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Abstract. In this paper, we are dealing with the ill-posed Cauchy problem for a parabolic operator.
To do this, we interpret the problem as an inverse problem, and therefore a controllability problem.
This point of view induces a regularization method that makes it possible, on the one hand, to
characterize the existence of a regular solution to the problem. On the other hand, this method
makes it possible to obtain a singular optimality system for the optimal control, without using any
additional assumptions, such as that of non-vacuity of the interior of the sets of admissible controls,
an assumption that many analyses have had to use. From this point of view, the regularization
method presented here, called controllability method, is original for the analyzed problem.

Keywords: singular distributed system, optimal control, singular optimality system, the ill-posed
Cauchy problem, controllability method, inverse problem.

2010 Mathematics Subject Classification: 35Q93, 35R25, 35R30, 49J20, 93C05, 93C20.

1 Statement of the problem

Let Ω ⊂ Rn be a bounded and regular domain of class C1, with boundary Γ = Γ0 ∪ Γ1, where Γ0

and Γ1 are disjointed, regular and with superficial positive measures. For T ∈ R∗+, we note

Q = Ω×]0, T [ and Σ = Γ×]0, T [,
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so
Σ = Σ0 ∪ Σ1, with Σ0 = Γ0×]0, T [ and Σ1 = Γ1×]0, T [ .

Then, let us consider in Q, the boundary value problem
∂z

∂t
−∆z = 0 in Q,

z(x, 0) = 0 in Ω,

z = v0,
∂z
∂ν = v1 on Σ0,

(1.1)

where, for given v0, v1 ∈ L2(Σ0), z = z(v0, v1) verifies (1.1).

Problem (1.1) is the ill-posed Cauchy problem for the heat operator; it is well known that
this problem is ill-posed in Hadamard’s sense. That is to say, for a given vector v = (v0, v1) ∈(
L2(Σ0)

)2, the problem does not always admit a solution, and it may lead to instability of the
solution when it exists.

We therefore consider a priori the pairs (v, z) such as

v = (v0, v1) ∈
(
L2(Σ0)

)2 and z ∈ L2(Q), (1.2)

where z is a solution of (1.1) for given v. It is said that such pairs constitute the control-state pairs
set.

Remark 1.1 It is important to note that, when it exists, the solution to the ill-posed Cauchy problem
is unique.

A control-state pair (v, z) will be said admissible if{
v = (v0, v1) ∈ Uad = U0

ad × U1
ad,

where U0
ad and U1

ad are non-empty convex closed subsets of L2(Σ0),
(1.3)

with (v, z) satisfying (1.1). We use the notation (v, z) ∈ A to say that A is the set of admissible
control-state pairs and assume

A 6= ∅. (1.4)

Given (v, z) ∈ A, we introduce the functional

J(v, z) =
1

2
‖z − zd‖2L2(Q) +

N0

2
‖v0‖2L2(Σ0) +

N1

2
‖v1‖2L2(Σ0), (1.5)

where zd ∈ L2(Q) and N0, N1 ∈ R∗+.

Functional J is the cost function. The optimal control problem consists then to find

inf {J(v, z) : (v, z) ∈ A} . (1.6)

The assumption (1.4) and the structure of J easily show that problem (1.6) admits a unique
solution, the optimal control-state pair (u, y).

The cost function J being differentiable, the first order Euler-Lagrange conditions make it pos-
sible to establish that the optimal control-state pair of (1.1), (1.5) and (1.6) satisfies the optimality
condition: ∀ (v, z) ∈ A,

(y − zd, z − y)L2(Q) +N0(u0, v0 − u0)L2(Σ0) +N1(u1, v1 − u1)L2(Σ0) ≥ 0. (1.7)

It remains to characterize the optimal pair (u, y) through a singular optimality system.
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Remark 1.2 Many authors have studied the control of the ill-posed Cauchy problem. Examples
include, among others,

• in the elliptic case, J.-L. Lions in [4], O. Nakoulima in [6], G. Mophou and O. Nakoulima
in [7], and A. Berhail and A. Omrane in [8];

• in the parabolic and hyperbolic case, M. Barry, G.B. Ndiaye and O. Nakoulima in [1],
J.P. Kernevez in [3], and M. Barry and G.B. Ndiaye in [2].

Nevertheless, in general, the problem remains open. Indeed, to our knowledge, almost all of the
work carried out concerns only specific cases of controls (v0, v1), such as the following:

• U0
ad = U1

ad = L2(Σ0), the ”unconstrained” case;

• U0
ad = U1

ad =
(
L2(Σ0)

)+,

• or with the additional Slater type assumption that

the interiors of U0
ad and/or U1

ad are non-empty in L2(Γ0). (1.8)

This paper aims to constitute an argument in favor of the conjecture of J.-L. Lions. Indeed, J.-
L. Lions conjectures that one should be able to solve the problem only with the usual assumptions
of non-vacuity, convexity and closure of the control sets U0

ad and U1
ad.

We succeed here, even managing to characterize the existence of a regular solution to the ill-
posed Cauchy problem.

The paper is organized as follows. Section 2 is devoted to interpreting the initial problem as
an inverse problem. In Section 3, we return to the control problem, starting by regularizing it via
the controllability results previously obtained. After establishing the convergence of the process in
Section 3.2, then the approached optimality system in Section 3.3, we end in Section 3.4 with the
singular optimality system for the initial problem.

2 Controllability for the ill-posed parabolic Cauchy problem

We introduce here a point of view which, it seems to us, is new concerning the ill-posed Cauchy
problem. Which point of view consists in interpreting the problem as an inverse problem, and
therefore a controllability problem.

We establish that, when it exists, the solution of the ill-posed Cauchy problem is common so-
lution of a system of two inverse problems. Then, we succeed in establishing a necessary and
sufficient condition for the existence, not only of a solution, but of a regular solution to the problem.

More precisely, we consider the systems
∂y1
∂t −∆y1 = 0 in Q,
y1(x, 0) = 0 in Ω,

y1 = v0 on Σ0,

(2.1) and


∂y2
∂t −∆y2 = 0 in Q,
y2(x, 0) = 0 in Ω,

∂y2
∂ν = v1 on Σ0,

(2.2)
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moreover,
∂y1

∂ν
= v1 and y2 = v0 on Σ0. (2.3)

We can then interpret (2.1), (2.2) and (2.3) as a system of inverse problems, that is to say for
which we have a datum and an observation on the border Σ0, but no information on the border Σ1.

Then, we consider the following inverse problem: given (v0, v1) ∈
(
L2(Σ0)

)2,
find (w1, w2) ∈

(
L2(Σ1)

)2 such that, if y1 and y2 are respective solutions of
∂y1
∂t −∆y1 = 0 in Q,
y1(x, 0) = 0 in Ω,

y1 = v0 on Σ0,
∂y1
∂ν = w1 on Σ1,

(2.4)

and 
∂y2
∂t −∆y2 = 0 in Q,
y2(x, 0) = 0 in Ω,

∂y2
∂ν = v1 on Σ0, y2 = w2 on Σ1,

(2.5)

then y1 and y2 further satisfy the conditions (2.3).

Remark 2.1 The symmetric character of the roles played by y1 and y2 in the formulation of the con-
trollability problem is obvious. Consequently, one could very well be satisfied with only one of these
states in the definition of the problem, thus considering one or the other of problems (2.4) and (2.5)
with the corresponding observation objective in (2.3). This is evidenced by the first part of the proof
of Theorem 2.11.

As far as the present analysis is concerned, it is precisely this symmetrical nature of the roles
of y1 and y2 that motivates their simultaneous use (which facilitates, perhaps for a short time, the
continuation of the analysis), but also the wish to remain faithful to the framework of Cauchy’s
problem.

Remark 2.2 (Well-defined nature of the controllability problem)
For z ∈ L2(Q) with ∂z

∂t −∆z = 0, we know that

z|Σ ∈ H−1/2,−1/4(Σ) ,
∂z

∂ν

∣∣∣
Σ
∈ H−3/2,−3/4(Σ) and z(0), z(T ) ∈ H−1(Ω).

Thus, seeking, within the framework of controllability problems, functions of L2(Σ1) making it
possible to reach, or if not, approaching, the targets fixed still in L2(Σ0), it is necessary that the
accessible states y1 and y2 are in H3/2,3/4(Q) and H1/2,1/4(Q), respectively.

Hence the necessity, within the framework of the problem of optimal control of the parabolic
Cauchy problem, is to consider, beyond the assumption of non-vacuity A 6= ∅, that the set{

(v, z) ∈ A : z ∈ H3/2,3/4(Q)
}

is nonempty.
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Remark 2.3 If the system (2.1)-(2.3) admits a solution, then this latter verifies

y1 = z = y2,

where (v = (v0, v1) , z) constitutes a control-state pair for the Cauchy problem.

Remark 2.4 Problems (2.4) and (2.5), the mixed Dirichlet-Neumann problems for the heat opera-
tor, are then two well-posed problems in the sense of Hadamard.

With these notations, conditions (2.3) become

∂y1

∂ν
(v0, w1)

∣∣∣
Σ0

= v1 and y2(v1, w2) |Σ0 = v0. (2.6)

Finally, and to fix the vocabulary, we will say that the problem (2.4)-(2.6) constitutes a problem
of exact controllability and that, system (2.4)-(2.5) is exactly controllable in (v1, v0) if there exist
w1, w2 ∈ L2(Σ1) satisfying (2.6).

Remark 2.5 By linearity of mappings

(v0, w1) 7−→ y1(v0, w1) = y1(v0, 0) + y1(0, w1)

and
(v1, w2) 7−→ y2(v1, w2) = y2(v1, 0) + y2(0, w2) ,

the exact controllability problem (2.4)-(2.6) is equivalent to the following:
Find w1, w2 ∈ L2(Σ1) such that the solutions
y1(0, w1) and y2(0, w2) verify
∂y1
∂ν (0, w1) = 0 , y2(0, w2) = 0 on Σ0,

(2.7)

which translates the controllability of the system (y1(0, w1) , y2(0, w2)) in (0, 0).

A method, to solve (2.7) is the method of approximate controllability, which consists of an
approximation, by density, of the problem. This is reflecting in the following proposition.

Proposition 2.6 Let us denote by

E1 =

{
∂y1

∂ν
(0, w1)

∣∣∣
Σ0

; w1 ∈ L2(Σ1)

}
and E2 =

{
y2(0, w2) |Σ0 ; w2 ∈ L2(Σ1)

}
(2.8)

the sets of zero and one orders traces, on Σ0, of the reachable states y1 and y2, respectively.

Then, we have that
sets E1 and E2 are dense in L2(Σ0), (2.9)

and then we speak of the approximate controllability of the system (y1(0, w1) , y2 (0, w2)).
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Proof. It is clear that E1 and E2 constitute vector subspaces of L2(Σ0). Hence, by the Hahn-
Banach Theorem, E1 and E2 are dense in L2(Σ0) if and only if their orthogonal E⊥1 and E⊥2 are
reduced to {0}.

Let k1 ∈ E⊥1 , so we have

∀w1 ∈ L2(Σ1),

(
k1,

∂y1

∂ν
(0, w1)

)
L2(Σ0)

= 0.

But, by definition of y1(0, w1), we have
∂y1
∂t (0, w1)−∆y1(0, w1) = 0 in Q,

y1(0, w1) (x, 0) = 0 in Ω,

y1(0, w1) = 0 on Σ0,
∂y1
∂ν (0, w1) = w1 on Σ1.

This implies, for all ϕ ∈ C∞
(
Q
)
,(

∂y1

∂t
−∆y1, ϕ

)
L2(Q)

=

(
∂y1

∂t
, ϕ

)
L2(Q)

− (∆y1, ϕ)L2(Q) = 0,

which leads to

−
(
y1,

∂ϕ

∂t

)
L2(Q)

−(y1,∆ϕ)L2(Q)−
(∂y1

∂ν
, ϕ
)
L2(Σ0)

−(w1, ϕ)L2(Σ1)+
(
y1,

∂ϕ

∂ν

)
L2(Σ1)

= 0. (2.10)

Choosing ϕ in the above such that
−∂ϕ
∂t −∆ϕ = 0 in Q,
ϕ(x, T ) = 0 on Ω,

ϕ = k1 on Σ0,
∂ϕ
∂ν = 0 on Σ1,

(2.11)

it comes that (2.10) is equivalent to

−
(
∂y1

∂ν
, k1

)
L2(Σ0)

− (w1, ϕ)L2(Σ1) = 0, (2.12)

where

k1 ∈ E⊥1 ⇐⇒
(
∂y1

∂ν
, k1

)
L2(Σ0)

= 0.

Hence (2.12) becomes, for all ϕ ∈ C∞
(
Q
)

with (2.11) and for all w1 ∈ L2(Σ1),

(w1, ϕ)L2(Σ1) = 0. (2.13)

But we can still choose in (2.13), w1 = ϕ on Σ1, and hence it follows

‖ϕ‖2L2(Σ1) = 0 i.e. ϕ = 0 on Σ1.

Thus, with (2.11), ϕ verifies the Cauchy problem
−∂ϕ
∂t −∆ϕ = 0 in Q,
ϕ(x, T ) = 0 on Ω,

ϕ = 0, ∂ϕ
∂ν = 0 on Σ1.

(2.14)
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But then, because of the uniqueness of the solution to the Cauchy problem, when it exists, we
deduce that

ϕ ≡ 0.

Thereby,
ϕ|Σ0 = 0 i.e. k1 = 0.

This last equality is valid for all w1 ∈ L2(Σ1), then we have

∀ k1 ∈ E⊥1 , k1 = 0.

Which means E⊥1 = {0}, that is to say E1 is well dense in L2(Σ0).

Analogously, we get the announced results for E2. �

The following result is then immediate.

Corollary 2.7 For all ε > 0, there are w1ε, w2ε ∈ L2(Σ1), such that

y1ε = y1(0, w1ε) ∈ H3/2,3/4(Q) and y2ε = y2(0, w2ε) ∈ H1/2,1/4(Q)

are unique solutions of
∂y1ε
∂t −∆y1ε = 0 in Q,
y1ε(x, 0) = 0 in Ω,

y1ε = 0 on Σ0,
∂y1ε
∂ν = w1ε on Σ1,

(2.15)


∂y2ε
∂t −∆y2ε = 0 in Q,
y2ε(x, 0) = 0 in Ω,

∂y2ε
∂ν = 0 on Σ0, y2ε = w2ε on Σ1,

(2.16)

∥∥∥∥∂y1ε

∂ν

∥∥∥∥
L2(Σ0)

< ε and ‖y2ε‖L2(Σ0) < ε. (2.17)

Remark 2.8 The approximate controllability problem (2.9) expresses the following idea: failing to
find w1, w2 ∈ L2(Σ1) allowing to reach the targets

∂y1

∂ν

∣∣∣
Σ0

= 0 and y2|Σ0 = 0

fixed by the exact controllability problem (2.7), one can obtain sequences (w1ε)ε, (w2ε)ε ⊂ L
2(Σ1)

through which the fixed targets can be approached to ε close, and that, for all ε > 0.

Starting from Remark 2.5, we deduce from the previous results, the following.

Corollary 2.9 For all v0, v1 ∈ L2(Σ0) and ε > 0, there are w1ε, w2ε ∈ L2(Σ1) such that

y1(v0, w1ε) ∈ H3/2,3/4(Q) and y2(v1, w2ε) ∈ H1/2,1/4(Q)
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are unique solutions of
∂y1
∂t (v0, w1ε)−∆y1(v0, w1ε) = 0 in Q,

y1(v0, w1ε) (x, 0) = 0 in Ω,

y1(v0, w1ε) = v0 on Σ0,
∂y1
∂ν (v0, w1ε) = w1ε on Σ1,

(2.18)


∂y2
∂t (v1, w2ε)−∆y2(v1, w2ε) = 0 in Q,

y2(v1, w2ε) (x, 0) = 0 in Ω,
∂y2
∂ν (v1, w2ε) = v1 on Σ0, y2(v1, w2ε) = w2ε on Σ1,

(2.19)

∥∥∥∥∂y1

∂ν
(v0, w1ε)− v1

∥∥∥∥
L2(Σ0)

< ε and ‖y2(v1, w2ε)− v0‖L2(Σ0) < ε. (2.20)

Remark 2.10 Corollary 2.9 establishes the solvability of the approximate controllability problem
associated with the exact controllability problem (2.4)-(2.6).

Then we have the following theorem.

Theorem 2.11 Given v = (v0, v1) ∈
(
L2(Σ0)

)2, the ill-posed Cauchy problem
∂z
∂t −∆z = 0 in Q,
z(x, 0) = 0 in Ω,

z = v0,
∂z
∂ν = v1 on Σ0,

(2.21)

admits a regular solution z ∈ H3/2,3/4(Q) if and only if either of the sequences (w1ε)ε or (w2ε)ε
is bounded in L2(Σ1).

Proof. 1. Let ε > 0. According to Corollary 2.9, there exist w1ε, w2ε ∈ L2(Σ1), such that

y1(v0, w1ε) ∈ H3/2,3/4(Q) and y2(v1, w2ε) ∈ H1/2,1/4(Q)

are solutions of (2.18), (2.19) and (2.20). Then, we generate

(w1ε)ε, (w2ε)ε ⊂ L
2(Σ1), (y1(v0, w1ε))ε ⊂ H

3/2,3/4(Q) and (y2(v1, w2ε))ε ⊂ H
1/2,1/4(Q) .

Assuming that the sequence (w1ε)ε is bounded in L2(Σ1), it follows, the mixed Dirichlet-
Neumann problem (2.18) being well defined in the sense of Hadamard, that the sequence
(y1(v0, w1ε))ε is bounded in H3/2,3/4(Q), and therefore again in L2(Q), by continuity of the
canonical injection ofH3/2,3/4(Q) inL2(Q). We deduce that we can extract, from (w1ε)ε and
(y1(v0, w1ε))ε respectively, subsequences, again denoted in the same way, which converge in
L2(Σ1) and H3/2,3/4(Q), respectively. There therefore exist

w1 ∈ L2(Σ1) and y1 ∈ H3/2,3/4(Q)

such that
w1ε −→ w1 weakly in L2(Σ1),

y1(v0, w1ε) −→ y1 weakly in H3/2,3/4(Q) .
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But then, we have on the one hand that∥∥∥∥∂y1

∂ν
(v0, w1ε)− v1

∥∥∥∥
L2(Σ0)

< ε

and
y1(v0, w1ε) −→ y1 weakly in H3/2,3/4(Q) ,

involve, by continuity of the trace operator γ1 : L2(0, T,H
3
2 (Ω)) −→ L2(Σ),

∂y1

∂ν
= v1 on Σ0, (2.22)

and on the other hand, that for all ϕ ∈ C∞
(
Q
)
, we have

∂y1

∂t
(v0, w1ε)−∆y1(v0, w1ε) = 0 in Q =⇒

(
∂y1

∂t
−∆y1, ϕ

)
L2(Q)

= 0,

so, noting φ1ε = y1(v0, w1ε), it comes(
∂φ1ε

∂t
−∆φ1ε, ϕ

)
L2(Q)

= 0 ⇐⇒
(
∂φ1ε

∂t
, ϕ

)
L2(Q)

− (∆φ1ε, ϕ)L2(Q) = 0

that is to say

−
(
φ1ε,

∂ϕ

∂t

)
L2(Q)

− (φ1ε,∆ϕ)L2(Q) −
(
∂φ1ε

∂ν
, ϕ

)
L2(Σ0)

− (w1ε, ϕ)L2(Σ1)

+

(
v0,

∂ϕ

∂ν

)
L2(Σ0)

+

(
φ1ε,

∂ϕ

∂ν

)
L2(Σ1)

= 0.

Passing to the limit, it comes

−
(
y1,

∂ϕ

∂t

)
L2(Q)

− (y1,∆ϕ)L2(Q) −
(
∂y1

∂ν
, ϕ

)
L2(Σ0)

− (w1, ϕ)L2(Σ1)

+

(
v0,

∂ϕ

∂ν

)
L2(Σ0)

+

(
y1,

∂ϕ

∂ν

)
L2(Σ1)

= 0,

which is equivalent to(
∂y1

∂t
−∆y1, ϕ

)
L2(Q)

+

(
v0 − y1,

∂ϕ

∂ν

)
L2(Σ0)

+

(
∂y1

∂ν
− w1, ϕ

)
L2(Σ1)

= 0.

This last equality is valid for all ϕ ∈ C∞
(
Q
)
, it follows that

∂y1
∂t −∆y1 = 0 in Q,
y1(x, 0) = 0 in Ω,

y1 = v0 on Σ0,
∂y1
∂ν = w1 on Σ1.

(2.23)

Then, (2.22) and (2.23) give, in particular
∂y1
∂t −∆y1 = 0 in Q,
y1(x, 0) = 0 in Ω,

y1 = v0,
∂y1
∂ν = v1 on Σ0,
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and so that y1 ∈ H3/2,3/4(Q) is a solution of the Cauchy problem, a regular solution, due to
the well-posed nature of (2.18).

Symmetrically, assuming that (w2ε)ε is bounded in L2(Σ1), we likewise obtain

w2 ∈ L2(Σ1) and y2 ∈ H1/2,1/4(Q) ,

such that
w2ε −→ w2 weakly in L2(Σ1),

y2ε(v1, w2ε) −→ y2 weakly in H1/2,1/4(Q) ,

with y2 ∈ H1/2,1/4(Q) ∩ L2(Q), a regular solution to the Cauchy problem (see proof of
Corollary 2.13).

2. We assume that the Cauchy problem admits a solution z ∈ H3/2,3/4(Q).

So we have

z|Σ1 ∈ H1/2,1/4(Σ) ⊂ L2(Σ1) and
∂z

∂ν

∣∣∣
Σ1

∈ L2(Σ1).

So that, for all ε > 0, we can easily choose

w1ε =
∂z

∂ν

∣∣∣
Σ1

∈ L2(Σ1) and w2ε = z|Σ1 ∈ L2(Σ1)

to obtain the existence of sequences (w1ε)ε, (w2ε)ε ⊂ L
2(Σ1) bounded in L2(Σ1) since they

are constants, hence the result holds.

�

Remark 2.12 It is important to note that Corollary 2.9 only establishes the existence of func-
tions w1ε, w2ε ∈ L2(Σ1), such that there exist y1(v0, w1ε) ∈ H3/2,3/4(Q) and y2(v1, w2ε) ∈
H1/2,1/4(Q) satisfying (2.18), (2.19) and (2.20). So the statement of the previous theorem could be
specified in these terms: ”the Cauchy problem (2.21) admits a regular solution z ∈ H3/2,3/4(Q) if
and only if there exists at least one sequence (w1ε)ε (resp. (w2ε)ε) ⊂ L

2(Σ1) which is bounded in

L2(Σ1) and those terms generate y1(v0, w1ε) ⊂ H3/2,3/4(Q)
(

resp. y2(v1, w2ε) ⊂ H1/2,1/4(Q)
)

,
satisfying (2.18) (resp. (2.19)) and corresponding estimation in (2.20)”.

The following corollary follows from Theorem 2.11.

Corollary 2.13 Let z be a regular solution of the Cauchy problem, then

y1 = z = y2.

Proof. Let (v, z) be a control-state pair for the Cauchy problem, that is to say, according to Re-
mark 2.2, z ∈ H3/2,3/4(Q), and let ε > 0. By Theorem 2.11, there exist

((w2ε)ε, (y2(v1, w2ε))ε) ⊂ L
2(Σ1)×H1/2,1/4(Q) and (w2, y2) ∈ L2(Σ1)×H1/2,1/4(Q) ,

such that
w2ε −→ w2 weakly in L2(Σ1),

y2(v1, w2ε) −→ y2 weakly in H1/2,1/4(Q) ,
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with 
∂y2
∂t (v1, w2ε)−∆y2(v1, w2ε) = 0 in Q,

y2(v1, w2ε) (x, 0) = 0 in Ω,
∂y2
∂ν (v1, w2ε) = v1 on Σ0, y2(v1, w2ε) = w2ε on Σ1,

and
‖y2(v1, w2ε)− v0‖L2(Σ0) < ε.

Then, by continuity of the trace operator γ0 : L2(0, T,H
1
2 (Ω)) −→ L2(Σ), we immediately have

that

‖y2(v1, w2ε)− v0‖L2(Σ0) < ε and y2(v1, w2ε) −→ y2 weakly in H1/2,1/4(Q)

imply
y2 = v0 on Σ0. (2.24)

On the other hand, noting φ2ε = y2(v1, w2ε), we have, for all ϕ ∈ C∞
(
Q
)
,

∂φ2ε

∂t
−∆φ2ε = 0 in Q =⇒

(
∂φ2ε

∂t
−∆φ2ε, ϕ

)
L2(Q)

= 0,

that is to say

−
(
φ2ε,

∂ϕ

∂t

)
L2(Q)

− (φ2ε,∆ϕ)L2(Q) − (v1, ϕ)L2(Σ0) −
(
∂φ2ε

∂ν
, ϕ

)
L2(Σ1)

+

(
φ2ε,

∂ϕ

∂ν

)
L2(Σ0)

+

(
w2ε,

∂ϕ

∂ν

)
L2(Σ1)

= 0.

Passing to the limit, it follows

−
(
y2,

∂ϕ

∂t

)
L2(Q)

− (y2,∆ϕ)L2(Q) − (v1, ϕ)L2(Σ0) −
(
∂y2

∂ν
, ϕ

)
L2(Σ1)

+

(
y2,

∂ϕ

∂ν

)
L2(Σ0)

+

(
w2,

∂ϕ

∂ν

)
L2(Σ1)

= 0,

which is equivalent to(
∂y2

∂t
−∆y2, ϕ

)
L2(Q)

+

(
∂y2

∂ν
− v1, ϕ

)
L2(Σ0)

+

(
w2 − y2,

∂ϕ

∂ν

)
L2(Σ1)

= 0.

This last equality is valid for all ϕ ∈ C∞
(
Q
)
, it follows, in particular with (2.24),

∂y2
∂t −∆y2 = 0 in Q,
y2(x, 0) = 0 in Ω,

y2 = v0,
∂y2
∂ν = v1 on Σ0,

which means y2 is indeed a solution of the Cauchy problem.

By the uniqueness of the solution in the question, it comes, joining the result above to that
obtained in the first part of the proof of Theorem 2.11,

y1 = z = y2.

�
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3 The optimal control problem

Let us start by recalling that we are interested in controlling the Cauchy problem for the heat oper-
ator. That is to say, more precisely, we consider the problem

∂z
∂t −∆z = 0 in Q,
z(x, 0) = 0 in Ω,

z = v0,
∂z
∂ν = v1 on Σ0,

(3.1)

and, for all control-state pairs (v, z), the cost function

J(v, z) =
1

2
‖z − zd‖2L2(Q) +

N0

2
‖v0‖2L2(Σ0) +

N1

2
‖v1‖2L2(Σ0), (3.2)

being interested in the optimal control problem

inf {J(v, z) ; (v, z) ∈ A} . (3.3)

We propose here to use the controllability method (cf. [5]) to characterize the optimal control-
state pair (u, y) of problem (3.1)-(3.3), without any other assumptions than the ”sufficient” one
of non-vacuity of the set of admissible control-state pairs (cf. Remark 2.2). To the best of our
knowledge, this method seems new.

3.1 The method of controllability

Starting therefore from the assumption A 6= ∅ and within the framework of Remark 2.2, we have,
for all

v = (v0, v1) ∈ Uad and ε > 0,

there exist w1ε, w2ε ∈ L2(Σ1), y1(v0, w1ε) ∈ H3/2,3/4(Q) and y2(v1, w2ε) ∈ H1/2,1/4(Q) such
that 

∂y1
∂t (v0, w1ε)−∆y1(v0, w1ε) = 0 in Q,

y1(v0, w1ε) (x, 0) = 0 in Ω,

y1(v0, w1ε) = v0 on Σ0,
∂y1
∂ν (v0, w1ε) = w1ε on Σ1,

(3.4)


∂y2
∂t (v1, w2ε)−∆y2(v1, w2ε) = 0 in Q,

y2(v1, w2ε) (x, 0) = 0 in Ω,
∂y2
∂ν (v1, w2ε) = v1 on Σ0, y2(v1, w2ε) = w2ε on Σ1,

(3.5)

∥∥∥∥∂y1

∂ν
(v0, w1ε)− v1

∥∥∥∥
L2(Σ0)

< ε and ‖y2(v1, w2ε)− v0‖L2(Σ0) < ε. (3.6)

Then we consider, for θ1, θ2 ∈ R∗+ : θ1 + θ2 = 1, the functional

Jε(v0, v1) =
θ1

2
‖y1(v0, w1ε)− zd‖2L2(Q) +

θ2

2
‖y2(v1, w2ε)− zd‖2L2(Q)

+
N0

2
‖v0‖2L2(Σ0) +

N1

2
‖v1‖2L2(Σ0),

(3.7)
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being interested in the control problem

inf {Jε(v0, v1) ; v = (v0, v1) ∈ Uad} . (3.8)

The following result is then immediate.

Proposition 3.1 For all ε > 0, the control problem (3.8) admits a unique solution, the optimal
control ūε = (ū0ε , ū1ε).

Remark 3.2 Here we opt for a control of the system (3.4)-(3.7), in relation only to the control vec-
tor v = (v0, v1), without worrying about the selection of the sequence ((w1ε) , (w2ε))ε. Another
approach could be to foresee a hierarchical control, which would allow, beyond the control accord-
ing to the vector v = (v0, v1), to be interested in the question of the choice of ((w1ε) , (w2ε))ε,
furthermore, (cf. Corollary 2.9), the terms of these sequences depend on v0 and v1.

3.2 Convergence of the method

Let ε > 0. Due to the existence of the optimal control ūε = (ū0ε , ū1ε) ∈ Uad ⊂
(
L2(Σ0)

)2, and
according to the results of the previous section, there exist

w̄1ε , w̄2ε ∈ L2(Σ1), ȳ1ε ∈ H3/2,3/4(Q) and ȳ2ε ∈ H1/2,1/4(Q)

such that 
∂ȳ1ε
∂t −∆ȳ1ε = 0 in Q,
ȳ1ε(x, 0) = 0 in Ω,

ȳ1ε = ū0ε on Σ0,
∂ȳ1ε
∂ν = w̄1ε , on Σ1,

∂ȳ2ε
∂t −∆ȳ2ε = 0 in Q,
ȳ2ε(x, 0) = 0 in Ω,

∂ȳ2ε
∂ν = ū1ε on Σ0, ȳ2ε = w̄2ε on Σ1,∥∥∥∥∂ȳ1ε

∂ν
− ū1ε

∥∥∥∥
L2(Σ0)

< ε and ‖ȳ2ε − ū0ε‖L2(Σ0) < ε,

with, for all v ∈ Uad,
Jε(ū0ε , ū1ε) ≤ Jε(v0, v1) .

In particular
Jε(ū0ε , ū1ε) ≤ Jε(u0, u1) , (3.9)

where u = (u0, u1) is the optimal solution of (3.1)-(3.3). We have in fact that Jε(u0, u1) is inde-
pendent of ε. Indeed, let

(
w∗1ε
)
ε

and
(
w∗2ε
)
ε

be the constant sequences defined by

w∗1ε =
∂y

∂ν

∣∣∣
Σ1

∈ L2(Σ1) and w∗2ε = y|Σ1 ∈ L2(Σ1).

So we have
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• y1

(
u0, w

∗
1ε

)
= y∗1ε = y verifies

∂y∗1ε
∂t −∆y∗1ε = 0 in Q,
y∗1ε(x, 0) = 0 in Ω,

y∗1ε = u0 on Σ0,
∂y∗1ε
∂ν = w∗1ε on Σ1,

• y2

(
u1, w

∗
2ε

)
= y∗2ε = y verifies

∂y∗2ε
∂t −∆y∗2ε = 0 in Q,
y∗2ε(x, 0) = 0 in Ω,

∂y∗2ε
∂ν = u1 on Σ0, y∗2ε = w∗2ε on Σ1,

with
∂y∗1ε
∂ν

∣∣∣
Σ0

= u1 and y∗2ε|Σ0 = u0.

Consequently,

Jε(u0, u1) =
θ1

2
‖y∗1ε − zd‖

2
L2(Q) +

θ2

2
‖y∗2ε − zd‖

2
L2(Q) +

N0

2
‖u0‖2L2(Σ0) +

N1

2
‖u1‖2L2(Σ0)

=
θ1

2
‖y − zd‖2L2(Q) +

θ2

2
‖y − zd‖2L2(Q) +

N0

2
‖u0‖2L2(Σ0) +

N1

2
‖u1‖2L2(Σ0),

i.e. Jε(u0, u1) = J(u, y).

Thus (3.9) becomes
Jε(ū0ε , ū1ε) ≤ Jε(u0, u1) = J(u, y), (3.10)

and it follows that there exist constants Ci ∈ R∗+, independent of ε, such that{
‖ȳ1ε‖L2(Q) ≤ C1, ‖ȳ2ε‖L2(Q) ≤ C2,

‖ū0ε‖L2(Σ0) ≤ C3, ‖ū1ε‖L2(Σ0) ≤ C4.
(3.11)

Then, we deduce that

• on the one hand, there exist û0, û1 ∈ L2(Σ0) such that{
ū0ε −→ û0 weakly in L2(Σ0),

ū1ε −→ û1 weakly in L2(Σ0),
(3.12)

• and on the other hand, there are ŷ1, ŷ2 ∈ L2(Q) such that{
ȳ1ε −→ ŷ1 weakly in L2(Q),

ȳ2ε −→ ŷ2 weakly in L2(Q).

But then it follows that

∂ȳ1ε

∂t
−∆ȳ1ε = 0 in Q,

ȳ1ε(x, 0) = 0 in Ω,

ȳ1ε = ū0ε , on Σ0,

‖∂ȳ1ε∂ν − ū1ε‖L2(Σ0) < ε

and


ū0ε −→ û0 weakly in L2(Σ0),

ū1ε −→ û1 weakly in L2(Σ0),

ȳ1ε −→ ŷ1 weakly in L2(Q)
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imply 
∂ŷ1
∂t −∆ŷ1 = 0 in Q,
ŷ1(x, 0) = 0 in Ω,

ŷ1 = û0,
∂ŷ1
∂ν = û1 on Σ0.

Similarly, we get 
∂ŷ2
∂t −∆ŷ2 = 0 in Q,
ŷ2(x, 0) = 0 in Ω,

ŷ2 = û0,
∂ŷ2
∂ν = û1 on Σ0.

Which gives ŷ1 = ŷ = ŷ2 is a solution of the Cauchy problem for inputs û = (û0, û1), and therefore

J(u, y) ≤ J(û, ŷ) . (3.13)

So that, passing to the limit in (3.10), we obtain

J(û, ŷ) ≤ J(u, y). (3.14)

Finally, the uniqueness of the optimal solution (u, y) to (3.1)-(3.3), (3.13) and (3.14) leads to

J(û, ŷ) ≤ J(u, y) ≤ J(û, ŷ) =⇒ (û, ŷ) = (u, y).

Thereby we have just proved the following result.

Proposition 3.3 For all ε > 0, the optimal control ūε = (ū0ε , ū1ε), the solution of (3.8), is such
that (ūε, ȳε) verifies {

ūε −→ u weakly in
(
L2(Σ0)

)2
,

ȳε −→ y weakly in L2(Q),
(3.15)

where (u, y) is the optimal control-state pair of (3.1)-(3.3).

3.3 Approached optimality system

Let ε > 0. Let us start recalling that, for the control ūε = (ū0ε , ū1ε) ∈ Uad, the optimal solution
of (3.8), there exist w̄1ε , w̄2ε ∈ L2(Σ1), ȳ1ε ∈ H3/2,3/4(Q) and ȳ2ε ∈ H1/2,1/4(Q), such that

∂ȳ1ε
∂t −∆ȳ1ε = 0 in Q,
ȳ1ε(x, 0) = 0 in Ω,

ȳ1ε = ū0ε on Σ0,
∂ȳ1ε
∂ν = w̄1ε on Σ1,

(3.16)


∂ȳ2ε
∂t −∆ȳ2ε = 0 in Q,
ȳ2ε(x, 0) = 0 in Ω,

∂ȳ2ε
∂ν = ū1ε on Σ0, ȳ2ε = w̄2ε on Σ1,

(3.17)

∥∥∥∥∂ȳ1ε

∂ν
− ū1ε

∥∥∥∥
L2(Σ0)

< ε and ‖ȳ2ε − ū0ε‖L2(Σ0) < ε. (3.18)
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So let v = (v0, v1) ∈ Uad and λ ∈ R∗, we easily obtain that

d

dλ
Jε(ū0ε + λ (v0 − ū0ε) , ū1ε)

∣∣∣∣
λ=0

= θ1(ȳ1ε − zd, φ1ε)L2(Q) +N0(ū0ε , v0 − ū0ε)L2(Σ0) (3.19)

and

d

dλ
Jε(ū0ε , ū1ε + λ (v1 − ū1ε))

∣∣∣∣
λ=0

= θ2(ȳ2ε − zd, φ2ε)L2(Q) +N1(ū1ε , v1 − ū1ε)L2(Σ0), (3.20)

noting that

φ1ε = y1(v0 − ū0ε , w̄1ε)− y1(0, w̄1ε) and φ2ε = y2(v1 − ū1ε , w̄2ε)− y2(0, w̄2ε)

are respective solutions of
∂φ1ε
∂t −∆φ1ε = 0 in Q,
φ1ε(x, 0) = 0 in Ω,

φ1ε = v0 − ū0ε on Σ0,
∂φ1ε
∂ν = 0 on Σ1,

(3.21)

and 
∂φ2ε
∂t −∆φ2ε = 0 in Q,
φ2ε(x, 0) = 0 in Ω,

∂φ2ε
∂ν = v1 − ū1ε on Σ0, φ2ε = 0 on Σ1.

(3.22)

So, with the first-order Euler-Lagrange conditions, we obtain that the optimal control ūε is the
unique element of Uad satisfying, for all v = (v0, v1) ∈ Uad,{

θ1(ȳ1ε − zd, φ1ε)L2(Q) +N0(ū0ε , v0 − ū0ε)L2(Σ0) ≥ 0,

θ2(ȳ2ε − zd, φ2ε)L2(Q) +N1(ū1ε , v1 − ū1ε)L2(Σ0) ≥ 0.
(3.23)

Then, let us introduce the adjunct states p1ε and p2ε respectively defined by
−∂p1ε

∂t −∆p1ε = θ1 (ȳ1ε − zd) in Q,
p1ε(x, T ) = 0 in Ω,

p1ε = 0 on Σ0,
∂p1ε
∂ν = 0 on Σ1,

(3.24)

and 
−∂p2ε

∂t −∆p2ε = θ2 (ȳ2ε − zd) in Q,
p2ε(x, T ) = 0 in Ω,

∂p2ε
∂ν = 0 on Σ0, p2ε = 0 on Σ1.

(3.25)

So we get, from (3.21) and (3.24), that

θ1(ȳ1ε − zd, φ1ε)L2(Q) =

(
−∂p1ε

∂t
−∆p1ε, φ1ε

)
L2(Q)

= −
(
∂p1ε

∂ν
, v0 − ū0ε

)
L2(Σ0)

,

and from (3.22) and (3.25), that

θ2(ȳ2ε − zd, φ2ε)L2(Q) = −
(
∂p2ε

∂t
, φ2ε

)
L2(Q)

− (∆p2ε, φ2ε)L2(Q) = (p2ε, v1 − ū1ε)L2(Σ0).
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Which gives that the optimality condition (3.23) is rewritten: ∀v = (v0, v1) ∈ Uad,
(
N0ū0ε −

∂p1ε
∂ν , v0 − ū0ε

)
L2(Σ0)

≥ 0,

(p2ε +N1ū1ε , v1 − ū1ε)L2(Σ0) ≥ 0.
(3.26)

Hence the following theorem characterizes the approached optimal control ūε = (ū0ε , ū1ε).

Theorem 3.4 Let ε > 0. The control ūε = (ū0ε , ū1ε) is the unique solution to (3.8) if and only if
there exist

w̄1ε , w̄2ε ∈ L2(Σ1), ȳ1ε ∈ H3/2,3/4(Q) , ȳ2ε ∈ H1/2,1/4(Q) and p1ε, p2ε ∈ L2(Q),

such that the quadruplet {(ū0ε , ū1ε) , (w̄1ε , w̄2ε) , (ȳ1ε , ȳ2ε) , (p1ε, p2ε)} is the solution of the singu-
lar optimality system defined by systems

∂ȳ1ε
∂t −∆ȳ1ε = 0 in Q,
ȳ1ε(x, 0) = 0 in Ω,

ȳ1ε = ū0ε on Σ0,
∂ȳ1ε
∂ν = w̄1ε on Σ1,

(3.27)


∂ȳ2ε
∂t −∆ȳ2ε = 0 in Q,
ȳ2ε(x, 0) = 0 in Ω,

∂ȳ2ε
∂ν = ū1ε on Σ0, ȳ2ε = w̄2ε on Σ1,

(3.28)


−∂p1ε

∂t −∆p1ε = θ1 (ȳ1ε − zd) in Q,
p1ε(x, T ) = 0 in Ω,

p1ε = 0 on Σ0,
∂p1ε
∂ν = 0 on Σ1,

(3.29)


−∂p2ε

∂t −∆p2ε = θ2 (ȳ2ε − zd) in Q,
p2ε(x, T ) = 0 in Ω,

∂p2ε
∂ν = 0 on Σ0, p2ε = 0 on Σ1,

(3.30)

with the estimates ∥∥∥∥∂ȳ1ε

∂ν
− ū1ε

∥∥∥∥
L2(Σ0)

< ε and ‖ȳ2ε − ū0ε‖L2(Σ0) < ε, (3.31)

and the variational inequalities system: ∀ v = (v0, v1) ∈ Uad,
(
N0ū0ε −

∂p1ε
∂ν , v0 − ū0ε

)
L2(Σ0)

≥ 0,

(p2ε +N1ū1ε , v1 − ū1ε)L2(Σ0) ≥ 0.
(3.32)

3.4 Singular optimality system

From the results of Section 3.2, we have{
ū0ε −→ u0 weakly in L2(Σ0),

ū1ε −→ u1 weakly in L2(Σ0),
and

{
ȳ1ε −→ y weakly in H3/2,3/4(Q) ,

ȳ2ε −→ y weakly in H1/2,1/4(Q) ,
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where (u, y) is the optimal control-state pair of (3.1)-(3.3).

Then it follows from the fact that the mixed Dirichlet-Neumann problems (3.29) and (3.30) are
well-posed, there exist

p1, p2 ∈ L2(Q), (3.33)

such that {
p1ε −→ p1 weakly in L2(Q),

p2ε −→ p2 weakly in L2(Q).
(3.34)

Thereby, the singular optimality system for the optimal solution (u, y) of (3.1)-(3.3), is as spec-
ified by the following theorem.

Theorem 3.5 The control-state pair (u, y) is the unique solution of (3.1)-(3.3) if and only if there
exists

p = (p1, p2) ∈
(
L2(Q)

)2
, (3.35)

such that the triple {u, y, p} is the solution of the singular optimality system defined by systems
∂y
∂t −∆y = 0 in Q,
y(x, 0) = 0 in Ω,

y = u0,
∂y
∂ν = u1 on Σ0,

(3.36)


−∂p1

∂t −∆p1 = θ1 (y − zd) in Q,
p1(x, T ) = 0 in Ω,

p1 = 0 on Σ0,
∂p1
∂ν = 0 on Σ1,

(3.37)


−∂p2

∂t −∆p2 = θ2 (y − zd) in Q,
p2(x, T ) = 0 in Ω,

∂p2
∂ν = 0 on Σ0, p2 = 0 on Σ1,

(3.38)

and the variational inequalities system
∀ v = (v0, v1) ∈ Uad,(
N0u0 − ∂p1

∂ν , v0 − u0

)
L2(Σ0)

≥ 0,

(p2 +N1u1, v1 − u1)L2(Σ0) ≥ 0.

(3.39)

Proof. Indeed, we have, from (3.29), that

−∂p1ε

∂t
−∆p1ε = θ1 (ȳ1ε − zd) in Q,

implies, for all ϕ ∈ D(Q),(
−∂p1ε

∂t
−∆p1ε, ϕ

)
L2(Q)

= θ1(ȳ1ε − zd, ϕ)L2(Q),
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which is equivalent to

θ1(ȳ1ε − zd, ϕ)L2(Q) = −
(
∂p1ε

∂t
, ϕ

)
L2(Q)

− (∆p1ε, ϕ)L2(Q)

=

(
p1ε,

∂ϕ

∂t

)
L2(Q)

− (p1ε,∆ϕ)L2(Q) −
(
∂p1ε

∂ν
, ϕ

)
L2(Σ0)

+

(
p1ε,

∂ϕ

∂ν

)
L2(Σ1)

,

so, by passing to the limit, we obtain

θ1(y − zd, ϕ)L2(Q) =

(
p1,

∂ϕ

∂t

)
L2(Q)

− (p1,∆ϕ)L2(Q) −
(
∂p1

∂ν
, ϕ

)
L2(Σ0)

+

(
p1,

∂ϕ

∂ν

)
L2(Σ1)

=

(
−∂p1

∂t
−∆p1, ϕ

)
L2(Q)

−
(
p1,

∂ϕ

∂ν

)
L2(Σ0)

+

(
∂p1

∂ν
, ϕ

)
L2(Σ1)

,

which is equivalent to(
−∂p1

∂t
−∆p1 − θ1(y − zd), ϕ

)
L2(Q)

−
(
p1,

∂ϕ

∂ν

)
L2(Σ0)

+

(
∂p1

∂ν
, ϕ

)
L2(Σ1)

= 0.

This last equality is valid for all ϕ ∈ D(Q), then it follows that
−∂p1

∂t −∆p1 = θ1 (y − zd) in Q,
p1(x, T ) = 0 in Ω,

p1 = 0 on Σ0,
∂p1
∂ν = 0 on Σ1.

(3.40)

Similarly, we get from (3.30),
−∂p2

∂t −∆p2 = θ2 (y − zd) in Q,
p2(x, T ) = 0 in Ω,

∂p2
∂ν = 0 on Σ0, p2 = 0 on Σ1.

(3.41)

Finally, we still easily pass to the limit in (3.32) to obtain that, ∀ v = (v0, v1) ∈ Uad,
(
N0u0 − ∂p1

∂ν , v0 − u0

)
L2(Σ0)

≥ 0,

(p2 +N1u1, v1 − u1)L2(Σ0) ≥ 0.
(3.42)

Which ends up proving the announced characterization of the optimal pair (u, y). �

Remark 3.6 As we indicated earlier, the present analysis addresses the question of the control of
the Cauchy problem without using any other assumptions than the sufficient ones of non-vacuity,
convexity and closure of the sets of admissible controls. The density results obtained by the inter-
pretation made of the initial problem is enough to achieve convergence of the process.

Acknowledgements

The authors would like to express their gratitude to the referee for his/her useful comments.
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