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1 Introduction

Fractional differential equations play a significant role in various fields of science such as physics,
mechanics and engineering (see [19, 20, 28]). Recently, many scholars have explored initial and/or
boundary value problems for different types of fractional differential equations. Some results on this
subject can be found in [1, 2, 10, 11, 12, 13, 14, 16, 17] and the references therein.

Various definitions of fractional derivatives and integrals operators have been proposed by several
mathematicians and engineers [4, 25, 30]. Recently, R. Almeida [5] introduced a new kind of
fractional derivative; namely, the so called W-Caputo fractional derivative. We cite some recent
works in which the authors studied some nonlinear class of fractional differential equations involving
this derivative [6, 7, 15].

Fractional delay differential equations, particularly those of pantograph type, motivated several
mathematicians, physicists and engineers to study them due to the variety of their applications in
physics and engineering [3, 9, 24, 27]. In 2017, Jalilian and Ghasmi [21] studied an initial value
problem of nonlinear fractional integro-differential equation of pantograph type of the form:

‘DY(t) = f (t,u(t),u(pt)) + /Oq g1(t, s,u(s))ds +/0 g2(t,s,u(s))ds, tel0,T],
u(0) = uo,

where 0 < p, g < 1. The symbol “D? denotes the Caputo fractional derivative of order o € (0, 1].
They obtained their results by using a fixed point approach.

In [29], by applying the fixed point theory, the authors studied the following nonlinear fractional
pantograph equation with nonlocal boundary conditions

ch7‘l/u(t) =f (t>u(t)>u(77t)) , b€ [07T]a ne (Oa 1)7
au(0) + bu(T) = ¢,

where ¢D™¥ is the W-Caputo factional derivative of order 0 < w < 1 and a, b, ¢ are real constants
with a 4+ b # 0. However, if a + b = 0, they have no results by this techniques.

In [8], the authors discussed the existence and uniqueness of solutions for the following equation
with nonlocal conditions

{CD“?py(t) = £ (ty(t),y(pt)) + g (t,y(t),y((1 —p)t)), te0,T],
y(0) = IPy(¢), 0<e<T,

where D denotes the Katugampola fractional derivative in Caputo sense of order o € (0, 1],
p € (0,1), p > 0, and I? is the integral operator of order 5 > 0.

Motivated by the aforesaid research and some well-known results on fractional pantograph
differential equations, this research work investigates the existence and uniqueness results for
the nonlinear fractional pantograph differential equations involving W-Caputo derivative operator
supplemented with periodic conditions of the form:

ngf’u(ﬁ) = F (&u(§), u(pg)) + G (& u(§),u((1 —p)§)), £ €I :=[0,b], (1.1)
u(0) = u(b), (1.2)
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where C@gj}} denotes the ¥-Caputo fractional derivative of order 0 < « < 1, p € (0,1), and
F,G:J xR xR — R are given continuous functions.

The present paper is organized as follows. In Section 2, we recall some basic notions and essential
preliminary results that will be used in the proofs of our main results. In Section 3, the existence and
uniqueness of periodic solutions for the problem (1.1)—(1.2) are obtained via Mawhin’s coincidence
theory. Finally, an appropriate example is given in Section 4 to illustrate the benefit of our main
findings.

2 Basic concepts

We consider the spaces C'(J, R) and C™(J, 2R) of continuous and m times continuously differentiable
functions on J, respectively. We endow C(J, JR) with the supremum norm || - ||sc.

Definition 2.1 ([5]) Let J = [0, b], where 0 < b < 400, be a finite or infinite interval and let o > 0.
Moreover, let u be an integrable function defined on J and let ¥ € C'(J,R) be an increasing and
positive function such that 0’ (&) # 0 for all £ € J. Fractional integrals and fractional derivatives of
a function u with respect to another function U are defined as follows:

g /
T = T /0 W (5)(W(E) — W(5))* u(s) ds
and
DU(E) = (
1

respectively, where n = [a] + 1.

Lemma 2.2 ([5]) Let o > 0 and B > 0. Then, we have

I I () = 95T u(E) forall € € 3.

Lemma 2.3 ([22]) Leta > 0, p > 0 and £ € J. If u(€) = (¥(€) — U(0))* ™", then

L'(p)

T ) = g gy (O —EO)TT

Definition 2.4 ([5]) Letn — 1 < a < nwithn € N and let u, ¥ € C"(J,R) be two functions
such that U is increasing and positive with v’ (&) # 0 for any & € J. The left V-Caputo fractional
derivative of u of order « is given by

o e 1 d\" N
CZDOJ:Iju(f) =g+ v <\If’(f)d§> u(§), £€3.

In particular, when 0 < o < 1, we have

§ ’
D) = e | (FO - B W () as, g €3

'l -«
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Theorem 2.5 ([5]) Ifu € C*(J,R) andn — 1 < a < n, then

n—1 . k k
~o¢ \I/c/}DO+ U(f) u(f)— (\I’(f) ‘11(0)) <\I,’1 d) U(O)

e
Il
o

In particular, when 0 < o < 1, we have

30 eDd Y u(€) = u(€) — u(0).

Theorem 2.6 ([5]) Letu € C*(J,R) and o > 0. We have

DI u(E) = u(©).

Theorem 2.7 ([5]) Let u,v € C*(J,R) and o > 0. Then,

D5 u(g) = DG v(€) if and only if (¢ +ch w(0))",

1/ 1 d\"
where ¢, = k'< ({)df) (u—v)(0).

Remark 2.8 Let w € C™(J,R) and o > 0. Then,

D0 w(€) = 0 if and only if w(&) =y e (¥(E) — ¥(0)".

We will present definitions and the coincidence degree theory that are essential in the proofs of
our results (see [18, 23]).

Definition 2.9 We consider the normed spaces X and ). A Fredholm operator of index zero is a
linear operator £: dom(£) C X — Y such that

(a) dimker £ = codimimg £ < +o0.

(b) img £ is a closed subset of ).

By Definition 2.9, there exist continuous projectors Q: Y — YV and P: X — X satisfying
imge =kerQ, kerf=imgP, Y=imgOa@imgf, X =kerP @ kertl.

Thus, the restriction of £ to dom £ N ker P, denoted by £p, is an isomorphism onto its image.
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Definition 2.10 Let Q) C X be a bounded set and let £ be a Fredholm operator of index zero with
dom £ N Q # (). Then, the operator N': Q — Y is said to be £-compact in Q if

(a) the mapping QN: Q — Y is continuous and QN (ﬁ) C Y is bounded,

(b) the mapping (£p)~ ' (Id—Q)N': Q — X is completely continuous.

Lemma 2.11 ([26]) Let X, Y be Banach spaces, ) C X a bounded and symmetric open set with
0 € Q. Suppose that £: dom £ C X — Y is a Fredholm operator of index zero with dom £NQ # ()
and N': X — Y is a £-compact operator on Q. Assume, moreover, that

Lr— Nz # —((Lx + N(—x))

forany x € dom £N0Q and any ¢ € (0, 1], where OSY is the boundary of Q2 with respect to X. Then,
there exists at least one solution of the equation £x = N'xz on dom £ N Q.

3 Main results

Let the spaces
X ={ueC@F,N) :u)=730"0(E), where v € C(3,R)}

and

be endowed with the norms
[ullx = llully = l[ulloc = sup [u(§)].
£€J
We give now the definition of the operator £: dom £ C X — ). Set
Lu =DMy, 3.1

where
dom £ = {ue X :°®%"u e Y and u(0) = u(b)}.

Lemma 3.1 Let £ be the operator given in (3.1). Then,
ker £ = {ue X :u(§) =u(0), £ €J}

and

g £ = {v £y /Ob W (5)(W(b) — W(s))*o(s) ds = o} .

Proof. By Remark 2.8, we know that the equation £u = C@gf’u = 0 in J has a solution of the form

u(€) = cop =u(0), £ € 3.
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Hence,
ker £ ={ue X :u() =u(0), £€J}.

For v € img £ there exists u € dom £ such that v = £u € ). Using Theorem 2.5, for every £ € J
we obtain

u(€) = u(0) + 35 v (e)
—u(0) + /£ W (s)(T(E) = W(s))* Mu(s) ds.
I'(a) Jo
Since u € dom £, we have u(0) = u(b). Thus,

b
/0 ' (s)(U(b) — ¥(s))* Tu(s)ds = 0.

Furthermore, if v € Y is such that

then for any u(§) = J; v(€), using Theorem 2.6, we get v(§) = C’ng}’u(ﬁ). Therefore,

which implies that u € dom £. So, v € img £. Consequently,
b
img £ = {v ey: / W' (s)(U(b) — W(s))* tu(s)ds = 0} .
0
This completes the proof. O

Lemma 3.2 Let £ be defined by (3.1). Then, £ is a Fredholm operator of index zero, and the linear
continuous projector operators Q: Y — Y and P: X — X can be written as

b
%) = T,

P(u) = u(0).

Furthermore, the operator 27;1 : img £ — X Nker P can be written by

’

()((b) — W(s))*"v(s) ds

and

51 (w)(€) = 3% u(€), €€ 3.

Proof. Obviously, for each v € Y we have Q*v = Qu and v = Q(v) + (v — Q(v)), where
(v — Q(v)) € ker @ = img £. Using the fact that img £ = ker Q and Q? = Q, we obtain
img Q@ Nimg £ = {0}. So,

Y =img £ @ img Q.
In the same way we get that imgP = ker £ and P? = P. It follows for each u € X that
u=(u—"P(u)) +P(u). Hence, X = ker P + ker £. Clearly, we have ker P N ker £ = {0}. So,

X =kerP @ ker £.
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Therefore,
dimker £ = dimimg Q = codimimg £.

Consequently, £ is a Fredholm operator of index zero.

Now, we will show that the inverse of £|qom enker P 1S 27_;1. Effectively, for v € img £, by
Theorem 2.6, we have

g5t (v) = o (35v) =v. (3.2)

Furthermore, for u € dom £ N ker P we get

SR (Ew() = T4 (D5 u(©)) = u(©) —u(0), £ €.
Using the fact that u € dom £ N ker P, we infer that
u(0) = 0.

Thus,
L5 L8(u) = u. (3.3)

Using (3.2) and (3.3) together, we get £7§1 = (£]dom kaer’p)_l. This completes the demonstration.
O

Let us introduce the following hypothesis.

(A1) There exist nonnegative functions 71, vz, 71,12 € C(J,R™") such that

\]:(f,u,v) - ]:(é-vﬁ)l_)” < 71(£)|u7 ﬁ| +771(£)|/U - 1_}|

and
G(&,u,0) = G(&,1,0)] < y2(8)u —ul + n2(8)|v — v
for every £ € Jand u,u, v, v € fR.

Define N': X — )Y by
Nu(§) == F (§u(€),u(pf)) + G (& u(§), u((1 —p)§)), £ €Jandp € (0,1).
Then, the problem (1.1)—(1.2) is equivalent to the problem £u = Nu.

Lemma 3.3 Suppose that (A1) is satisfied. Then, for any bounded open set Q) C X, the operator N'
is £-compact.

Proof. For M > 0 we consider the bounded open set 2 = {u € X : ||ul]|x < M}. We split the
proof into three steps.

Step 1: QN is continuous. Let (un)neN be a sequence such that u, — u in ). Then, for each
& € 3, we have

| QN (n)(€) — QN (u)(8)]
b
a/o W' (s)((b) — U (s))* "IN (1n) () = N (w)(s)] ds.

(W(b) —w(0))
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By (A1), we have
|ON (un)(§) — QN () (§)]

gl K% —U(s) un(s) — u(s)| ds
< YO - w6 () - o)l

R /bwks)(\lf(b)—ws))“wu (ps) — u(ps)| ds
(T(6) — ¥(0) Jo "

n % /b U (5) (T (b) — U(s))* " Jun(s) — u(s)| ds
(W(0) — ¥(0))* Jo "

ans b, o
+ (W(b) — 2\1}(0))a /o T (s)(T(b) — U(s)* ! un((1 = p)s) —u((1 —p)s)| ds

a(F 30 +m) e —ully [0 W(sNe-ds
< LR T e [ () w(6) — w(s)"

< (1 +7% + 01 +n03) llun —ully,

where
7= Mlloes = 12lloes 7= Imille s 75 = 72l -
Thus, for each £ € J, we get

|QN (un) (§) — QN (u)(£)] — O as n — o0,

and hence
|ON (1) — QN (u)]|y —> 0 as n — +o0.

This means that QN is continuous.

Step 2: QN () is bounded. For £ € J and u € (2, we have

[QN (u)(¢)]
S () _aq,(o))a /0 b U (s)(T(b) — B(s))* N (u)(s)| ds
S () _aq/(o))a /Ob T (s)(T(b) — U(s))* " F (s, u(s), u(ps)) — F(s,0,0)| ds
+ (¥ (0) fw(o))a /Ob U (5)(W(b) — T(s))* [ F(s,0,0)| ds
G0 _a\y(o))a /Ob W' (5)((b) — W(s)* MG (s, u(s), u((1 — p)s)) — G(5,0,0)| ds
b g ¥ 0 - v g, 0.0 0
SF 4G+ \I/O‘é')ﬁ_f;(?)a /0 b U (5)(W(b) — U(s))* Lu(s)| ds

(5) (2 (b) — () Hfu(ps)|ds

+
=)
=
RS
3
GH*
=
=
o\w
S

*

e [ O - o) -l as
(T(b) — ¥(0) /o

SF+G + (1 +1 +nf +m3) M,




PANTOGRAPH FDEs VIA V-CAPUTO DERIVATIVE 9
where F* := || F(-,0,0)|,, and G* := ||G(-,0,0)|| . Thus,
[ON(W)lly < F*+G" + (7] +5 + 07 +m3) M.
So, QN (Q) is a bounded subset of ).

Step 3: 27;1(Id —-QN: Q — X is completely continuous. As we will use the Arzela—Ascoli
theorem, we have to show that £ LId —Q)N(Q) C X is equicontinuous and bounded. Firstly, for
any u € Qand € € J, we get

51 (Nu(§) — QNu(9))

ﬁOé\I/

=J57

rl /‘I’ (5)°7" F(s,u(s),u(ps)) d
1 )/ ()" G(s,u(s),u((1 —p)s)) ds
G 200 Y
T'(a)((b) — ¥(0))" /o‘”)(‘P<b> () F (s,u(s), u(ps)) d

b
- <<\§<< U(b) - qf<)o>>a/0 V' (5)(U(b) — U(5)* 'G5, u(s),u((L ~ p)s)) ds.

Forallu € and £ € J, we get

€51 (Id —Q)Nu(€)|

<& /05 () (P(€) = W(s)™ " [F(s,u(s), u(ps)) — F(5,0,0)| ds
by [0 0O - W) 1F6,0.0)

+ T / W (5) (0(E) — 1(6))" G5 ulo).u((L ~ p)s)) — G5 0.0)| ds
W' (s) (W(E) — W(s))* " |G(s,0,0)| ds

W'(s) (W(b) = W(s)* " | F(s,u(s), u(ps)) — F(s,0,0)|ds

W'(s) (W(b) — (5))* " |G (s, u(s),u((1 = p)s)) — G(s,0,0)| ds

W' (s) (U (b) — W(5))* " |G(s,0,0)|ds

:
;
/

bt [ 6 0 - w6 P 0,0)]as
;
/
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2F 4G o1 miome « T [0 e — B lan ol s
< A )~ v + gl [ (90 ~ () u(s)
bl [ () ((E) — () )] s
I'(a) Jo
F)ﬁlk b ! a—1
s [ () = 96 ) ds
77{ b / . s a—1 s s
s [ () - 9 s
73 ‘v — () Hu(s)|ds
s [V @ - w6 el
b [T O ~ ) (- Pl
I'(a) Jo
03 b —W(s)* u(s)|ds
s [ @) - v )
b [ 5 (0) — w(s) (1))
I'(a) Jo
< 2RO (54 g7 4 o7 45+ 1 + 1) ]

Therefore,

2 (¥(b) — w(0)*
I'a+1)

1251 (1d —Q)Nu x < F*+ G+ (% +75 +nf +n3) M|.

This means that £ (Id —Q)N/(Q) is uniformly bounded in X'

It remains to show that 2731 (Id — Q)N (Q) is equicontinuous. For 0 < & < & < bandu € Q,
we have

€51 (1d —Q)Nu(&2) — £5(Id — Q)N u(&y))|

& ’ 1 a—1
<y (YO0 - vt = (e - w17 (s ute). upo)] ds
1 &2 / 1
+F(a)/§ W' (s) (W(&) — W(s))* " | F (s,u(s), u(ps))| ds
&1
+ r<1a>/0 W (5) | (&) = ()™ = (&) — W) |16 (5,u(s),u((1 ~ p)s))]] ds
&2
" r<lo<>/§ W (s) ((&2) = W) G (s, u(s),u((1 — p)s))| ds
[(T(&2) — W(0)* — (¥(&) — ¥(0)"] [ (N F (s uls) ulps))] ds
+ o) (98] = (0" /Ows)(\lf(b) W(s))* " |F (s,u(s), u(ps))| d
N [(U(&2) — 9(0)" — (¥(&) — ¥(0)7]
I'(a) (¥(b) — ¥(0))"

b
></0 W' (s) (W(b) = W()* G (s,u(s),u((1 - p)s))| ds
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1 &, o1
< 5w /0 () (W(€1) — (5))° L | F (5,u(s), u(ps)) — F (5,0,0)] ds
1 &, o1
- /0 W (s) (T(E) — W(s))* " |F (s,u(s), u(ps)) — F (5.0,0)] ds
&,
n é) /0 ¥ (5) [(w(E) — W)™ - (W(E) — w(s)* ] 17 (5,0,0)] ds
1 &2 a1
+ F /5 () (016~ ()" F (9(6) w(ps) - F (5,0,0) s
&,
n é) /5 W (s) ((€) — W(s))* | F (5,0,0)] ds
1 &, a1
+ e /0 W (5) (W(€1) — W(s))" 1[G (s, u(s) u((1 — p)s)) — G (5,0,0)] ds
1 &, o1
- /0 W (5) (W(€) — W(s))" 1[G (s, u(s) u((1 — p)s)) — G (5,0,0)] ds
&
n ({«) /0 ¥ (5) [((&) — w()* — (¥(E) — ¥(s)* ] 16 (5.0.0)] ds
1 &2 a1
+ F /g T () (0(6) ~ ()G (58031, 1((1 - )9) - G (5,0,0)] ds
&2
" F(loo /5 W (s) (D(E) — ()™ [G (,0,0)] ds
L [((&) = w(0)" - (9(&) — vO)"]
I(a) (¥(6) — ¥(0))°
b
x /O W (s) (T(6) — (s))* | F (s,u(s), u(ps)) — F (,0,0)] ds
o a o @ b ,
e o L [ (6 vt - w0517 (5.0,0) s
L [W(&) - () — (¥(e) - ¥(0)°]
T(a) (2(6) — T(0))°
b
x /0 W (5) (D (b) — (5))° G (5,u(s), u((1 — p)s)) — G (5,0,0)| ds
_ o _ « b
&) F(\I;g(?\ﬁ(b %fg)))a 2(O)] /0 () (U(6) — W(s))*L |G (5,0,0)] ds
< 2N (U(Er) — W(E)" + A[(W(E2) — W(0)* — (W(Er) — W(0))°]
A(W(E) — ()" — (B(&r) — ¥(0))°]
<2A (U(&) — W(&))”,

where
F G+ 01+ +ni+m) M

INa+1) ’
The operator £5' (Id — Q)N (Q) is equicontinuous in X', because the right-hand side of the above
inequality tends to zero as &1 — &2 and the limit is independent of u. The Arzela—Ascoli theorem
implies that 27;1 (Id — Q)N (Q) is relatively compact in X. As a consequence of Steps 1-3, we infer
that AV is £-compact in €. This completes the demonstration. O

A=
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Lemma 3.4 Assume (A1) and that the condition

(Vi +75 + 01 +n3) (W(b) — B(0))* <

T(+1) (3.4)

is satisfied. There exists A > 0 such that if
L(u) = N(u) = —¢[L(w) + N (-u)]

for some u € dom £ and some ¢ € (0,1], then ||ul|x < A

Proof. Letu € X satisfy
L(u) = N(w) = —¢L(u) — (N (—w).

Then, . c
= mN(U) — mN(—U)

So, from the definitions of £ and AV, for any £ € J we get

£(u)

2u(€) = “D5u(E) = 1 [FEu(€),u(r8)) + 66 u(E), w((1 ~ p)6))]

T 1+¢
- e [P ~u(©, ~u(p) + (6, ~u(e), ~u((1 = p))].
By Theorem 2.5, we get
() = co-+ 7 (352" (Floou(s). (o) + Gs,(s). (1 = p)s)) ©

= GO (F (s —uls), —u(ps)) + G(s, —uls). ~u((1 ~p)s)) ) (©)]

where ¢o = u(0). Thus, for every £ € J we obtain

u(e)|
< ! 5\1/ v W(s)*H|F )| d
X |CO| + (C—H)F@é)/o (3)( (5) - (5)) ’ (5711(3)711(293) S
1 £, a1
+ (C—i—l)f‘(oz)/o U (s) (T(E) —U(s)* |G (s,u(s),u((1 —p)s))| ds
I S / C (5) (W(E) — () F (s, —u(s), —u(ps))| ds
CriT@ Jy s,
t e | () (0(6) — ()" 16 (5, —u(s), —u((1 — p)s))| ds
CriT@ J ),
£
P — () (W(E) — W(s)* 1| F (s,u(s), u(ps)) — F(s,0,0)] ds

T
£,

b [0 (09— 9w (s, 0,0)
0

b ) (B B G (5.4(5),u((1 )9 6(5,0,0) ds
Ia) Jo e .
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1 ¢ ! a—1
T V) (O ~ ¥ 6(5,0,0) s

TR S— / " (5) (W(E) = W(s)™ " |F (5, —u(s), —u(ps)) — F(5.0,0)] ds
C+ D) Jo M), 0
S s — U () F(s s
e L YO O -6 1Fe 00
C ¢ 4 a—1
T /0 ' (s) (T(€) — U(5))° |G (5, ~u(s), ~u((1 - p)s)) — G(5.0,0)] ds
C ¢ 4 a—1
+ T /0 ' (s) (T(€) - U(5))° G (5,0,0)| ds
< oo+ 2T RE S RO 200298 22 () - w(0)° e
Thus,

2(F*+G*) (w(b) = w(0)" 20 +7 +ni +15)
I'a+1) Fa+1)

[ullx < leol + (W(b) — W (0))" [[ullx-

Consequently, we deduce that

2(F* +7G7) (¥(b) — ¥(0)"
I'a+1)
200+ + 01 +15) a
. F(; n 5 22 (W(b) — ¥(0))

’Co’ +

[ullx <
1—

The demonstration is completed. ([l

Lemma 3.5 If the conditions (A1) and (3.4) are satisfied, then there exists a bounded open set
Q C X with
L(u) = N(u) # —([£(u) + N (—u)] (3.5)

forany u € 9Q and any ¢ € (0, 1].

Proof. In view of Lemma 3.4, there exists a positive constant A such that if
L(u) =N () = =(L(u) + N(-u)]
holds for some u and ¢ € (0, 1], then |jul|x < A. So, if
Q:={uecX:|ulr <9} (3.6)
with ¥ > A, we deduce that
L(u) = N(w) # (L) — N(-u)]

forallue 0Q = {u e X : |lul|lx =9} and ¢ € (0, 1]. O

Theorem 3.6 Assume (Al) and (3.4). Then, there exists at least one solution for the problem
(1.1)=(1.2) in dom £ N Q0.
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Proof. Tt is clear that the set ) defined in (3.6) is symmetric, 0 € Qand X N Q = Q # (. In
addition, by Lemma 3.5,
L(u) = N(u) # —([L(u) = N(—u)]

for each u € X N 9Q = 9N and each ¢ € (0,1]. By Lemma 2.11, the problem (1.1)—(1.2) has at
least one solution in dom £ N §2. This completes the demonstration. n

Theorem 3.7 Let (A1) be satisfied. Moreover, we assume that

(A2) there exist constants 5y > 0 and 1 = 0 such that
“F(§7uvv) - ‘7:(57]17@” = 7|u - ﬁ‘ - ﬁ”U - rD‘

forevery £ € Jandu,u,v,0 € R.

If

T+ + 15 42 (Y 45 +m1 +15) (P(b) — ¥(0))*
ol INa+1)

then the problem (1.1)—(1.2) has a unique solution in dom £ N Q.

<1, 3.7

Proof. Note that the condition (3.7) is stronger than the condition (3.4).7 Hence, by Theorem 3.6 we
know that the problem (1.1)—(1.2) has at least one solution in dom £ N €.

Now, we prove its uniqueness. Suppose that the problem (1.1)—(1.2) has two different solutions
up, uo € dom £ N Q. Then, for each £ € J we have

D (&) = F (& u(€),m(p8) + G (§w (), w ((1 - p)E)),
Do ua(8) = F (€, ua(€), u2(p€)) + G (& u2(8), w2((1 — p)))

and
u1(0) = ug(b), uz(0) = uz(b).
Let (&) := uy (&) — uz(&) for all § € J. Then,
LU(E) = DG U(E)
=D " (&) — D up(€)
= F (& u(8),wm(pg)) + G (& wi(6), wma((1 = p)))
— F (& u2(8), u2(p)) — G (& u2(8), u2((1 = p)g)) -

Using the fact that img £ = ker Q, we have

(3.8)

b
/0 W' (5)(W(b) — W(s))* [ Fs,u1(s), w1 (ps)) + G (s,u1(s),ur((1 = p)s))
— F(s,u2(s), u2(ps)) — G (s, u2(s), u2((1 — p)s)) | ds = 0.
Since F is a continuous function, there exists £y € [0, b] such that

F(&o,u1(£0), w1 (p€0)) + G (€0, u1(&0), wr (1 — p)&o)) — F(€o, uz(€0), u2(po))
— G (80,u2(&0), u2((1 — p)éo)) = 0.
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In view of (A1) and (A2), we have
|u1(€o) — u2(&o)|
< i w1 (po) — u2(pgo) | + 751 (&0) — u2(&0)| + 13 ur (1 — p)&o) — ua((1 — p)&o)|

R /AT

5 *uZHX'

Hence,
4(&0)| < %Hﬂlu- (3.9)
On the other hand, by Theorem 2.5, we have
ToE DL U(E) = U(8) — 1(0),
which implies that
£4(0) = (&) — T DL U(o),
and therefore
() = 3G DL UE) + (&) — TG DEE (o).

Using (3.9), for every ¢ € Jj, we obtain

()] < [T D) | + let(go) + [ eD st (8o)|

n 5 . 2(¥(b) — ¥(0))*
<77+73+772HuHX+ ( é()a_{—lg )

(3.10)

CCDSTI'LLHX )
By (3.8) and (A1), we find that
“DRIUE)| = [(F (€ 11(6), w1 (p8) — F (6, 12(8), w2 (p6)))

+(6 (€ w(€)m((1 - p)E) = G (€1, ua((1 - p)E))|
< (1 495 0+ 75) 140

Then,

W * * * *
DR < O 495 40+ 5 [ (3.11)
Substituting (3.11) into the right-hand side of (3.10), for every £ € J we get
Mgty 200 45 + i) (P(b) — W(0))"]

< )
1LU(E)] _ = o+ 1) | L]
Therefore,
(s +m 209+ 0 +03) (U(b) — ¥(0)”]
Ul < Ully .
[1L0]] 5 + (o +1) | (L]

Hence, by (3.7), we conclude that
14l = 0.
As aresult, for any ¢ € J, we get

which implies that

This completes the proof. U]
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4 An example

We present an example of a nonlinear fractional differential equation of pantograph type with
W-Caputo derivative operator to illustrate our main result. Let us consider the following equation

D5 () = F (£.u(€), u(pe) + G (€. u(©).u((1 — p))). € €3,

u(0) = u(1),
where for any £ € J,
n(e et
F (6 u(6),u p) = 5 \2@1 b+ g conu (5>
and e& cir e
G (&:u(6) (1 =)) = 13+ g7 = SO+ gy
3

Here, § = [0,1], 0 = 5, W(¢) = 2 and p = .

It is clear that the functions F,G € C(J x R x R,R). Furthermore, for all { € J and
u,u,v,v € R, we get

e=$ &
_ ao)l < — lu—1u ~
|F (& u,v) = F (&14,0)] < 3(1+§>\u |+ ik o,
o el
and
[F (& w,0) = F (& u,0)] 2 7u—u|=7fv—1],
which implies that (A1) and (A2) are satisfied with
e—¢ E47 _ el
71(5) = m, 72(5) = Wa Y= 6
¢ B e—11-¢ 1

By simple calculations, we get y] = %, ny = ﬁ, Vo = 17e§ﬁ’ ny = 1131611 and
mtagAms | 200 + 95 i +n3) (P(b) — ¥(0)"
ol INa+1)
So, by Theorem 3.7, our problem has a unique solution.

~ 0.840359 < 1.

5 Conclusions

The existence and uniqueness of periodic solutions for our proposed fractional boundary value
problem has been successfully investigated for the fractional pantograph differential equations with
W-Caputo. Our results extend and complement some existing ones. For example, By setting G = 0,
our problem (1.1) equipped with periodic condition (1.2) traits the case not studied (a + b = 0) in
[29]. An application example of our problem has been provided to validate our obtained findings.

Acknowledgements. We would like to thank the anonymous referee for his/her meticulous reading
and valuable comments.
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