|eni |+ |C[(1−H(v))eni+1 +H(v)eni−1]|+B|eni+1|(w
(2s)
0 + w

(2s)
2 )

+B

i+1∑
k=3

w
(2s)
k |eni−k+1|+B

N−i+1∑
k=3

w
(2s)
k |eni+k−1|+B|eni−1|(w

(2s)
0 + w

(2s)
2 )

+ τ (O(h2) +O(τ) +O(h)),

which in view of (4.10) and (4.11) implies that,

|en+1
i | ≤ [1− (C −Bw(2s)

1 )]nτ R+ Cnτ R+ 2Bnτ R(w
(2s)
0 + w

(2s)
2 )

+Bnτ R

i+1∑
k=3

w
(2s)
k +Bnτ R

N−i+1∑
k=3

w
(2s)
k + τ R.

Thus,

|en+1
i | ≤ [1− (C −Bw(2s)

1 )]nτ R+ (C −Bw(2s)
1 )nτ R+ 2Bnτ R(w

(2s)
0 + w

(2s)
2 )

+Bnτ R
i+1∑
k=0

w
(2s)
k +Bnτ R

N−i+1∑
k=0

w
(2s)
k − 2Bnτ R(w

(2s)
0 + w

(2s)
2 )

+ τ (O(h2) +O(τ) +O(h)),

|en+1
i | ≤ (n+ 1)∆ tR.

We thus have proved that for any n = 1, 2, · · · ,M − 1,

|eni | ≤ n∆ t (O(h2) +O(τ) +O(h)), i = 1, · · · , N − 1.

Consequently, max
1≤i≤M

|eni | ≤ T (O(τ) +O(h)) because n∆ t = T . �

5 Numerical results

In this section, we illustrate the effectiveness of our numerical method with the following advection-
diffusion equation involving the fractional Laplace operator in one dimension:

∂ρ(x, t)

∂t
+ v

∂ρ(x, t)

∂x
+D(−∆)sρ(x, t) = f(x, t) in (0, L)× (0, T ),

ρ(0, t) = ρ(L, t) = 0 in (R \ (0, L))× (0, T ),
ρ(x, 0) = x2(L− x)2 in (0, L),

(5.1)

where 1/2 < s < 1, the fractional Laplace operator is approached as in (3.2):

(−∆)sρ(x, t) =
0D

2s
x ρ(x, t) + xD

2s
L ρ(x, t)

2 cos(sπ)
,

the function f is given by:

f(x, t) =
[ D

2 cos(sπ)

[ 24

Γ(5− 2s)
(x4−2s + (L− x)4−2s)− 12L

Γ(4− 2s)
(x3−2s + (L− x)3−2s)

+
2L2

Γ(3− 2s)
(x2−2s + (L− x)2−2s)

]
− x2(L− x)2 cos t+ 2xv(L− x)(L− 2x)

]
e− sin t
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and the exact solution is

ρ(x, t) = x2(L− x)2e− sin t.

Since the fractional Laplace operator of order 1/2 < s < 1 converges to classical Laplace
operator when s → 1, in order to compare our numerical results with those of classical advection-
diffusion equation, we will consider the limit case: s = 1.

s = 0.6 s = 0.7 s = 0.9 s = 1

1/N ErrorL∞ rate ErrorL∞ rate ErrorL∞ rate ErrorL∞ rate
1/20 3.955859e-04 - 3.672168e-04 - 2.902796e-04 - 2.473525e-04 -
1/40 2.02935e-04 0.96 1.898970e-04 0.95 1.530945e-04 0.92 1.319796e-04 0.90
1/80 1.026621e-04 0.98 9.643893e-05 0.97 7.847235e-05 0.96 6.803680e-05 0.95

1/160 5.157342e-05 0.99 4.854499e-05 0.99 3.968540e-05 0.98 3.450898e-05 0.97
1/320 2.578609e-05 1.00 2.430069e-05 0.99 1.992239e-05 0.99 1.735728e-05 0.99

Table 1: v = ±0.01; D = 0.01; ∆x = 1/N ; ∆t = 10−7

Table 1 gives the error and the convergence of the Euler explicit scheme at time T = 1 when
the velocity v = ±0.01, the diffusion factor D = 0.01 and s ∈]1/2, 1]. It can be observed that the
scheme converges at the first order in the space direction. This can be explained by the fact that we
approached the advection term with an upwind scheme of first order which is higher than that of the
Laplace operator.

s = 0.6 s = 0.7 s = 0.9 s = 1

1/N ErrorL∞ rate ErrorL∞ rate ErrorL∞ rate ErrorL∞ rate
1/20 1.916460e-04 - 1.632000e-04 - 1.703046e-04 - 1.894108e-04 -
1/40 5.871214e-05 1.70 4.825218e-05 1.75 4.191585e-05 2.02 4.739295e-05 1.99
1/80 1.565643e-05 1.90 1.286137e-05 1.90 1.030367e-05 2.02 1.183844e-05 2.00

1/160 4.207778e-06 1.90 3.565211e-06 1.90 2.543565e-06 2.01 2.946694e-06 2.00
1/320 1.113265e-06 1.91 9.486200e-07 1.91 6.402313e-07 1.99 7.235601e-07 2.02

Table 2: v = 0; D = 0.01; ∆x = 1/N ; ∆t = 10−7

The estimate of the error as well as the rate of the convergence are given in Table 2 for the
same scheme correspond to the case where the time T = 1, the velocity v = 0, the diffusion factor
D = 0.01 and s ∈]1/2, 1]. We can observe that the rate of convergence is of second order. This
result is in agreement with the fact that this data (5.1) describe a space fractional diffusion equation.

In what follows, we compare the numerical solutions obtained with different values of the ve-
locity v and the diffusion constant D.

Figure 1 deals with a diffusion equation involving only the fractional Laplace operator since
v = 0. We can observe that as the fractional power of the Laplace operator decreases, the scheme
is diffusive.

For Figures 2-4, we are concerned with the cases |v| = D, |v| < D and |v| > D respectively.
We can observe that the numerical solutions of our scheme evolve as those of the scheme for classi-
cal advection-diffusion equation when |v| < D and |v| > D. In the three cases, when the fractional
power of the Laplace operator decreases, the scheme is diffusive.
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Figure 1: T = 10, v = 0, D = 0.02 and s ∈]1/2, 1]

Figure 2: T = 10, v = ±0.02, D = 0.02 and s ∈]1/2, 1]

6 Conclusion

We have constructed a numerical scheme of explicit Euler type for an advection-diffusion equation
involving a fractional Laplace operator of order 1/2 < s < 1, in a one-dimension space. We proved
that the scheme is stable and convergent. The results of the tests proved that when the velocity
is equal to zero the order of the numerical approximation is that of the fractional Laplace operator.
Moreover, when s = 1, our results are the same as those obtained in the classical advection-diffusion
equation. We also observe that for a decreasing value of the order of the fractional derivative s,
the solution increases in the same given time. Our next objective is to construct a scheme with a
convergence order greater than one.
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Figure 3: T = 10, v = ±0.02, D = 0.05 and s ∈]1/2, 1]

Figure 4: T = 10, v = ±0.05, D = 0.02 and s ∈]1/2, 1]
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