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L5
Abstract. In this paper, we prove that if u € C([0, 4+00), H?, 20C(RS)) is a global solution of a 3D

5
5 2

fractional Navier—Stokes equation, where H2 ™ is the Sobolev—Gevery space with parameters

al
‘o
20, decays to zero as time approaches infinity. Our

a > 0and a € (2,1], then ||u(t) &)

I3
2

a,

Q= |

technique is based on Fourier analysis.

Keywords: fractional Navier—Stokes equation, long time decay, Sobolev—Gevery space.

2010 Mathematics Subject Classification: 35Q30, 76B03, 42B37.

1 Introduction

The Cauchy problem for the 3D generalized heat equation is given by

o+ v(—=A)%u = Q(u,u), x € R3 te(0,00),
divu =0, r € R3 t € (0,00), (1.1)
u(0,z) = u’(z), r € R3,
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with the bilinear operator ) defined as

= > @ o), =123 (12)
k,l,m

where

. 5. £n
ay = Yy ()

n,p=1

7p7

and a are real numbers.

The particular case of the above system is the fractional Navier—Stokes system for incompressible
fluid
Ou+v(=A)u+u-Vu=—-Vp, zcR3 tc(0,00),
divu = 0, r € R3 t € (0,00), (1.3)
u(0,z) = u’(z), T € R3,

where v > ( is the viscosity coefficient of the fluid, o > 0 represents the ‘strength of dissipation’, u =
u(t,x) = (ui(t, z), us(t, ), us(t, x)) denotes the velocity vector field of the fluid and p = p(¢, x
denotes the scalar pressure at the point (¢, x) € (0, 00) x R3. Moreover, u’ = (u{(z), u3(z), u}(z
is a given vector field of initial velocity which is assumed to be divergence-free. We define (—A)®
implicitly via

~— —

S

F((=A)*u)(t,€)) = [€[** F(u)(t,€)-
For simplicity, we will denote the Laplacian (—A)% by A and obviously @(E ) = |€]Ya(§).

Lions [10] proved the global existence of the classical solutions to equation (1.3) with az > g
There are many weak-strong uniqueness results for (1.3) (see [7, 13, 15]). Zhai [14] proved the
global existence and uniqueness of regular solutions in spatial variables with L"(R"™) data and also

studied the well-posedness for (1.3) in critical spaces close to B ( a=1) for < a <1 We[8]
established the global existence and uniqueness of regular solutions in spatlal Var1ables for the higher
order elliptic Navier—Stokes system. We [12] also proved the time-local existence and uniqueness of
the mild solution to the fractional Navier—Stokes—Coriolis system in homogeneous Sobolev spaces
R with} <a<dandd —a<s<?.

When o = 1, (1.3) becomes the classical Navier—Stokes system. There are several au-
thors who have studied the behavior of the norm of the solutions at infinity in various Banach
spaces. Benameur [3] proved that if w is a Lei—Lin solution of a 3D Navier—Stokes equation, then
limy o0 sup |lu(t)[|,,—1 = 0. In [4], Benameur and Jlali proved that long-time decay of the global so-
lution of 3D Navier—Stokes equations in Lei—Lin—Gevery spaces. Gallagher, Iftimie and Planchon [9]
showed that if u is a global solution of a 3D Navier-Stokes equation, then limy_, o ||u(t )|| 1 =0.

Benameur and Jlali [5] proved that [|u(t)[| ;1 _, where o > 1, approaches zero at infinity. Orf [11]

L1
proved that if u € C([0, +-00), HZ | (R?)) is a global solution of a 3D incompressible Navier-Stokes
equation, then ||u|| . 1 decays to zero as time approaches infinity. In this paper, greatly inspired
H

a,l
by the work of Orf, we are devoted to studying the non blow-up result of the global solution of the

fractional Navier—Stokes equation and obtain the result lim;_, . ||u(t)|| . % e =0WwWith2 <a < 1.

Q\H |
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For simplicity, we take v = 1 for the rest of the paper.

L5

Theorem 1.1 Let a > 0 and% <a<lIfu e H? ja(R‘g) is such that divu® = 0, then
“ -

there exists a positive time T™ such that (1.3) has a unique solution u € C([O, T*), Ha2 ja (R3)) N

L2([0,7), 11, (B9)).

L5
Remark 1.1 If w is a solution of (1.3) in C([O,T*),H;SQ(R?’)), then u €

e

o 3-a
Ly ([0,7%), H? 7 (R?)).
In the second theorem, we give blow up criteria if the maximal time is finite.

5
Theorem 1.2 Let a > 0 and 2 < o < 1 and let u € C’([O,T*),H;fa(Rs)) N

‘o

L5
L? ([0, %), H; la(R?’)) be a maximal solution of (1.3) given by Theorem 1.1.

@ 1 u(0)] 5

a,

Qa(Rg) < % then T* = +o0.

Q= |

Gi) If T* is finite, then [} [[u(t)|

5
2"
a,

dt = +o0.
3)

Q= |

L 20
In the next theorem, we show that the norm of the global solution in H ; 1 a(R?’) goes to zero at

infinity.

Theorem 1.3 Leta > 0 and% <a<llIfue C(R*,HEEQQ(RB)) is a global solution of (1.3),
then we have :
lim Ju(t)]

5
t—+oo a2

In the last theorem, we prove the stability of global solutions of (1.3).

2a(

.5
Theorem 1.4 Ler u € C(R*,H?,” (R®)) be a global solution of (1.3) and let v° &

«@
—2a

C(R*, Hf (R®)) be such that

1
«

0,02
9 =1 5 e < 16

1
ay
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Then, equation (1.3) with the initial data v° has a global solution. Moreover; if v is the corresponding
global solution, then for all t > 0 we have
t

1
o) =u@®l? 5 .+ 7 lols) —uls)? 5,  ds
i w4 i3 @)
c (o]
s [ Ol ds
< ||’UO uOHQ s e 0 Haé (R3)
H§i2a(R3)

The remainder of this paper is organized in the following way. In Section 2, we give some
notations and important preliminary results. Section 3 is devoted to proving the existence of solutions

in the critical Sobolev—Gevery spaces Hf iza(R?’). In Section 4, we show the blow-up result of

maximal solution in L?([0,77), Hfia(RS)). In Section 5, we prove the non blow-up result in

2Q(R3). Finally we give the proof of the stability result for global solutions in Section 6.

2 Notations and preliminary results

2.1 Notations. In this section, we collect some notations and definitions that will be used later.
* The Fourier transformation is normalized as
FOEQ) = 1O = [ eplcin-Of@)de, €= (61,608 <R
* The inverse Fourier formula is

FUg)w) = 20 [ exp(-i-a)gl€)dg, @ = (o1,2,m3) € B,
R3

+ The convolution product of a suitable pair of functions f and g on R? is given by

(f * o)z /f

« If f = (f1, f2, f3) and g = (g1, 92, g3) are two vector fields, we set f ® g := (g1f,92f, 93f)
and div(f ® g) := (div(g1f), div(gaf),div(gsf)).

* The homogeneous Sobolev—Gevery spaces are defined as follows: for a, s > 0, 0 > 1 and
|D| = (— )2 we set

: 1 .
H: ,(R®) = {f € L*(R?) : e"IPI” f € F*(R?)}.
Moreover, we equip H; ,(R®) with the norm

1
1y = 1P £l

and the associated inner product

1 1
(£ 9); = (P17 f,eP7 g) .
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* We define also the following spaces:

pearin = Lresmem): [ e s 170e1) d < oo}

0<t<oo

with the norm
> \4
L. S—da( g F(t )d)
15y = ([ 16570 (0 1 01) e

L2(75 ) = {f e SR B s [ [ e agar < oo}
0 R3

s o= ([ [ 65217 0 aar)

* By P we denote the Leray projection operator defined by

and

with the norm

P =1I;—V(-A)tdiv,

£ f(9)

F(PFIE) = f(&) - L

¢.

2.2 Preliminary results. In this section, we recall some classical results and we give new technical
lemmas.

Lemma 2.1 ([1]) Let E be a Banach space, B a continuous bilinear map from E X FE into F, and
let a be a positive real number such that o < m, where

1Bl = sup [[B(u, ).
lull<1, fjoll<1

Then, for any a in the ball B(0, ) in E, there exists a unique x in B(0, 2a) such that © = a+ B(x, x).

Lemma 2.2 ([6]) Leta > 0, 0 > 1 and (s1, s2) € R? be such that s1 < % 89 < % and s1 + s9 > 0.
Then, there exists a constant C' = C(sy, s2) such that for all u € Hgla (R?) and v € H;j?a (R3) we
have

9001 100 g < Ol ooy I, e @1

Lemma 2.3 Leta > 0 and % < a < 1. Let Q be the bilinear form defined in (1.2). Then, there

.5 _3a
exists a constant C > 0 such that for all u,v € H? , * (R3) we have

1QCw, )| 530 < Cliull 53¢ Il 53 (2.2)

Q= |

1
o “v

Q\H |
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Proof. Thanks to the inequality (2.1), we get

QG 0} 3o < Coup (100 g s+ 01005 )
HE 1 al a;
<O(lull 55 V0l 5 _sp + 1ol 5 s [Vl g 55 )
a,é a,é a,é a,é
<200l - ol 515
Ho1 Hi1
This ends the proof.
Lemma 2.4 Let u be the solution in C([0,T],S") of the Cauchy problem
Ou+ (—A)u = f,
u(0,z) = u’(z),
witthLQ([O,T],Ha; “) and u° eH2 “. Then,
_2 420 5
ue ﬂLP 0,70, 12,7 ") ne((o,1], H2 5.
p 2 Ot ke
Moreover, we have the following estimates:
ol g+ DA s < 1O ot [ 5
aé aé aé aé
2 1
[t (sup fa(e 01} ae]” < 105+ IS
R3 o<t/ <t ai 07'5)’HZL )
U o <l
Ll TR LI T

(2.3)

(2.4)

(2.5)

Proof. The first estimate is just the energy estimate. To prove the second one we write Duhamel’s

formula in Fourier space. Namely,

1, = () ¢ [ eI s, )

0

By the Cauchy—Schwartz inequality we get

sup |a(t',€)| < [u9(€)] +

0<t/'<t f|§|a Hf(é-’ )HL Ut)

for any 0 < ¢ < T'. Multiplying the obtained inequality by | ]%_20‘6“"5 *, we obtain

g2 72 enlel®

V2lgle

€572 € sup [a(t', )] < [¢]2 e K" [ud(g)| +
0<t'<t

1F (&) L2 o, -
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Taking the L?-norm with respect to the frequency variable £, we conclude that

3a *

2 14
[t (sup (a0l de|” < O g+ 151,
R : 2(0.0), 62 )

o<t/ <t I

1
'

Since the map ¢t +— (t,£) is continuous over [0, 7] for almost all fixed § € R3, the Lebesgue

dominated convergence theorem ensures that u € C ([0 T], H B 2a(R3)).

Similarly, we have
5 5 — t ~
€127l o] < Jgf2 e el ] 4 / g2 eI ekl (s, €)] .
0

Taking the L?-norm with respect to time and using Young’s inequality, we obtain

t 3 t , 3 -
U ra“%%f'“\a(s,s)de] S(/ leaeQS'f'a“) €[50 cnle D)
0
/ ePeele g < / (€0 e2elel (s, ¢ >|2ds)

1
< (g5 el 0] + </ |5|5—6ae2a'€°‘|f<s,£>12d5)2
0

Taking the L?-norm with respect to the frequency variable £, we obtain

Il ooy S I gne + 71 e 2.6)
#( aé) a% a% )
Finally, the last inequality follows by interpolation
_2 2
L L 8
“a @ oy
and
2
lull® 5 20 < HUH” ol -
H21 r L ai
asq (l o iy

Taking the L'-norm with respect to time and using the inequalities (2.4) and (2.6), we get (2.5). U

-5
Lemma 2.5 There exists a positive constant o > 0 such that for any initial data u° in H 272 with
~ .5 -5
||u0HH%72a < go equation (1.3) has a unique global in time solution v € L>°(H272Y)NL*(H2~%)
which is analytic in the sense that

\/ﬂD‘au + ||e\/£|D|au” .5 C()H’LL H ,,ga, (27)

e pagirem <

HLOO(H%72Q)

where eVUPI* is a Fourier multiplier whose symbol is given by eVl and co is a universal constant.
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Proof. The proof of Lemma 2.5 is inspired by the work of Bae (see [2]). This proof is done in
three steps. We first apply the Fourier transform to the integral form of the fractional Navier—Stokes
equation

- t 2
a(t, €) = et g0 _ / e~ (=P 7 (P(div (1 @ u))) ds. 2.8)
0

Step 1. First, we estimate v« in L™ (H g_m). Multiplying (2.8) by || 3_20‘, we get
N t « —_—
(e, )] < el + [ eI g as
0
5 - t o —
< B+ sup [ e g as
0<t<oo JO

5 9015 b g —(t—s)el2e [
< g3 |u0<5>|+/ P 4 sup |¢li 1 T (e, )
0 0<t<oo

5 901 D 7_ —
<[ uO©)] + [g[2 7 sup fu@u(t, ).
0<t<oo
Taking the L?-norm with respect to the frequency variable £, we get

lll ;

. <
LOO(H%—QQ) — ||'LL

: %—2@ =+ C%—2a,g—2a”u”2i

°Il, 2.9)

oo (17372’

Now, we estimate u in LQ(Hg_QO‘). Multiplying (2.8) by [¢| 3= we obtain

— t el —_—
€150at, &) < 612%™ [ud()] + /0 e I a @ u(s, ©)| ds.

Taking the L?-norm with respect to time and using Young’s inequality, we deduce that

([T 1e-erac.o1° dt)é

< ([ tepee g ar)
0

o t 7 2 2 %
+(/ [/ |§’2a€(ts)€|a!@(s,§)|ds] dt)
0 0

< I6lE 2B + [ lePee e as ( / \§|76a|u<®\u<s,§>|2ds)2

1
2

< e[S (e)] + ( / \€I7‘6“|@(s,£)l2d8>

Taking the L?-norm in ¢ and using Lemma 2.2 and Holder’s inequality, we have

o0 — 2
0l g oy < 105+ ([l ST a0, agas)

o0
0 2 2
<1000+ Comaoan [Tl g, )
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> 2 2 %
< 1000400+ Comaoan( [ Tl s sup Jul?g )
0 0<

<t<oo
which yields
HUHL2(H77 = Huo” g " —2a +C“’ a——20¢” HL2 ija || HLOO(Hj—Qa) (210)
Step 2. Combining (2.9) and (2.10), we get
[[ull; oy Tlull 5 5 <200 gz + Clull s gz + 0l o 3oa)” @11
Loeo(H L2(H2™) — 272 Loo(H27%) L2(HZ™%) ‘

with C = Cs o5 -9q T Cs_, 5 5, Let0 < gy < Cp be such that ||u0HH%72a < &p, where
2

2 %3

Co = 1i5 mm(%, 1). Moreover, let 16¢50 < < min(

o i), and take

B, = {u € Lo°(H3722) N LA(H3) el gy < 7“}.

Hu“ioo(H%—?a) ay =

We also use 1) definied by
t
P(u) = e A0 — / e~ (=2 D(div(u @ w)(s)) ds.
0

Then, we have

0 2
)| -2y + IO o ey = 2005+ C Ul gy + e
This yields
3r
||u HH,,QQ <egp < 16C"

Finally, we get
I g2y 100 ) <7

So,

Moreover, for all uq,us € B,, we have

l(ur) — w(uz)HEw(Hg,ga < ||IB(uy — ug,u1) + B(ug,u; —u
< O([Jual -

Q)HEOO(H%72D¢)
2l 520 lur = wall

LOQ Hj 2a L°° H§ 204)
< 207“||U1 - U2|| H?‘QO‘)
*Hul ~ 2l p gg-2ay
where B(u,v) = — [; e~ (=)2)P(div(u ® v)(s)) ds. Similarly, we have

J46(u1) = ) 5o < I1B01 =z, 1) + Bluz, w1 —
< C(Ju]

2)||L2(Hg_a)

L2 H?W + Hu2||L2(H%’Q))Hu1 - u2||L2(H%7a)

< 20r[lur —uall 5 5
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< Sllur — vl

.5 .
L2(H37)

N

This implies the existence of a global solution in L>(H %720‘) NL*(H %70‘) for small initial data in
H gfza(R?’). Moreover, we have the estimate

lell ;

O PP 7

H§—2a :

Step 3. Multiplying (2.8) by eVl |, we obtain
eV a2, ©)|

< 6\/E|§|a*t|§\2a|;5‘ + /t ef(H)\EIQHx/EI&\“KH@‘ ds
0
< VU= FHEP = 3UEP 0] 4 /t VeI =3Il =5 (=9 lEl* o =3 (=9I o VSIEI" | ¢ | @ | ds.
0
Since eVIEl"=3tE* i uniformly bounded in time and &, we have
eVl a(t, €)|
o (e—%ﬂfl“w + / P (T / VR a6 — ) Vo1 i) di ds)
0

— t —
§00<6_§t|£|2“‘u0|+/ |§‘e—§(t_s)£l2a,V®V|d5)
0

IN

with V (¢, -) = e*/ﬂmau(t, ) and ¢y = /e = e. Then, going through the previous steps, we get

||VHLOO(H%72&) + ||V||L2(H%7a) S COHU’OHH%f&x’

which implies that

He\/ﬂD‘auHioo(H%72a) S COHUOHH%72Q : (212)
This completes the proof. U
3 Proof of Theorem 1.1
Let B(u,u) be the solution to the fractional heat equation

atB(ua ’U,) + <_A)QB(U7 u) = Q(ua u)a

div B(u,u) = 0, (3.1

B(u,u)(0) =0,

with the bilinear operator () defined in (1.2) and

t
B(u,u) = —/ e =R D (div(u @ u)) ds.
0
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Thanks to Lemma 2.3, we have

T
| 1wl
0 Hu,

L ds < C||U||24 L 3-d HU||24 .33
1 LR(HZ, %) Lj(H? L ?)
Thus, combining Duhamel’s formula and the inequality (2.5), we obtain
IBu,w)|| 5 30 <Cllul| 5 30 |lul] .5 80 .
272 272 272
Lp(H?, %) L%‘(Ha,i ) T(H?1 %)
This implies that
1Bl | 5.3 <C<Cy
ZYCLIRED
Thanks to Minkowski’s inequality, we have
—t(—=A)*, 0 < 0 32
e U a U . .
[ iy ity <1005 ¢2)
Thus, if ||uOHH%_2a < ﬁ, we get
wk
a 1 1
—t(=A)*, 0 < T =
e U o <
” it %) = 16, < a7m]

According to Lemma 2.1, there exists a unique solution of (1.1) in the ball with center 0 and radius

5 _3a o
3¢ in the space L*([0, T); Ha2§ 2) such that u(t, z) = e {20 + B(u, u).

. C - 5_9
We now consider the case of a large initial data u° € Ha2 1 “ Let Puo > 0 be such that

o

1

a P 2 1
</ €2a|f\ |£‘5 4a’u0|2 d§> < @
1€1=pug 0

—

Using the inequality (3.2) and defining vo = F ! (x¢|< Pug u9), we get

e RO s e
L4T(Ha2% 2)
< e—t( A)"‘];—l . + e—t(—A)aU N
|| (x5 | ol %,
1
< 7"— e t( A) U 5_3a .
=~ 800 || 0” %(Haéj’g)

T . 2
Ty B N e R
w5y Jo Wiel<pu,

T . 2
< [ [ / r&“ae%'f'“ruwds] at
0 €1 <pug
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< Tpifflluoll4

aé
This yields
—t(—=A) 1
e ] g < @D -
Ly (H el ) ai
Thus, if
a 1
8Copd, [|u°|| gl ST (3.3)

T

then we obtain the existence of a unique solution of (1.1) in the ball with center 0 and radius 2 é in

a 3a

.5 _3a 3a
the space L*(]0, T7; H; 2'). And we observe that if u is a solution of (1.1) in L*([0, T; H2 2,
then Q(u, u) belongs to LQT(H; 1 “) by Lemma 2.3. Hence, Lemma 2.4 implies that the solution u

. 5_9q 9 -5 _q
belongs to C([0, T); H?, ™) N L*([0, T, H? , ).

4 Proof of Theorem 1.2

We begin by proving the blow-up result (ii). Suppose that

T*
/ lu(®)]? ;. dt < co.
0 H?

a,

R |

Let a time 7' € (0,7™) be such that fg* u(®)||> ;_. dt < f5. Lemma 2.2 implies that for all

H

5_
2
a,k

€ [T, T*) and z € [T, t] we have

z
a2 5., +2 / @I 5, ds < (D)2 o, +20 | Ju)] 5 aullu@)P 5, ds
1 1 1 T H 1 H21
“a “a “*E T o
< |lu 2 + = su u(s
[[u(D)II I SSI;H ()HHgfa
a5 @y
Hence, we can deduce that
2 2
sup |ju 5, < |lu s .+ = sup |[u(s)|.s_
nggtll ()HHg1 (D", - SsgtH ()Hnga,
a5 a s a5

which implies that

su u(s)|| s, <C
S )] < Cr

1
1
with Cr = § + (15 + [[u(T )||2% N

0‘7

Q= \

Let M = max (supg<;<7 [|u(t)]| . %_QQ,CT). Then, for all ¢ € [0,7*) we get
=t= H

wd
(0520 < M-

Q\H |
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By the interpolation formula and Holder’s inequality, we deduce that

3o

u € L4([0,T*),H§;?).

Let 0 < ty < T™ be such that

[l

Now, we consider the Navier—Stokes system starting at t = £y
v + (—A)*v 4+ v - Vv = —Vg,
dive =0,
v(0) = u(to).

Then, we obtain

v t 5_ 3a = u t + t ~5-3
N ey = I+ i
= ||u(t o
| ()”L‘l([tmT*)HagisT)
1
< DV
- 4Co

which implies the existence of a unique solution to the above system on [0, 7™
extended to the interval [0, 7). This is absurd.

Next, we prove the first claim of Theorem 1.2. We have

Ou+ (—=A)*u+u-Vu=—Vp.

Taking the inner product in H 2 (R3) with u and using Lemma 2.2, we get

’a

1d

2 a, (12 .
e 1A g o S N V) g
<lu@ull g slull -
A1 02"
< Cllull 5 3zallull® 5,
a,é HEy
Let
T =supyt>0: sup ||u(z -§—o¢<l
{6202 sup Fu(e)l 50 < &)
For all 0 < t < T we have
T
2
[w@I? 2, + /0 a2 5, d= < 0] 5 o, < (3)°
HoL ag a,é

Then, T = T* and J~ Hu(Z)HZ

5_4
21
Yo

I
H

,dz < HUOH2

lu(®)]%

H

. " ucz)

2 o

Q= I
2 v

Q= I
8 w\cn

Q\H |

— tp) that can be

dz < oo. Therefore, T* = oo and for every ¢t > 0 we get
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5 Proof of Theorem 1.3

In this section we prove that
lim {|u(t)]

5
t—00 H?2
a,

2 :O

1
@

Qa(

L5 - .
For0 < e < % letu € C(RJF,H;lQa(R‘g)). As H? | R3) — Hg_Qa(R?’), we infer that

uel (R*, H g_Qa(R?’)). We can conclude that there exists a time £y > 0 (see Remark 1.5 in [11]).
For every t > ty we have
u@)] 520 <

Applying Lemma 2.5, for all £ > ¢5 we get

eV = w320 < ulto)l 320 <&

i3
Consider the following system
v+ (—A)*v +v- Vv =—Vp,
dive =0,
v(0) = u(to).

By the uniqueness of solutions to (1.1) in L™ (H %_25‘(R3)), for all t > 0 we obtain

|’e\/f|D|”‘v(t)HH%Q(l = He\/ZID\au(t + to)HHg,ga
= ||leVEHo—tIDI%y (¢ 4 1)

||H%—2&

<e.

Let a time ¢; > tg > 0 be such that \/t; — g > a. Forall t > t; — g, we get

Da DOc_ Da Da
1P D (@) gz = [l PIVHPI VAP y @) o,
< V1P u ()]

H%72a

<e.

Now, we consider the following system

w + (—A)%w + w - Vw = —Vp,

divw = 0,
w(0) = v(ty).
We obtain
e PP w (@)l 52 = NP0t + 1)l 5o
< [VTFEPE (4 )] 5
<e,
which yields the result
lim || w(t)|| .5 5. =0.

t—o0 H2 %
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6 Proof of Theorem 1.4

The proof of Theorem 1.4 is identical to the proofs presented in [3, 9]. Let v €
c((0,T%), H2 e
We want to prove that 7% = oo, if ||u(0) —

(R 3)) be the maximal solution of (1.1) corresponding to the initial conditional v°

OH 2e < E.

8 w\c

Q= \

Putw = v — u and w" = v — u(0). We have

ow+ (—A)*w+w-Vw+u-Vw+w-Vu=—Vp.

Then, we get
d
||w||2 3 oa F2IA W2 5, <D+ 1y
7 H?

Ho1 al
with

Il = 2‘(11} . V’UJ,'UJ>H%;2Q’
and

I, =2|(u - Vw,w)
H?

g
a,

204’ + 2’<w vu w>H772oc|'

1 1
o 2%y

By using Cauchy—Schwartz inequality, Lemma 2.2 and Young’s inequality, we obtain
h < Clwl 5 aallwll? 5
H?

Moy

and

i TR
<2Cull g -sgllwllg-ag ol 5.
1 1 H 1
a,a ay a s
3
< 2C|ull . -4 lwll? 5 o llwll® 5,
a% a1 HQL
Yo «
C 4 2 3 2
Sl g sp 10l 5o+ S0l
a5 a, s a5
Then, we deduce that
d 2 2 2 C 4 2 3 2
el i +2HwHH§?SHwH ff“”wHHff = lull® fﬁ‘”wuﬁffaJr2Hw”H§j'
@ T @ Ta [ T Yo
Put
T =sup{t €[0,7%) : sup ||lw(2)|| 5 ., <Ll
p{t € 0.T): sup (el 5 < 4)
T

Forall t € [0,7") we have

/ (eIl

[ (t) ||2 20"

C i 4 2 2
(A2 G [ @I g s oI g, a2+ 0O

H H

1
‘o a, a,

ot

5
2

8 w\cn
Q\H I
8 w\cn
Q\H |
e

Q= |
o |
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Gronwall’s lemma yields

So, T = T* and fOT |w(2)|?

lw (@)

1 [ M g 42 < IO,

w\cﬂ

Q\»—‘ \

5
2
a

Q\»—‘ \
Q\»—A \

a7

5 dz < oo. Therefore, T* = oo and the proof is finished.
a2

1
b
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