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Abstract. In this work, we give a characterization of the control for ill-posed problems. We propose
a regularization method which consists of improving the data in order to obtain a well-posed problem.
The optimal control of the regularized system is discussed and the approximated optimality system
is presented. We pass to the limit and we obtain a singular optimality system for the low-regret.
We use the convergence of the low-regret control to the no-regret control for which we obtain a
characterization of the control for the original problem.
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1 Statement of the problem

Let 2 be an open bounded subset of R with a boundary 9Q = T of class C2, T' = I'g U T'; with
o N Ty = (. In the cylinder Q = Q x (0,T) let us consider the parabolic equation

0z
E—AZ—O (1.1)
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with 2z being subject to the initial condition
z(x,0) = zp in £, (1.2)

where 2y € L?(1) is given, and the boundary condition of Dirichlet and Neumann type

a%:”l on 3o = Ty x (0, 7). (1.3)

Z = 0,

Thus, the state z and the control v = {vg, v1 } are linked by the system

% —NAz=0 in @,

ot 9

zZ = v, ¢ =wv1 on Xy, (1.4)
ov

Z(O) =20 in {);

z € L*(Q) is unknown on X1 = T'y x (0,7 and (vg,v1) € L3(3g) x L*(Z).

Problem (1.4) is a Cauchy problem for a parabolic operator. In general, it does not admit a
solution and there is instability of the solution when it exists (see, for instance, [6, 14]). However,
it is important to control the problem. Therefore, we consider the space U which consists of all
((vo,v1),2) € (L%(X0))? x L?(2) such that % —Az=0inQ, z = vp and % = v in Xy, and
2(0) = 29 in Q. Assume that U # (). (To simplify the notation further we will write (vg, v1, 2)
instead of ((vo,v1), ), but we will still refer to (vg, v1, 2) as a couple.) The couples (vg, v1,2) € U
are called admissible couples.

Let J be a strictly convex cost functional defined for all admissible control-state couples (vg, v1, 2)
by
Two,v1,2) = |z = 2alliag + Nollvolas,) + Malloa s, (15)

where (N, N1) € R% x R* and z; € L?(Q) is the desired state. We are then interested in the
problem

inf J(vg, v1, 2), (vo,v1,2) € U. (1.6)

According to the properties of .J, problem (1.6) admits a unique solution (ug, u1, z) that we should
characterize. To obtain a singular optimality system (SOS) associated with (ug, u1, z), Lions in [6, 7]
proposed a method of approximation by penalization. He obtained SOS under the additional
hypothesis of slater type which reads:

the admissible set of controls has a non-empty interior. (1.7)

Problem (1.4) is a classical example of an ill-posed problem. So, regularization methods may be
considered. Theoretical concepts and also computational implementation related to the Cauchy
problem have been discussed by many authors. In the parabolic and hyperbolic cases, we can quote
M. Barry and O. Nakoulima (see [1, 2]), J. P. Kernevez (see [5]) and G. Mophou, R. G. Foko Tiomela,
A. Seibou (see [9]). In the elliptic case we can cite J. L. Lions (see [6]), J. Velin (see [16]), O.
Nakoulima (see [10]), S. Sougalo and O. Nakoulima (see [15]). In [4], C. Kenne, G. Leugering and
G. Mophou considered a model of population dynamics with age dependence and spatial structure
but unknown birth rate and used the notion of low-regret. They proved that we can bring the state of
the system to the desired state by acting on the system via a distributed control.
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In this paper, we consider another regularization method of the problem. So we define the
function g = {g1, g2} such that z = g; and g—j = g9 on X1 and we consider the following system

(% —Az=0 in Q,
ot
0z
zZ =729, = =71 Onzo,
ov (1.8)
0z
z:gl,a—:gg on X1,
v
2(0) = 2o in Q,

where g1 := g1(x,t) and g2 := ga2(z, t) belong to G and represent “the pollution” which is unknown
(incomplete data); G is a closed subspace of LZ(E) and ¥ = ¥y U X with Xy = Ty x (0,7") and
S =T x (0,7).

We here use a method that we find well adapted: the low-regret control concept introduced by
Lions. Lions was the first one to use it to control distributed systems of incomplete data, motivated
by a number of applications in economics and ecology. In this paper, we generalize the method
to ill-posed problems of parabolic type. Lions in [12] proposed a method of approximation by
penalization and obtained a singular optimality system under an additional hypothesis of slater type.
In [13], O. Nakoulima and G. M. Mophou used a regularization method which consisted in viewing a
singular problem as a limit of a family of well-posed problems. They obtained a singular optimality
system for the considered control problem also assuming the slater condition. In [3], A. Berhail
and A. Omrane used a regularization approach which generates incomplete information. They got a
singular optimality system characterizing the no-regret control for a Cauchy elliptic problem.

In the present paper, we use another approximation method to study the problem of evolution (1.4)
which to our knowledge has not been treated.

The rest of this paper is organized as follows. In Section 2, we will give the characterization
of the low-regret and no-regret control. So, in the Subsection 2.2 and Subsection 2.3, the optimal
control of the regularized system is discussed and the approximated optimality system is presented.
In the Subsection 2.4 and Subsection 2.5, we go to the limit respectively when ¢ — (, we obtain a
singular optimality system for the low-regret and when v — 0 we obtain no-regret control to the
original problem, where y and ¢ are strictly positive parameters. In Section 3, we will present some
concluding remarks.

2 The low-regret and no-regret control

The problems with incomplete data are impossible to solve directly. That is why we use the
regularization technique which consists in transforming the problem (1.4) into a complete data
problem. We therefore consider the following regularized problem

0
%—A%g—ezé—:O in Q,
A
Ze—a Zszvm%#—ﬁza:vl on X,
87/ 8u (21)
oA 0
€2 — e _ €90, sﬁ + Az, =eg; on Xy,
ov ov
25(0) =20 in €,




156 Thomas Tindano et al., J. Nonl. Evol. Equ. Appl. 2021 (2022) 153-171

where ¢ is a strictly positive parameter, v = (v, v1) € (L?*(20))? and g = (g0, 91) € (L*(21))%

Remark 2.1 For every fixed cgg and £g1, we assume the existence of a unique solution to (2.1). In
the rest of the work, cgg and €9, are considered as data perturbations.

If we put € = 0 and we make a change of variables = Az, the system (2.1) becomes

.
0
% _Ap=0 in Q,
ot
il 02 + vy onX
— — = —_— = y
Y =0 0 2.2)
a _ 0,n=0 on X1,
ov
\2(0) = 2 in Q.
From (2.2) we have % =1 = 0 on X;. If we substitute those equalities in 3y, we obtain
0
zZ =, 872 = v1 On Eo, (23)
v
that is, the same conditions as in the original problem (1.4).
2.1 Cost function and low-regret control.
Consider the cost functional J, define by
Jo(v,9) = llz<(v, 9) — 7all22(g) + Nollvoll3agsy) + Nillon |2 sy)- 24)
To study the problem (2.1) we consider the problem of minimization
inf sup  (Jo(v,9) = J-(0,9)) | - 25)
vE(L?(30))? <ge(L2(21))2 ) )

The control u € (L?(X))? which is a solution to the minimization problem (2.5) is called the
no-regret control. Solving (2.5) is not an easy task in general. To make it simpler, Lions introduces
the psrameters —llg90 H%Q(El) and —||g1|3. (,)> Where  is a positive relaxation parameter. Thus,
we obtain

inf sup  (J(v,9) = J=(0,9) = VllgolF2s,y — Vgnll3 (2.6)
ve(L2(Z0))? (ge(m(zl»z( e(v,9) = Je(0.9) = ¥ll0ll L2 (m)) — VonllLz(s,)
and the solution u of (2.6) is called a low-regret control. Note that the low-regret control depends
on 7 and the norm ||g||. It is interpreted as an approximation of the no-regret control. With the
low-regret control, we have the possibility to make a choice of control u slightly worse than the
ground state with a margin of error that must not exceed || 9”%2(@)-

Lemma 2.2 Let J. be the function defined by (2.4) and let z. be a solution of (2.1). Then, for any
v € (L?(%0))? and g € (L*(31))2 we have

JE(U79) - Js(oag)

T 2.7
— JL(6,0) — J.(0,0) + 2/0 /Q(zg(v, 0) — 2.(0,0))(.(0, g) — 20, 0)) d dt.
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Proof.  Since z:(v,g) = 2:(v,0) + 2:(0, g) — 2:(0, 0), we obtain

Je(v, 9) = J=(0, 9)
= [|2:(0,0) + 2:(0, 9) — 2:(0,0) = zal|72() + NollvolI 72z,
+ NiflorlZ2png) — 1200, 9) = zall72 (g
= [z (v, 0) = zallF2(q) + 2(2: (v, 0) — 24, 2:(0, 9) — 2:(0,0)) 12 (@)
+[12:(0,9) — 25(070)\!%2@) + NOHUOH%%EO) + NlHUIH%%zO) — [|2(0, 9) — Zd”%%@)
= [|2(0,0) = 2al|72(g) + 2(% (v, 0) = 24, 2:(0, 9) — 2(0,0)) 12(g)
+ 120, 9) = za — (2:(0,0) = 2a) || 721y + Nollvoll72(s,)
+ Niflvill72 s,y — 11200, 9) = 2all 72
= [|2:(,0) = zall72(q) + 2(2:(v,0) = za, 2 (0, g) — 2:(0,0)) 2()
+ 1200, 9) = 2all 72 () — 2(2(0, 9) — 24, 2(0,0) = za) L2y + 1120, 0) — zal| 72
+ Nollvoll72(ss) + NillvilZas,) — 12:(0, 9) = zall 720
= [|2¢(,0) = zall72(q) + 2(2:(v,0) = za, 2 (0, g) — 2:(0,0)) 2()
—2(2:(0,9) — 2:(0,0) + 2(0,0) — 24, 2:(0,0) — za) 2(q)
+ [12:(0,0) = 24721y + NollvollZ2(sy) + NillorlZ2 (s
= [z (v, 0) = zallF2(q) + 2(2: (v, 0) — 24, 2:(0, 9) — 2:(0,0)) 12 ()
— 2(22(0, 9) — 2:(0,0),2:(0,0) — 24) £2() — 2(2:(0,0) — 24, 22(0,0) — za) 12()
+12:(0,0) = zall 72 () + Nollvol 72 sy + NillorlZ2sy)
= Jo(v,0) + J-(0,0) 4+ 2(2.(v,0) — 24, 2:(0, g) — 2-(0, 0)>L2(Q) —2J(0,0)
—2(2:(0,9) — 2:(0,0),2:(0,0) — za) 12(q)-

So,
J=(v,9) = J=(0,9) = Je(v,0) — J=(0,0) + 2(2:(0, g) — 2:(0,0), 2:(v,0) — 2:(0,0)) £2()

and the proof is complete. ([

Lemma 2.3 Let J. be the function defined by (2.4). For any v € (L*(X0))? and for any
g € (L%(X1))? we have

2
9
me—kmm:kmm—k@m+;0m%wﬂﬂ%ﬂa&J 2.8)
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where (. (v) := ((x,t,v) is the solution of

_aa% — N — e = —(2:(v,0) = 2:(0,0)) inQ,
8AC§ - 845

=5 =0 G A6 =0 on o 2.9)
NG _ o

€Ce — ov =0 8 +AC€_O on

C(T,v) = 0 in Q).

Proof. Multiplying the first equation of (2.9) by 2z (0, g) — 2-(0, 0) and integrating over on @, yields
T
-/ / 2(0.0) — 22(0,0))(2:(0.9) — 2:(0,0)) dzd
365 2
—— — A°C — e ) (2:(0,9) — 22(0,0)) da dt

/ / 8@‘5 2:(0,0)) dz dt
/O/QA Cf'(zf(()?g)ZE(O’O))dxdt/OT/QSCE.(ZE(O,Q)zg(o,o))dg;dt,

By integrating by parts we obtain

//845 : — 2:(0,0)) dz dt

:/Q[CE(U).(,ZE(O,g) .(0,0)) dx—//(e 9(z(0 9 (O’O>)dxdt.

And so,

/ / (v — 2.(0,0)) dz dt

= / C(T,v).(2:(T50,9) — 2:(750,0)) dx —/g)(g(O,v).(za(O;O,g) —2:(0;0,0)) dz

[ et 00 4,

Using the Green formula we get

/T/ A*Ce.(2(0,9) — 22(0,0)) da dt

// ACe 2:(0,9) — 2:(0,0)) do dt — //v (A (0)V(2(0, g) — 2:(0,0)) dz dt

// AC& (0, g) — 2(0,0)) do dt

_/O/FACE(U) 2(0, )a; ) dodi + / Ca — 2.(0,0)) do dt
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T 8&(25(0,9) — ZE(OaO)) T
/O/FCE(U). o dadtJr/O/QCE-A2(Zs(0,g)25(0,0))d1:dt_

In short, we obtain
T
- / / (2e(v,0) — 22(0,0))(2:(0,9) — 2:(0,0)) da dt
0.JQ
~ [ 10 (ax(7:0.6)  22(0:0,0)) da

+/ C.(0,0).(2(0;0, g) — 2(0;0,0)) d:c+//cg 9(z(0 g 20.9) 4, q

-(0,9) — 2:(0,0)) dadt—I—//ACs 8(Z6(0 9)61/ 2(0,0)) do dt
//% 2 (0, 0))dadt+//(e (Z&‘(O’ga)y_ 2(0.9) 45 g

_/0/QCE'AQ(ZE(O’*Q)_ZE(O’O)>dxdt_/O/foCe(Ze(Oag)—25(0,0))d:vdt.

Hence,
T

- / / (22(0,0) — 2.(0,0))(22(0, g) — 2 (0, 0)) da dt
0JN

== [ AP0 lT30.9) = 2(T30.0) o+ [ G(0.0).(2:050.9) = 2:(030.0)) da
//Aga Zsog UL // ay (2:(0, g) — 2:(0,0)) do dt
//64‘5 20, 0))dadt+//CE (ZE(O’ga)y_ 2(0.0) 4,

A G

— A?(2.(0,9) — 22(0,0)) — £(2:(0, g) — 2(0, O))) Le(v) dz dt.

Furthermore (T;v) =0in Q aACE =ce(.on X, A = —e%c on X, £ze — % = eggp on X1,
g 81/ + Az, = eg1 on ¥ and A2zg — gz = 0in Q). Therefore, we obtain
// 2.(0,0) 0))(2. (0, g) — 2(0,0) dz dt

—/ Cs(590)dadt—|—/ CE 5g1)dadt
0JI'y I

Thus,

2( ( // z(0,0) )(28(0’9)—26(070))d$dt—'YHgoHQLz@l)—’ﬂngQLz@l))

ge(L2(31))?



160 Thomas Tindano et al., J. Nonl. Evol. Equ. Appl. 2021 (2022) 153-171

T
= s (2 [ clemararz [ [ Kecododt— i, ol )
)) 0J1, 0oJr, OV

ge(L?(21))?

As a result,

(2 [ (00 = 2 0.0)0.9) ~ 20,0t ~vllasy o s, )
gG(LQ(El

G
2

- ;Hcsumm H 5 .

Now, it suffices to apply (2.7) to obtain the result. g

Finally, we can reformulate the problem (2.6) as follows: for all v > 0 find ud € (L?(%))?
such that

V(yY) = ; v
JI(u)) = ve(LIQI?CEO))2 JI (v), (2.10)
where
JI(v) = sup [JE(U79) — Je(0,9) — 7||90||%2(21) - 7||91||%2(21)]'

ge(L?(%1))?

The problem (2.10) is a low-regret problem and its solution, if it exists, will be the low-regret control.

In the rest of our work, we will show that the low-regret of the problem (2.1) admits a unique
solution which converges to the no-regret control unique solution of (1.4). Moreover, we will
characterize the low-regret control and the no-regret control.

2.2 Uniqueness and existence of the low-regret control

The following proposition shows the existence and uniqueness of the low-regret control.
Proposition 2.4 There exists a unique low-regret control ul € (L*(Xg))? solution of (2.10).
Proof. From the definition of JZ for every v € (L?(Xg))? we have JZ (v) > —J-(0,0). Thus,

L2(21)> '

2 8 -
~7:0.0) < 1(0.9) = 120.0) + = (16lage + |5

Let us define JZ by
JI:(L*(%))2 — R
v— J(v).
Set
A={ve (L*%0)?*: J2(v) > —J(0,0)}.
We have
g2 2110¢.(0) |2
J2(0) = — += > —J(0,0).
-0 g -0 )HL2 E) Tyl ov L2(sy) 00
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We assume that A # (). Therefore,

d} = inf J7
T ez 2 ()

exists. Let v, = vy, (e, y) be a minimizing sequence such that

a7 = tim 2 (o),
22 aC.(v,) |12 2.11)
= 0,0) £ Tl 0) = 0,00+ = (el B + |25 cdL
v voollzzmy
Consequently, the following estimate holds
2 8C€(Un) 2

& 2
e 0) + £ (H@(vmumlﬁl] ol

<7,
L2(%)

where C7 is a positive constant independent of n. In particular, with possibly different (yet still
independent of n) constants CZ, we have

J&(U’VL?O) S Cg?

9
\FHCE(UH)H%Q(ZQ < C’Q,
‘8CE(Un) 2

€
ov

(2.12)

<Cl.
L2(%y)

(VY

The terms of J.(v,,, 0) are positive, so we obtain

(1122 (v, 0) = 2all22 ) < €2,

v, ll2(rg) < C2,

TG s, < €. 2.13)
£ ‘(%(v) ’
Nal ov

We have H% — A%z, — ez|| = 0. Hence, there exists C' > 0 such that

‘ 0z,

ot
From (2.10)—(2.13) there exists C' > 0 such that ||z.|| < C. Hence, there exist ul = (uf,u{.) €
(L?(X0))?%, 22 € L*(Q), 6 € L?(Q) and sequences v, and z, such that

< (7.

L2(%y)

<C.

2
— Nz, — ez,

0z .

8—: — N2 —ez. — 3 in L3(Q),
on(g,7) = ud in L*(%),
Zn — 2 in L2(Q).

As v — JZ(v) is semicontinuous and because vy, (e,7) — ul in (L?*(Xg))?, we obtain J,(u?) <
liminf.J, (v,,). This implies that there exists m., such that JZ (ud) < m.. As m, € L*(Q), we
n—oo

conclude that J,, (u”) = m.. From the strict convexity of the cost function J2' we also deduce that

ug is unique. O



162 Thomas Tindano et al., J. Nonl. Evol. Equ. Appl. 2021 (2022) 153-171

2.3 Characterization of the low-regret control

Proposition 2.5 The approximate low-regret control ul = (u]., u].) to (2.10) is characterized by
the unique solution {2, 22, 52, 2} of the system

e 2y y v .
_E_A ¢ —e¢¢ :_(Zs —ZE(O,O)) inQ,
oA ¢
J— = A g — E 5
G U, TAE = on o (2.14)
y
e¢d — 086 _ 0, aCE + A =0 on Xy,
ov 8
kcg(T7U) =0 in Q,
v
% — N2z —e22 =0 inQ,
ONzZY 0z
23—781/6 = ul., 36 + Azl =u]. onX, 2.15)
ONz] 0z
v € _ € v
£z 7 0, e 2 +Azd =0 on X,
[22(0) = 2] in Q,
v
88% — A6 —eBl =0 in Q,
oA o
7 = ABL = by
b= =, =0 g, T A= on 2o 2.16)
v 2 2
efd — 000 _ S, 958 + A = e
Ov v v ~v Ov
Bs( ) = Zo in Q,
967
R Y Y
ONP] ¢
] — = Aol = Yo,
0-—p, =0 g, tAK=0 o3 2.17)
ONP] 39257
y _ _
ol By 0, 8 =0 onXi
&2(T,v) =0 in (),
¢2 + Noug. + N1uj. = 0in L* (%), (2.18)
o v

where zd = z.(ul,0).

Proof. Let u? be the solution of (2.8)—(2.10) in L? (X0). The Euler-Lagrange necessary condition
implies that for every w = (wq,w1) € (L?(30))? we have

(20 = za, ze(w, 0)) + No(ug,, wo)s, + N1{ui., wi)s,

£2 2 agg 8§5(w) B (2.19)
(Geew) (55550, o




OPTIMAL CONTROL FOR EVOLUTION PROBLEM 163

Let 32 := 37(u,0) be a solution of the following system

(O ;’ )
Y e =0 in Q.
ONB 0B
v = O A — 0 2 ’
S o TO% on =0 (2.20)
ABY 2 2
efd - 028 _ Cs, 855 +A8 = L X1,
ov ~v Ov
,35( ) = zo on ().
From Lemma 2.2 we know that —%CE, -5 %le € L?(X1) and from Lemma 2.3 we infer that the

solution 2 € L?(Q) of (2.20) is unique. By multiplying the first equation of (2.20) by (. (w,0) and
integrating over (), we obtain

[

Now, we follow a similar approach to the one we used in the proof of Lemma 2.3. Integrating by
parts we obtain

[ [ S cwnarar= [ rcwonf a- [ [ %00 g

//aﬁaCEde:z:dt /67TU)C€(Tdex—/BVOU (0:w.0) do

B 0¢:(w,0)
/O/QBg(v)at dz dt

_ ! 9¢e(w, 0)
/O/Qﬁg(v)at dz dt.

962 ¢ (w,0) dxdt—// A2ﬁ7+€ﬁv) Ce(w,0)dzdt = 0.

an

Using the Green formula we get

[ [ cwoyarar
= [[2EED cwoyavar [ [ @m0 drar
s O T
//ﬁ@ A (w Mﬁ—//m )28600) 4, gy
+//@MA%WMM&

A/BE _ T Y ag&(w)o)
//F C.(w,0) do dt /Oplwg(v)ay do dt
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T
// aﬂs JRUSCRDp. / B2 (v).eCe(w, 0) do dt
I 0 JI

ov

//m ).A%¢(w,0) dz dt

//n( —efl (v )) C(w,0)do dt
//F <Am NELONL UL dt+//57 ) A% (0.0

//F -~ CEdeadt—l—//F j%(; % w,0) do dt

B2 (v).2A%*¢(w, 0) dz dt.
- Jh

Hence,

// ) dxdt—// (8262 + £B2) ¢:(w, 0) d dt

//F — (2 .Ce(w,0)do dt — //F QGCE 8C€ w,0) do dt

" /0 /Q (‘W — £%G(w,0) — eC(w, 0)) B (v) da dt.

And so we obtain

//B”’zngdadt—k//F C7C€w0dadt+//r e aCE 655 w,0)do dt = 0.

Thus, we introduce the adjoint ¢! defined by

)
R A )
.
(;53 - 8A¢6 — 0, 6¢6 + quw —0 on Y,
ov ov
Y
el — AL =0, 8¢5 +A¢pl =0 ondy,
ov 8
&2(T,v) =0 in Q.

By multiplying the first equation of the above system by z.(w, 0) and integrating over (), we obtain

s

O¢e 2e(w,0) da dt — // (A2¢) + ) 2(w,0) dw dt

:// (22 — 20— B0) 22 (w, 0) dz dt.
0JQ
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One again we use a similar approach to that used in the proof of Lemma 2.6. Integrating by parts

T 9 T
// 0 E.zs(w,O)dxdt:/ (67 2 (w, 0)]2 dx—//@*azs(w’o)dxdt
0 Jo O Q 0 Jo ot
nd
L5
0JQ

yield

a

(w,O)dxdt:/gbz(T,v).ze(T;w,O)dx—/qﬁg(O,v).zE(O;w,O)dx
Q Q

r 0 0
- / / gbg(v)zsgf’) dz dt
0.JQ
T
—/ / ¢g(u)a’z€g§’0) da dt.
0JQ
Using the Green formula we get

//AW 2e(w, 0) d dt

= [[ 28D w0y dodi— [ Vi) Va0 drar

// Aw wo)dadt—//Aw 825550)(1 dt
//8‘1)7 (w O)dadt—//dﬂ (%zg(yw’o)dadt
//gb7 A%z (w,0) dz dt

_/0 [ )wdadt+//¢ﬂ A2z (w,0) de dt.

ot
ot

Hence,

/ ).wdo dt
// <¢7 M_W )- L%z (w, 0) — e (v )zs(w,o)> da dt.
And so,

T
_/0 Qaa(i: <(w, O)dxdt—// (A% + ) 2-(w,0) dz dt = /0 F0¢g(v),wdgdt.

In short, we obtain

T T
/0 Fogbz(v).wdadt—/o /Q(zg—zd—ﬁg)zg(w,O)da?dt.
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And then (2.19) becomes
T
/ (62 + Noug. + N1u].) .wdo dt = 0 for every w € (L*(Xp))>.
o

Thus, ¢2 + Noug. + N1u],. = 0 in Q. Therefore,
¢2 = —Noug. — Nyu]_ in L*(3p). (2.21)
This ends the proof. g

2.4 Singular optimality system (SOS).
In this section, we describe the SOS for low-regret control for the problem (1.4)

Lemma 2.6 There exists a constant C > 0 such that

(

||ugs”L2(Eo) < Ca
il z2(s0) < O,

€
THCQH%Q(EI) < 07

f ”LZ(El =

Proof. As u/ is a solution of (2.10), for every v € (L*(X0))? we have J2(ul) < JZ(v). In
particular, when v = 0 we obtain
L2 EQ)

(2.22)

2
€ o¢
122 = zallaiqy + Nolle Bacsy + Nl + = (H@u%z@ H f

2
L2(21)> .

2
€ o
122 = zallacqy + NollelBacoy + Nl + = (HQH?}(& H

2

0Ce
< [|2(0,0) = 2all3>() + ; (HC&(O 0172z, + H (0

,0)

But 2:(0,0) = 0in Q, ¢-(0,0) = 0 and %=(0,0) = 0 on X;. Then,

L2(21)>

This implies the result. 0

< |lzdll72(q) = C-

Theorem 2.7 The low-regret control u" for problem (1.4) is characterized by {C7, 27,57, ¢7}

satisfying
(9{ v

o

21 AN 0 inQ,

120, % 0 ons, (2.23)
ov
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927
% —A27=0 inQ,
927 2.24
z”zug,gzlﬂ on X, (2.24)
27(0) = 2] in €,
Yol
% AR =0 inQ,
9B
BT =0, 957 =0 onX (2.25)
ov
BUT) = in €,
Y
O nr =B nQ
oY
s =0, 2 _g on S (2.26)
v
#(T) =0 in €2,
@7 + Noug + Niu] = 0in L*(Xp). (2.27)
Proof. From Proposition 2.5, we deduce that 22 is a solution of the system
( 02
;; — A2 —e2l =0 in Q,
Az 0
zd — 00z = ug,, aﬁ—l—Az;’:u? on X,
ov = Ov & (2.28)
ONz] 0
ezd — ~e =0, £ﬁ+Azg:O on Yy,
ov ov
22(0) = 2] in Q.
Let 7] = AzZ. Then, the system (2.28) becomes
92
E)ZtE —And —ezd =0 in Q,
ond 0z
Iy =W 5, T =ul. onXo, (2.29)
on? 0z
5z;’—8n;:0,58;+77§:0 on X1,
22(0) = z] in €.

From Lemma 2.6 we know that ||z H%z( Q) < C. Therefore, zZ converges weakly in L?((Q) and tends

0z2
ot

to 27 when ¢ — 0 (22 — 27). Thus, from (2.29) we obtain ||AnZ|| = ||
Therefore,

—ezl|| <eC — 0.

And — 0 in L*(Q),

Y
e 0 inL2(3y), (2.30)
nd — 0  in L?(%y),
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when ¢ — 0. We recap that

¢ O .
(gt And = in Q,
ond
5 =~ 0 on X1, @2.31)
nd =0 on ¥y,
n(T) =0 in 2.

By using the unique continuation theorem of Mizohata [8], from (2.31) we deduce that we also have
nd = 0in Q. Then,
Ond
Oov

On the other hand, Lemma 2.6 also gives |[ug,||12(s,) < C and [|u],||f2(s,) < C. Therefore,
(ug., ul.) — (ug,u]) weakly in L*(Zg) x L*(Zo). (2.33)

From (2.29)—(2.30)—(2.33) we obtain

.
% A =0  inQ,

027
27 = ug, E = u’l)/ on EO» (234)
z(0) = 2o in Q.

Again, we use the estimate of Lemma 2.6 and deduce that %gg — )} weakly in L?(X;) and

\Efaa% — A] weakly in L*(%;). Thus, %Cg — 0 and %%ig — 0 when ¢ — 0. We obtain

,
882 — A7 =27 —-2(0,0) inQ,
v
=0, %y on %o, (2.35)
ov
CNT) =0 in Q,

and ¢ = —Nou]. — Nyu]_ in L?(%y). Finally, from (2.22) and (2.33) we conclude that
¢ — ¢7 = —Noug — N1u] weakly in L*(3p). (2.36)

The proof is complete. 0

Remark 2.8 Note that {(u”) converges to ¢ := ((u) and ((, z) satisfies (2.9). In addition to (2.22),
84(“ NN} strongly. Furthermore, BC((% ) = ( ) = 0and u € A. We can therefore conclude
that the low-regret control u” converges to the no- regret control u.
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2.5 Characterization of the no-regret control

Now, we describe the optimality system for no-regret control.

Theorem 2.9 The no-regret control u = (ug, uy) for problem (1.4) is characterized by the unique

solution {(, z, 3, ¢} to

% A inQ,
¢ =0, o¢ =0 onX), (2.37)
ov
¢(T)=0 in Q,
% —NAz=0 inQ,
ot 9
zZ = ug, 9z _ up  on Xy, (2.38)
ov
z(0) = zo in €,
9 _ AB=0 inQ,
ot 95
B=0, =— =0 onX, (2.39)
ov
B(T) = in Q,
gf_A(z):Z_Zd_ﬂ in Q,
6=0 2y on %o, (2.40)
ov
o(T)=0 in (),
¢ + Noug + Nyug = 0 in L*(X). (2.41)

Proof. From Theorem 2.7, passing to the limit with v+ — 0, we obtain:

(7 —=¢=0 onZX,
57— =0 on2X, (2.42)
o7 — =0 onX.

From (2.27), we infer that

(ug,u]) — (up,u1) weakly in L?(3g) x L*(Zp). (2.43)
Therefore,
27— z=uy on X,
027 0z (2.44)
E — % =u; On EO.

From what precedes, there exists a unique u characterized by the solution {(, z, 8, ¢} of the sys-
tem (1.4). ]
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3 Conclusion

In this work, we have examined an ill-posed problem with incomplete data using the regularization
method. This method allowed us to generate the missing information on 3:; without which the
control of the system was delicate. We obtained the characterization of the control problem (1.4)
by the regularized problem (2.1). By using the low-regret method and by passing to the limit with
v — 0, we obtained the no-regret control.
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