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Abstract. In this paper, we are concerned with a non integer order non autonomous system with a
deviated argument. Existence and uniqueness of mild solution and controllability of the problem are
proved by using the concept of measure of non compactness and Monch’s fixed theorem. Further,
we studied the optimal controllability of the problem. In the last section, results are validated by an
example.
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1 Introduction

Controllability is an important concept in the study of control problems. Different types of control
systems in abstract spaces have been investigated by many authors. In the last decade, controllability
of fractional order system have drawn the attention of many researchers [9,/11,|16]]. In addition,
some authors obtained optimal control for non integer order system in abstract spaces [12,(13].
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Mahto and Abbas obtained the optimal control for a class of non integer order delay impulsive
differential equations with non local conditions [[12]]. Qin et al. [[13], have studied the approximate
controllability and the existence of optimal control for a fractional non autonomous system in a
Hilbert space assuming that corresponding linear system is approximately controllable.

Mathematical models where coefficients of derivatives depend on time ¢, can be written as
non autonomous systems in abstract spaces. Initially many authors have proved the existence and
uniqueness results for non autonomous systems by using the theoretical tools of abstract differential
equations [1,5]]. Recently, authors have shown great interest in the study of controllability for non
autonomous systems [3L|5H7./10]]. Leiva used the Rothe’s type fixed point theorem to prove the con-
trollability for a non autonomous system of impulsive differential equations [3]]. Vijayakumar and
Murugesu [6] have proved the existence and controllability for a second order non autonomous sys-
tem without using compactness. For other work on controllability of second order non-autonomous
systems, we refer [7]. There are only few papers dealing with the controllability for fractional non
autonomous systems. For basic theories of non autonomous systems, we refer [4},/14].

Motivated by all above works, we extended the study of controllability to non autonomous
systems of order v € (0,1). Using the idea of probability density functions defined in [2], we
defined the mild solution and then by using the fixed point theorem we proved the controllability of
the problem. Further we obtained an optimal control. To the best of our knowledge, there are only
few papers dealing with the controllability for fractional non autonomous systems.

We consider the following non integer order non-autonomous system with a deviated argument
in a Banach space (Z, | - ||):

{ eDVz(t) = —A(t)2(t) + Bw(t) + g(t, 2(t), 2(b(2(t), ), t € (0, bo]

(0) = 2, b

where 0 < v < 1, ¢ D7 denotes the Caputo fractional derivative, zg € Z. { A(t) }1(0,5,] is a family
of closed linear operators in Z satisfying the following properties:

(i) The domain D(A(t)) is independent of ¢ and is dense in Z i.e. D(A(t)) = Z.

(ii) For any p with Re(p) > 0, (A(t) + p) ! exists and satisfies

I(A@®) +p)~H| < t € [0, by).

pl+1°
(iii) There exist constants L 4 and 0 < o < 1 such that
I(A(H) — AW))A(s) Y| < Lallt — v fort,v,s € [0, bo].
Linear operator E is bounded and defined on a Banach space W, w € L?([0, by], W), denotes the
control variable, g and b satisfy some suitable conditions to be specified later.

The main purpose of this paper is to prove the controllability and to find the optimal control for
the problem (1.1) by using the concept of measure of non compactness and the fixed point theorem.

2 Preliminaries and Assumptions

Under the conditions (i) and (ii), operator —A(v) generates an analytic semigroup e 1AW Y ¢
[0, bo]. The fractional power A*(t) of A(t) is well defined for all 0 < p < 1 (cf., [[14]). The space
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Zut = (D(A*(t)), ]| - ||,.) is a Banach space, where

[l = sup [A* (@) ll, ¢ € D(A*(2)).

€1[0,bg

Let Iy = [0, by} and
C(Io, Zut) ={z:Io = Z, | z is continuous on Io},
Cr(lo; Zut) = {2 € Clo, Zpup) | [|2(t) = 2(s) [l < Lit = s}

Obviously (Cr,({o, Z,t), || - ||1,60) is @ Banach space, where

”ZH;L,bo = Sup HZ(S)HM
s€lp

Consider a non-autonomous fractional linear system:

oDJ2(t) = A(b)z (1),
e .

where v € (0,1), and closed operator A(t) : D(A(t)) C Z — Z is densely defined in a Banach
space Z.

Definition 2.1 [/5]] A measure of non compactness defined on a Banach space Z is a function
defined from Z to a positive cone of an ordered Banach space (F', <) such that ¢(chB) = ¢(B) for
all bounded subset B of Z, where ch denotes the closure of convex hull of B.

Lemma 2.2 /5] Let ¢ be a measure of non compactness defined on a Banach space Z, if

(i) ¢ is monotone, then for every bounded subsets B1 and Bo of Z, we have

Bl C BQ = ¢(Bl) < gb(BQ)

(ii) ¢ is nonsingular < ¢({y} U B) = ¢(B) foreveryy € Z, B C Z.
(iii) ¢(B) = 0 if and only if B is precompact in Z.
Lemma 2.3 [I5]] Let 2y be a closed convex subset of a Banach space Z and fy be a continuous

map defined on Q. If fy satisfies the (Monch’s) condition: Coy C g is countable, Co C ch({0} U
fo(Co)) = Cy is compact, then fq has a fixed point in €.

In the rest of the paper, we assume the following conditions:

(H1) Themap g : Ig x C(lo, Z, 1) x Cr(lo, Zut) — Z satisfies:

@) llg(t1, z1(t), 21(t)) — g(t2, 22(t), Z22(1)) |
< Lyllty = to + [l21() — 22(&) [l + 122(2) — Z2(B)[ ],
for some Lg > 0, and for all t1,%2 € Iy, 21,20 € C (I(), th) , 21,22 € Cf, (I(), th) .
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1
(ii) For some 7 > 0, there exists G, € L1 (Ip, R") such that forany ¢t € Ipand 2,Z € Z
satisfying |2 < . [}2]] < r.

lg(t, (), 2(0) || < G (D),

and

G
1G], 2 -

lim inf =0 < 400,

r—00 'S
where v; < min{~y, a}.
(H2) Themap b : C(Io, Z, ) x Io — Iy satisfies:
16C21(2), £) = b(za(8), )| < Loll21(t) — 22 ()],
for some Ly, > 0, and for all t € Iy, 21,22 € C(lo, Zpuy).
(H3) The linear operator E : L%*(Io,W) — L(Iy,W) is bounded. Also the operator Q :
L?(Iy,W) — Z defined by:

bo bo v
Qu} = /O U'y(bO — U, V)E’UJ(V) dv +/0 /0 U’y(bO -V, V)V(V’ S)Ew(s) dsdv

has bounded inverse i.e. |E| < M3 and ||Q~!|| < Mg, for some My, M3 > 0.

3 Exact Controllability

Following the idea of the work [2]], we define the following functions:

The Laplace transform of the probability density function p, (defined in [2]) is given by:

> —vz = (_Z)j
e Fpy(v)dv = —, 0<~y <1, z>0.
/0 ! ]Z:;J T(1+17j)

We define operator families {U, (¢, )} associated with the semigroup e ~*4(*) by
Uy(t,v) =7~ /000 Htw_lpw(e)e_twm(”) dé.
Further, we define
Vit,v) = [A(t) - AW)U,(t = v,0),
Vit () = /t Vit 0)Vi(6,0)d6, k=12, -

v

and construct the family {V'(¢,v)} by

V(t,y) =Y Vil(t,v),
k=1

and define .

P(t) = —A(t)A71(0) — i V(t,v)A(r)A~0) dv.
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Definition 3.1 A function z € Cr,(Io, Z,.;) is called a mild solution of the problem (1.1)) if z satis-
fies the following integral equation:

z(t) = 2o —i—/o Uy(t —v,v)(v)A(0)zo dv
+/ Uy(t —v,v)[Ew(v) + g(v, 2(v), 2(b(2(v),v)))] dv 3.1

// (t = v, 0)V (v, ) [Ew(s) + g(s, 2(s), 2(b((s), 5)))] ds dv.

Definition 3.2 [11|] The control problem ({I.1)) is called controllable on the interval I if for every
20,2, € Z, there is a control function w € L*(Iy, W) such that the mild solution z(t) of
satisfies z(by) = zp,.

For any z € Cr(Io, Zg,), using (H3), we define the control function
bo
w®) =@ [y = 20— [ Uy 00— )0 A0 dv
0
bo
= [ U0 = 10,20, 20200, )
0
bo v
— / / Uy(by — v,v)V(v,5)9(s, 2(s), 2(b(2(s),s))) ds du} (t).
o Jo
Lemma 3.3 [2|] The operator-valued functions U, (t — v, v) is continuous in the uniform topology

in the variables t, v, where 0 < v <t —¢, 0 <t < by, for any € > 0, and functions U, V and 1)
satisfy the following inequalities:

U5t = v, < C(t—v) ™,
U5 (" = v,v) = Uyt —v,w)| < O = ¢)7,
V(v <Ot =v)*,
[p@)] < C(1+1%),

where C'is a constant.

Lemma 3.4 There exists Ky, > 0 such that for all z € (Cr(Io, Zy1), || - l150) satisfying (3.1),

) < K + KY||G » te
[w:(@)[] < K"+ K| THL%[O,bo] "

Proof. Using (H1) and (H3), we have

bo
Jw:(t)[| < Ms [szoH + |20l + C*[[A(0) ]| /0 (bo — )" 11+ v dv

bo
+C ; (bo = )" Hlg(v, 2(v), 2(b(2(v), 1)) || dv
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bo v
+ CQ/O /0 (bo — y)V—l(y — s)a—ng(s, 2(s), 2(b(2(s), 8)))|| ds dy}
< Myl | + 120l + C2IIA<0>zo||<bo>”{i + (b0)*B(v,a+ 1)}
bo
+ C/ (bo — )" 1G(v) dv

bo
+C’2/ / (bo — )X —s)o‘_lGr(s)dsdu],

where .
ﬂ(%a):/ P11 — et
0

denotes the Beta function.

Using Holder’s inequality, we get

Jw: ()] < Ms [szoH + |20l + C2||A(O)20H(bo)7{i + (bo)*B(v a + 1)}
+ C(/Obo(bo — y)ﬁ dy)l_71 (/Obo Gﬁ(y) dy)“fl

+ C2%B(~, a)(/obo(bg —v) e dy)l_w1 (/Obo G,:%l(y) dy)’h}

< 83l 1+ ol + C2A@z0 ] 00) { = + () B0+ 1)}

_ 1-— 1
o (=) NG )
TN L71[0,bo]

1— 1-m
2 Yt+a—1 7’71
+ C2B(v, )b} (7+a_%) HGTIIL%[OJ)OJ

=K}’ + KY||G, H Ob]

where 1
KY = Msllaw | + 0]l + O A©0)z0(b0){ = + ()60 + 1)},

_ 1-— 1-m 1-— 1-m1
Ky = msoty " [opr o (o) T (C2)

0

Please confirm

Theorem 3.5 If (H1)-(H3) hold, then control system is controllable provided that

Mng 1 1— Y1 1—y 1— Y1 I-m b
oC||A* b”[ 2 +—( ) +B8(7, a (7) by 0 Q) MyCKY
| A*[[bg ~ b\ — 71 By, a) N ta—m 0 ’y—i—aﬁ(w JM2CK3

Proof. Using the control w,, we show that the operator F' : C,(Io, Z,,+) — Cr,(lo, Z,) defined
by

(F2)(t) = 20 + /0 UL (t — v, )b (v) A(0) 20 dv
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/ Uy (t = v, v)[Bw.(v) + g(v, 2(v), 2(b(2(v),v)))] dv
/ / Uy ( V(v, s)[Ew,(s) + g(s, z(s), z(b(2(s), s)))] ds dv

has a fixed point. This fixed point is then a solution of given system, clearly (F'z)(bg) = 2s,, which
show that given system is controllable on Ij.

We apply Lemma [2.3]to show that " has a fixed point.

Let
Cr(Crlo, Zyuy), 20) = {z € Crlo, Zuy) | |2 — 20| po < 7}

We prove this result in four steps:

Step 1: We show that
F(C(Cr(lo, Zut),20)) € Cr(Cr(lo, Zyus), 20) for some r > 0.

If this is not true, then there exist ¢, € (0, bo] and z, € C,(Cr(lo, Z,.t), 20) for all 7 > 0 such that
tr
r <|[[(Fz)(tr) = 2ol < !A”H/O Uyt — v, )Y @) [I1A(0) 20 || dv
tr
+ IIA“II/0 1U (& = v, IIIENlw= )| + [lg(v, 2(v), 2(b(2(v), v)))[[] dv
tr v
+ IIA“II/0 /O 105 = v, ) [V (s ) E([[wz(s) ]| + [[g(s, 2(s), 2(b(2(s), 5)))||] ds dv.
Using Lemma [3.3|and (H3), we get
tr
P <CAOal|47] [t =)
0
tr 1
H _ =
MO (K + K316y ) [ =
tr
g / (b — 1) Gy (v) dv
0
tr v
2|1 Al w w N1, . a1
0?4 (K + Ky ”G’"”mho,bo])/o /O (t — )1 (v — 5)° ' ds dv
tr v
+o2)av| / / (1 — vV L (1 — $)°=1G, (5) ds d.
0 0
Using Holder’s inequality, we get
2 t;
r <CUAOz A [+ 1B (o4 1)

t'Y
RO (K + KPIGH 1)

+c||A“||(/Ot’“<tr—u>f"% ) (]

tr 1

Gl (v) dy) "
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tr
FMCA (KP4 KFIG 3 YBGea) [t =)
[Ob] 0

tr Y+a 1_1 tr 1
+ C2 4787, 0) / -5 ) ([Tl )"
0 0

< 7A@ 147] 2 "B+ )]

b’Y
M)A (KT + KPIGH )2

-7
A (=2 T G

L3t [0,b0]
) b’g"roz
+ M0 A (Kt + KNGl s o JBGra)

1—7 1- a—
OB ) ()T G

Y+a—r LT [0,bo]

Dividing by r and taking lim inf as r — oo, we get

MyK® 1 /1—m\1=r b Loy N
1 < oC|| A b”[ 2+7< ) 4+ By, ) MuCKY+8(, a (7) b ﬂ,
= A% [bg ~ e 7+a5(7 JMaC Ky +B(v, ) T ta—m 0

which is a contradiction.

Step 2: [ is continuous on C,.(Cr(lo,Z,:),%0). We consider a sequence {z,} in
Cr(Cr(lo, Zyut), 20) st zn = 2 € Cr(Cr0(lo, Zput), 20). Then using (H1) and (H3), we get

I(F20)() = ()0, < 1471 [ N0, = A NIE () — w20
1190 2 (0), 2 (b(zn(w), 1)) — g, 2(), 2(b(=(), ) [ dv
e / / 10, (¢ = v, )1V @ ) N Bl 0, (5) = w2 (s)]
1195, 20(5), za(b(zn(5), 5))) — g5, 2(5), 2(b(=(5), 5))[[| ds dv. (3.2)

Using (H1) and (H2), we get

19(s, 2n(s), zn(b(2n(s), 8))) — g(s, 2(s), 2(b(2(s), 5))) |

< Lyllzn(s) = 2(s)ll + 120 (b(zn(s), 8)) = 2(b(2(s), 5)) ]

< Lylllzn(s) = 2(8)ll + [12n(b(2n(s), ) — 2(b(2n(s), )|, + [12(b(2n(s), 8)) = 2(b(2(5), 8)) [ u]
< Lyllzn(s) = 2(s)ll + 120 (b(zn(5), 8)) = 2(b(2n(5), 8))l| s + LLo]|20 () = 2(5)l1]

< Ly(

2+ LLy)||zn — ZH;L,bO'
Using Lemma[3.3]and (H3), we get
[wz,, (5) — w=(s)]l

bo rv
< M% ; 105 (bo — v, ) IV (v, $)[[ll9 (s, 20 (s), 2n(b(2n(5), 8))) — g(s, 2(s), 2(b(2(s), 5))) || ds dv

bo v
< M302Lg(1 + LLy) / / (bo — V)’Y_I(V — s)‘“_1 dsdv - ||zn — 2| b,
o Jo
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byt

§7+ ]\4302 ( + LLy)B(v,a)||zn — 2 b0+

Using above inequality in (3.2)), we can find My > 0 such that
[(F2n) () = (F2)(#)]] s < Moll2n — 2|1,6,-
Taking supremum over [0, by and limit as n — oo, we get
|Fzn — Fz||up, =0 as n— oo,

which implies that F* is continuous on C,.(Br,({o, Z,.t), 20)-

Step 3: F(C.(Br(lo,Zut),20)) is equicontinuous on Io. For this, we assume y &
F(C.(Br(Io,Zg+),20)) and 0 < ¢/ < " < bg. Then there is a z € Cr(Br(lo, Z, ), 20) such
that

ly(t") —y (@)
< / UL (t" = v,v) = UL (" = v, )|[[[$ () || A(0) 20 || dv
0

" / 1t = v, ) @A) z0]] dv
" / 105t = v, ) = Uy — v ) [IE W) + 9 2(), 2(b(2(0), 1)) ] dv
" / 105t = v IINEN = ()] + g, 2(0), 2(B(=(0), )} dv

/ / WU = v,0) = Uyt = 0, ) [V IIVE = (3)] + g (s, 2(5), 2(b(z (), 8) ] ds v
+f / 1" = v, ) [V @ IINENleo=(3) + (s, 2(5), 2(b(z(), 5))) ] ds v

¢
=hL+L+1s+ 1+ I + I,

where

I = /Otl 1Ty (" = v,v) = Uy (' = v, ) [ () [[[|A(0) 20| dv,

Iy = /tt 105" = v, )¢ @) ][ A(0) 20| du,

Iy = /Otl 1U(t" = v,v) = Uy (' = v, ) [[IElw= @)l + llg(v, 2(v), 2(b(2(v),v)))[] dv,
Iy = /tt 1Ty (" = v ) IENw= )] + lg(v, 2(v), 2(b(z(v), )] dv,

I5 //IIU (t" —v,v) = Uy (t' = v, ) IV (v, ) ENw=(s)]| + 1lg(s, 2(5), 2(b(2(s), 5))) ] ds dv,
Is Z/t/tﬁ/o 1Ty (" = v, )V IIENw= ()] + llg(s, 2(s), 2(b(2(s), )] ds dv.
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For ¢’ > 0 and ¢ > 0 small enough, by Lemrna and the fact that the operator-valued function
U,(t — v,v) is continuous in uniform topology about the variables ¢ and v for 0 < ¢ < by and
0 <v <t —e, wehave

t'—e
I < /0 105" = v,v) = Uy(t' — v, v)| [¥(v)|[[[A0)20]| dv

tl
+/t U5 (" = v, v) = Uy (' = v, ) [ [ ()11 A(0) 20| dv/

'—e

t'—¢e
<C sup ||U,Y(t” —v) — U,Y(t' —v,v)|| ||A(0)z0]] / (1+v%)dv
ve0,t —e] 0
t/
+ C? || A(0) ]| (" =) (=) (L4 ) dy

t'—e

—0, t"—>tande—0.

t” t//
I = / 1U(#" = v, )| [ ()1 A(0)z0]| dv < C* || A(0) 0] / (" =) 1+ v d.
4 t’

Obviously Io — 0 ast” — t'.

t'—e
I3<C U, (" — — U, (t' — My K + KY||G, G, d
v <0 [0 =) = U =)l [Ma(KE + KFIG )+ Grlo)]

tl

+C [ U = vv) = U = w0 [MQ (Ki" + K3 |G| }) + Gr(u)} dv

t'—e kD [07b0

t'—e
<C swp U —u) U vl [ MoK+ KFIG
ve(0,t —e] 0 L1

) + ()] dv

OvbO]
v . X
"o NY— I oNv— o w w
+C - (" =)L (¢ = v (14 %) [Mg (K1 + K} ||GTIIL%[O’bO]) + Gr(y)} dv

—0, t"—t and € — 0.

Similarly, we can show that I, I5, I are tending to 0 as t” — t'.

From above inequality, it is clear that |y(t") — y(¢')|| — 0 as ¢ — . Therefore
F(C(Br(Io, Zut), 20)) is equicontinuous on Io.

Step 4: Next, we show that Monch’s condition is satisfied, i.e.if V' C C,(Br(lo, Z), 20) is
countable and V' C ch ({0} U F(V)), then V is compact. By using the idea used in [16], we can
show that F'(V) is relatively compact i.e.if ¢ is monotone, nonsingular measure of non compactness,
then ¢(F(V)) = 0.

Since V' C ch({0} U F(V')), therefore by using the definition of ¢, we have
$(V) < ¢ (ch({0} UF(V))) = ¢(F(V)) = 0.

This implies that V' is relatively compact i.e.V is compact. Thus the Ménch’s condition is satisfied.
Therefore by applying Lemmal[2.3] F has a fixed point. O
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4 Optimal Controllability

In this section, we define the operator
bo
Qb = ; Uy(bo — s, 8)EE*U; (bo — s, 5) ds,

where £ and U7 are the adjoint operators of E' and U, respectively.

For 6 > 0, let
R(5,Q) = (61 + Qbo)~1

and

bo
q(2(t)) = zpy — 20 — /0 Uy(bg — v,v)(v)A(0)zo dv
bo
- [ 00— gt 20) a0

bo v
/0 /0 Uy(bo — v,v)V (v, 5)g(s, 2(s),b(2(s),s))) dsdv,

then we have
w(t) = B*UZ (bo — t, 1) R(5, ) q(2(t)).

In order to discuss the optimal controllability, we define the performance index

bo _
J(w) = G(t,z(t), z(b(2(t),t)), w(t)) dt, 4.1)
0
where G is a functional defined on I x C(lo, Z,1) x Cr(lo, Z,1,t) X Wag, and W4 denotes the set
of all admissible control and consequently is closed and convex in L?(Io, W).

Theorem 4.1 If all conditions of Theorem hold, then there exists an optimal control of the
problem provided that

(07

1 b
CL,(2+ LL)|A*|IbY | = + CB(~, 0 | <1.
g(2+ LLy)[[A"|[bg ’7+ By a)oz—i—'y

Proof. Ttis sufficient to prove that there exists w® € L?(I, W) which minimizes J (w).

If inf J(w) = oo, then the result trivially holds.
weW 4

If HVIIE J(w) = ey < oo, then we can find a sequence {w"} in W,q such that J(w") — €.
weEWad

Since W, is a closed and convex subset of La(Iy, W), the sequence {w™} has a weakly convergent
subsequence {w™} converging to w® € Wyq. Using Theorem for each w™ € W4, there exists
a mild solution 2™ of (I.1) satisfying:
t
2™ (t) = z0 + / Uy(t —v,v)p(v)A(0)2zo dv
0

+ / Uy(t —v,v)[Ew™(v) + g(v, 2™ (v), 2" (b(z™(v),v)))] dv
0
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/ / Uy(t —v,v)V (v, s)[Ew™(s) + g(s, 2™(s), 2" (b(2™(s), s)))] dsdv.

Similarly corresponding to w?, there exists a mild solution z° of (1.1) satisfying:

¢
zot :zo—l—/U (t —v,v)(r)A(0)zo dv

[c <IN B NNV, B O R S R

/ U, (t = v,0)[Ea®(v) + g(v, 2°(0), 2260 (), 1)))] dv

—
S O

//U (t — v, )V (v, 8)[Bw’(s) + g(s,2°(s), 2°(b(z°(s), 5)))] dsdv.

—_ =
N —

We have

—_ =
hn W

2™ (6) — 2l < 14| / 10t - v,0) [{| Bwr(v) — Bu(0)]|
T llg(, 2™ (W), 2B (@), 1)) — g, 2(w), LB (W), )]} dv
/ / 1t = ) IV (@ ) [{[ Ew(s) — Eu(s)] 42)

+lg(s, 2™ (), 2™ (b(2"(5), 5))) — g(s, 2°(s), 2°(b(2°(5), 5))) |} dsdlv ..

NS T NS N Y S SN
N — O OV oo 3

Using (H1), (H2), we get

RS
NN

lg(t, =™, 2™ (b(="(2),1))) — g(t, 2°, 2°(b(=" (1), )
<L [IIZ (t) = 22 ()l + 127 (b(=™(5), ) — 2°
< Lyl () = 2Ol + 127 (0(=" (), 5)) = 2™ (b(2"(5), 9))
+||z (b(=°(5), 5)) = 2°(b(="(5), 5)) I

Lg(2+ LLy) 2™ = 2°l| -

W W NN NN
— O O 0 O\ W

From (4.2)), we have

W W
(IS )

t
34 12 (t) = 2°2() ||, < )| A / C(t —v)" Y| Ew™(v) — Ew’(v)||
35
36 + Lg(2+ LLy)||z™ —zOHMbO}dI/

37

i / | e (v — 5) | Bw"(s) — Eu'(s)]
39
40
41
42

43

41 / / C2t— 1)~ — )% [ Bul(s) — Bul(s)|| dsdv
45

46 )

/ +CL,(2+LL A“b —i—Cﬂfya
] g( )H | ( )

+ Ly(2+ LLp)[|2™ = 2%l } | dsdu.

t
< ||A¥| / C(t— V)7_1||Ew”(1/) — Ewo(y)Hdl/

127 = 2°ll.bo-
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Since CLy(2+LL)|| A"|b} [% + Cﬁ('y,oz)ab—i} < land || Ew™(t)—Ew(t)|| — 0, we conclude

that z™ — 29.

Applying Balder’s theorem, we get

bo _
€0 = lgn G(ta zm(t)a Zm(b(zm(t)a t)): wm(t)) de
m—0o0 0
bo _
g/ G(t, 2°(t), 2°(b(2°(t), 0)), w(t)) dt
0

= j(wo) > €0
This shows that .J (w®) = €, i.e..J attains its minimum value at w® € L?(Io, W). O
S Application
Consider the following example:

3 0?
CD4y(xa t) - C(x7 t)ﬁy(ZQ t) = Ewo(l’, t) +h ($, y(:C) b(y(:v, t): t)))

+ ohatmy(z,t), zel01], te (0], O
y(z,0) = yo(x),

where
(., y (e 1) = /0 Kz, 2y, erd(®)ly(z 1)) dz,

and the function hy : Ry x [0,1] X R — R is locally Holder continuous in ¢, locally Lipschitz
continuous in ¥, uniformly in z and measurable in x. c¢(¢, ) is uniformly Holder continuous i.e.there
exist K > 0 and & € (0, 1) such that

le(tr, z) = clta, 2)|| < Kt1 — ta.

Let Iy = [0,bp] and Y = C(]0, 1], R). It is well know that, if we define the operator A(v) by
32
A(V)y(ﬂj‘, V) = —C(l‘, V)ﬁy(x’ V)

with the domain
D(A(v)) = H*(0,1) n H(0,1),

—tA(v)

then —A(v) generates an analytic semigroup e . If we take pu = %, then fractional power

A%(y) is well defined (see [|14]). (D(A% (), |l - ||%> is a Banach space, where for w € D(A%(y))

1
[wlly = [[A3 (v)wl]].
We denote this Banach space by Y.
3

Let C (Ip,Y") denote the set of all continuous functions on Iy, and

Cr(Io,Y) ={y € C(1,Y) [ lly(s1) —y(s2)|| < L[s1 — sal}.
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We define h : Iy x C (1p,Y) x Cr (1p,Y) — Y by

h(t7y7 (b)(.ilf) = hl(xv¢) + h2(t7xvy)7

and (Ew)(t)(x) = wo(x,t), y(t)(x) = y(z,t), then the abstract formulation of the problem (5.1))
is:

3
cD2y(t) = Ay(t) + Ew(t) + h(t, y(t), y(b(y(?), 1)),
y(0) = yo.
We assume that b and E satisfy the required assumptions. It can be easily proved that all other

assumptions of Theorem 3.5]are satisfied, therefore by using Theorem [3.5] we conclude that system
(5.1)) is controllable on .

Define performance index

bo
J(w) :/0 Iy + [lw(®)]I?) dt.

It can be easily checked that all the assumptions of Theorem @ are satisfied, therefore by using
Theorem we find an admissible control wy that minimizes J(w).
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