
Journal of Nonlinear Evolution Equations and Applications ISSN 2161-3680
Volume 2021, Number 5, pp. 95–118 (May 2021) http://www.jneea.com

STACKELBERG CONTROL IN AN UNBOUNDED
DOMAIN FOR A PARABOLIC EQUATION

LIONEL LANDRY DJOMEGNE NJOUKOUE∗, GABRIEL DEUGOUE†

University of Dschang, BP 67 Dschang, Cameroon, West Region

Received on January 28, 2021, revised version on February 25, 2021

Accepted on March 5, 2021

Communicated by Gaston M. N’Guérékata

Abstract. In this paper, we investigate the Stackelberg strategy for a parabolic equation in an
unbounded domain of RN , where N ∈ N \ {0}. We assume that we can act on the system through
two hierarchical controls. One control – called follower – solves an optimal control problem, while
the other one – named leader – solves a null controllability problem. The results are obtained using
an appropriate observability inequality of Carleman and under the assumption that the uncontrolled
region is bounded.
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1 Introduction

Let Ω ⊂ RN , where N ∈ N\{0}, be an unbounded connected open set at least of class C2 uniformly
with boundary Γ (see [2] for a precise definition). Let O and ω be two non-empty subsets of Ω such
that O ∩ ω = ∅. For the time T > 0, we set Q = (0, T )× Ω, ωT = (0, T )× ω, OT = (0, T )×O
and Σ = (0, T )× Γ. Then, we consider the following heat equation

∂y

∂t
−∆y + a0y = vχO + kχω in Q,

y = 0 on Σ,
y(0, .) = y0 in Ω,

(1.1)
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where y0 ∈ L2(Ω) and the controls v and k belong to L2(OT ) and L2(ωT ), respectively. The
functions χO and χω are, respectively, the characteristic functions of the control sets O and ω. The
function a0 is such that a0χΩ\ω ∈ L∞(Q). We also assume that the unbounded sets Ω and ω are
such that

Ω \ ω is bounded. (1.2)

Under the assumptions on the data we prove as in [18, Theorem 9.1, p. 341] that the system (1.1) has
a unique solution

y := y(v, k) ∈ C
(
[0, T ];L2(Ω)

)
∩ L2

(
(0, T );H1

0 (Ω)
)
.

Let Od ⊂ Ω be an open set representing an observation domain. We define the following functional

J(v, k) = ‖y(v, k)− zd‖2L2(OT
d )

+ α‖v‖2L2(OT ), (1.3)

where α > 0 is a constant, zd ∈ L2(OTd ) is a desired state and OTd = (0, T )×Od.

The motivation of our problem comes for example from environmental sciences. The system
(1.1) can describe the diffusion of a pollutant in an unbounded domain (e.g., a river). We can view
the state variable y as the concentration of the pollutant. Then, ω can be regarded as a part of the
domain where we can apply a control k which intends to clear the pollutant in the river at a given
final time T . Additionally, we want to reduce the concentration of the pollutant to a desired state
zd in Od and to this purpose we apply the control v in O. In other words, we want to control the
concentration of the pollutant in the Stackelberg sense.

In this paper, we apply the Stackelberg control strategy which combines the optimal control
problem and controllability problem. In order to explain the methodology, we consider the following
problems.

Problem 1 (Optimal control problem) Let ω and O be two non-empty subsets of Ω such that
O ∩ ω = ∅. Given k ∈ L2(ωT ) and y0 ∈ L2(Ω), find the control v̂ := v̂(k) ∈ L2(OT ) such that

J(v̂, k) = inf
v∈L2(OT )

J(v, k), (1.4)

where the functional J is given by (1.3).

Problem 2 (Null controllability problem) Let ω, O and Od be three non-empty subsets of Ω such
thatO∩ω = ∅ andOd∩ω 6= ∅. Assume that (1.2) holds true. Let v̂(k) be the optimal control obtained
in the Problem 1. Given y0 ∈ L2(Ω), find a control k̂ ∈ L2(ωT ) such that if ŷ = y(t, x; v̂(k̂), k̂) is a
solution of (1.1), then

ŷ(T, x) = y(T, x; v̂(k̂), k̂) = 0 for x ∈ Ω. (1.5)

There are several works on optimal control problem as well as on approximate or/and null
controllability in bounded domains for parabolic equations. We, respectively, refer for instance
to [19, 21, 29] and to [9, 10, 11, 12, 30] and the reference therein. Concerning the study of null
controllability of parabolic equations in unbounded domains, few results are available in the literature.
S. B. De Menezes and V. R. Cabanillas [4] studied the null controllability of a semilinear heat
equation in an unbounded domain with nonlinearities of the form f(y), the real function f being
of class C1 and globally Lipschitz. The results were achieved by means of a fixed-point theorem
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and under the assumption that the uncontrolled domain is bounded. V. R. Cabanillas, S. B. De
Menezes and E. Zuazua [2] considered the null controllability of a nonlinear parabolic equation
with the nonlinearities of the form f(y,∇y). Still under the assumption that the uncontrolled
region is bounded, M. González-Burgos and L. de Teresa [14] proved the null controllability of
a semilinear heat equation with the nonlinearities of the form f(y,∇y) which grows slower than
|y| log3/2(1 + |y| + |∇y|) + |∇y| log1/2(1 + |y| + |∇y|) at infinity. L. de Teresa [5] proved the
approximate controllability of a semilinear heat equation in RN by an alternative method that
consists in writing the heat equation in the similarity variables and using the weighted Sobolev spaces.
L. de Teresa and E. Zuazua [6] proved the approximate controllability of a semilinear heat equation
in an unbounded domain with the nonlinearities of the form f(y), f being globally Lipschitz. The
results are achieved by means of an approximation method which consists in approximating the
domain Ω by a sequence of bounded domains ΩR = Ω ∩BR, where BR is the ball centered at zero
with radius R.

If we succeed in solving Problem 1 and Problem 2, then system (1.1) is null controllable in
the sense of Stackelberg. Hence, the control v, which solves the optimal control problem, is called
follower, while the control k, which solves the null controllability problem, is named leader. The
Stackelberg leadership model was introduced by H. von Stackelberg [28]. This model is a strategic
game in economics in which two firms compete on the market with the same product. The first to act
must integrate the reaction of the other company in the choices it makes in the amount of product
that it decides to put on the market. There are few works in the literature on Stackelberg’s control
of partial differential equations. J. L. Lions used this concept for a linear parabolic equation with
two controls (see [20]). The follower aimed to bring the state of the system to a desired state, while
the leader solved a problem of approximate controllability. O. Nakoulima [27] used the concept of
Stackelberg for a linear and backward parabolic equation with two controls to be determined. In his
work, the follower solved a null controllability problem with constraints on control while the other
control solved an optimal control problem. M. Mercan [22, 23] revisited the notion of controllability
in the sense of Stackelberg given by O. Nakoulima [27] by choosing the follower of minimal norm.
This new notion is then applied by M. Mercan and O. Nakoulima [24] on the controllability of
a two-stroke problem with constraints on the states. The results were obtained by means of a
Carleman inequality adapted to the constraints. M. Kéré, M. Mercan and G. Mophou considered the
Stackelberg strategy for coupled parabolic equations with a finite number of constraints on one of
the state (see [17]). The follower control was supposed to bring the solution of the coupled system
subject to a finite number of constraints at rest at final time T > 0 while the leader control expressed
that the state of the coupled system do not move too far from a given state. Recently, L. L. Djomegne
Njoukoué, G. Mophou and G. Deugoué [8] proved the hierarchic control for a linear backward
heat equation with two controls. The follower solved an optimal control problem while the leader
solved a null controllability problem. The results were obtained by means of a Carleman inequality
associated to a non-homogeneous Dirichlet boundary condition. The authors in [15, 16, 25] used
the Stackelberg control to combine the concepts of controllability with robustness. In their work
the leader is responsible for controllability to trajectories objective and the follower solves a robust
control problem. Recently, in [13, 26], the authors used Stackelberg control to solve problems with
incomplete data. In their work, the leader solves a null controllability problem and the follower
solves an inf-sup optimization problem.

The works cited above on Stackelberg strategy for partial differential equations were considered
in bounded domains. As far as we know Stackelberg null controllability has not yet been considered
in an unbounded domain.
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In this paper we consider a Stackelberg null controllability of a heat equation in an unbounded
domain. Using the fact that the control which brings the system to rest at final time acts on an
open unbounded set such that the uncontrolled domain is bounded, we prove using an appropriate
inequality of observability that the system (1.1) is Stackelberg null controllable. More precisely, we
prove the following result.

Theorem 1.1 Let Ω ⊂ RN , whereN ∈ N\{0}, be an unbounded connected open set with boundary
Γ at least of class C2 uniformly. LetO, ω andOd be three non-empty subsets of Ω such thatO∩ω = ∅
and Od ∩ ω 6= ∅ . Assume that the assumption (1.2) holds true and that the parameter α is large
enough. Then, there exists a positive weight function θ (the definition of θ will be given later) such
that for any y0 ∈ L2(Ω) and for any zd ∈ L2(OTd ) with θzd ∈ L2(OTd ) there exists a unique control
k̂ ∈ L2(ωT ) and an associated optimal control v̂ such that the corresponding solution to system
(1.1) satisfies (1.5).

Remark 1.1
(a) In this paper, we are supposing that O ∩ ω = ∅; this means that the domain of the follower

control and the leader control are disjoint. Note that in a realistic situation the leader control cannot
decide what to do at the points in the domain of the follower. Indeed, if O ∩ ω 6= ∅ once the leader
has been chosen, the follower is modifying the leader at those points.

(b) In Theorem 1.1, we assumed that α must be large enough. This assumption on α is needed
at the level where we want to establish an observability inequality of Carleman.

(c) The assumption (1.2) is important to solve the Stackeberg control associated to system
(1.1). Indeed, the potential in (1.1) is not bounded since our domain is unbounded. However, using
assumption (1.2), the problem can be reduced to the case where the potential is now supported in a
bounded set.

The rest of this paper is organized as follows. In Section 2, we study the Stackelberg null
controllability problem for an auxiliary heat equation. In Section 3, we give the proof of Theorem 1.1
using the results obtained in the previous section. A conclusion is given in Section 4.

2 Solution of Stackelberg null controllability problem for an auxiliary
heat equation

We study Problem 1 and then Problem 2 for the following initial-boundary value problem for the
linear system 

∂y

∂t
−∆y + ay = vχO + hχω in Q,

y = 0 on Σ,
y(0, .) = y0 in Ω,

(2.1)

where vχO, hχω ∈ L2(Q) and y0 ∈ L2(Ω). We assume that there exists a constant K > 0 such that

‖a‖L∞(Q) ≤ K. (2.2)
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Under the above assumptions on the data the system (2.1) has a unique solution y := y(v, h) ∈
C([0, T ];L2(Ω)) ∩ L2((0, T );H1

0 (Ω)). Moreover, there exists a positive constant C = C(K,T ),
which depends on K and T , such that

‖y(T, ·)‖2L2(Ω) + ‖y‖2L2((0,T );H1
0 (Ω)) ≤ C

(
‖y0‖2L2(Ω) + ‖(vχO + hχω)‖2L2(Q)

)
. (2.3)

From now on, we write C(X) to denote a positive constant whose value varies from line to line but
depends on X .

2.1 Solution of Problem 1 for system (2.1)

We are interested in Problem 1 for the linear system (2.1), that is, for any h ∈ L2(ωT ) we look for
v̂ := v̂(h) ∈ L2(OT ) such that

J(v̂, h) = inf
v∈L2(OT )

J(v, h), (2.4)

where
J(v, h) = ‖y(v, h)− zd‖2L2(OT

d )
+ α‖v‖2L2(OT ), (2.5)

with zd ∈ L2(OTd ), α > 0 and y = y(v, h) being the solution of the linear system (2.1).

Proposition 2.1 Assume that (2.2) holds true. Assume also that there exists a constant C =
C(K,T ) > 0 such that

α > C. (2.6)

Then, for any h ∈ L2(ωT ) there exists a unique optimal control v̂ := v̂(h) ∈ L2(OT ) such that (2.4)
holds true.

Proof. Let z = z(v) and l = l(h) be, respectively, solutions of
∂z

∂t
−∆z + az = vχO in Q,

z = 0 on Σ,

z(0, .) = 0 in Ω

(2.7)

and 
∂l

∂t
−∆l + al = hχω in Q,

l = 0 on Σ,

l(0, .) = y0 in Ω.

(2.8)

Then, it is clear that z and l belong to C([0, T ];L2(Ω)) ∩ L2((0, T );H1
0 (Ω)). Moreover, there exists

C = C(K,T ) > 0 such that

‖z(T, ·)‖2L2(Ω) + ‖z‖2L2((0,T );H1
0 (Ω)) ≤ C‖v‖

2
L2(OT ) (2.9)

and
‖l(T, ·)‖2L2(Ω) + ‖l‖2L2((0,T );H1

0 (Ω)) ≤ C
(
‖y0‖2L2(Ω) + ‖h‖2L2(ωT )

)
. (2.10)
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Define on L2(OT )× L2(OT ) the symmetric bilinear functional a(., .) by

a(u, v) =

∫
OT

d

z(u) z(v) dx dt+ α

∫
OT

u v dx dt for all u, v ∈ L2(OT ), (2.11)

and on L2(OT ) the linear functional

L(v) =

∫
OT

d

z(v) (zd − l(h)) dx dt for all v ∈ L2(OT ).

Then, for any v ∈ L2(OT ), using (2.9) and (2.6), we have that the bilinear functional a(., .) is
coercive on L2(OT ), that is,

a(v, v) = ‖z(v)‖2
L2(OT

d )
+ α‖v‖2L2(OT ) ≥ β‖v‖

2
L2(OT )

with β = α− C > 0. Using (2.9), we infer that a(., .) is continuous on L2(OT )× L2(OT ) and

|a(u, v)| ≤ C(K,T, α)‖u‖L2(OT )‖v‖L2(OT ).

Moreover, by (2.9) and (2.10), we get that the linear functional L is continuous, that is,

|L(v)| ≤ C
(
‖zd‖L2(OT

d ) + ‖y0‖L2(Ω) + ‖h‖L2(ωT )

)
‖v‖L2(OT ),

where C = C(K,T ) > 0.

Now, observing that y (i.e., the solution of the linear system (2.1)) can be decomposed as
y = z + l, we have that the cost function defined by (2.5) can be rewritten as

J(v) = a(v, v)− 2L(v) + ‖l(h)− zd‖2L2(Q).

It then follows from the fact that the symmetric bilinear functional a(., .) is continuous and coercive
and the linear functional L is continuous that there exists a unique optimal control v̂ := v̂(h) ∈
L2(OT ) such that (2.4) holds. �

Proposition 2.2 Assume that (2.2) and (2.6) hold true. Let v̂ := v̂(h) be the solution of (2.4) and let
ŷ := y(v̂, h) be the associated state. Then, there exists p̂ ∈ L2((0, T );H1

0 (Ω)) ∩ C((0, T );L2(Ω))
such that {v̂, ŷ, p̂} satisfies the following optimality system

∂ŷ

∂t
−∆ŷ + aŷ = v̂χO + hχω in Q,

ŷ = 0 on Σ,

ŷ(0, .) = y0 in Ω,

(2.12)


−∂p̂
∂t
−∆p̂+ ap̂ = (ŷ − zd)χOd

in Q,

p̂ = 0 on Σ,

p̂(T, .) = 0 in Ω

(2.13)

and
v̂ = − p̂

α
in OT . (2.14)
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Proof. From Proposition 2.1, we already have (2.12). To complete the proof of Proposition 2.2, we
express the Euler–Lagrange optimality conditions which characterize the optimal control v̂:

lim
λ→0

J(v̂ + λv, h)− J(v̂, h)

λ
= 0 for every v ∈ L2(OT ),

which after calculations gives∫
OT

d

z(v)(ŷ − zd) dx dt+ α

∫
OT

v̂v dx dt = 0 for every v ∈ L2(OT ), (2.15)

where z(v) is the solution of 
∂z

∂t
−∆z + az = vχO in Q,

z = 0 on Σ,

z(0, .) = 0 in Ω.

(2.16)

To interpret the relation (2.15), we consider the adjoint state solution of (2.13). Since (ŷ− zd)χOd
∈

L2(Q), we deduce that the system given by (2.13) has a unique solution in L2((0, T );H1
0 (Ω)) ∩

C([0, T ];L2(Ω)). Thus, multiplying (2.16) by p̂, that is the solution of (2.13), and integrating by
parts over Q, we obtain∫

Q
z(v)(ŷ − zd)χOd

dx dt =

∫
OT

v p̂ dx dt = 0 for every v ∈ L2(OT ). (2.17)

This, together with (2.15), gives∫
OT

(p̂+ αv̂)v dx dt = 0 for every v ∈ L2(OT ),

from which we deduce (2.14). �

Remark 2.1 Note that the follower v̂, the adjoint state p̂ and the state ŷ depend on h. Moreover, in
view of (2.15), for every v ∈ L2(OT ) we have

0 =

∫
OT

d

z(v)(ŷ − zd) dx dt+ α

∫
OT

v̂v dx dt

=

∫
OT

d

z(v) z(v̂) dx dt−
∫
Q
z(v)(zd − l) dx dt+ α

∫
OT

v̂v dx dt

= a(v, v̂)−
∫
OT

d

z(v)(zd − l) dx dt,

where the bilinear functional a(., .) is given by (2.11) and the function l = l(h) is a solution to (2.8).
Hence, taking v = v̂ in the latter identity and using the coerciveness of a(., .), we deduce that

β‖v̂‖2L2(OT ) ≤ ‖z(v̂)‖L2(OT
d )‖zd − l‖L2(OT

d ),

which in view of (2.9) and (2.10) gives

‖v̂‖L2(OT ) ≤
1

β
C
(
‖zd‖L2(OT

d ) + ‖y0‖L2(Ω) + ‖h‖L2(ωT )

)
, (2.18)

where C = C(K,T ) > 0 and β = α− C > 0 is the coerciveness coefficient.
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2.2 Carleman inequalities

In order to solve Problem 2 for system (2.1), that is, the null controllability of a cascade linear system
(2.12)–(2.14), we need to establish appropriate inequalities of observability. So, for any ρT ∈ L2(Ω)
we consider the following adjoint systems of (2.12)–(2.14):

−∂ρ
∂t
−∆ρ+ aρ = ΨχOd

in Q,

ρ = 0 on Σ,

ρ(T, .) = ρT in Ω,

(2.19)


∂Ψ

∂t
−∆Ψ + aΨ = − 1

α
ρχO in Q,

Ψ = 0 on Σ,

Ψ(0, .) = 0 in Ω,

(2.20)

where the function a satisfies (2.2). We assume that there exists an unbounded set ω1 ⊂ ω such that

Ω \ ω1 is bounded. (2.21)

Remark 2.2 Note that with (2.21) we have that assumption (1.2) holds true.

Since Od ∩ ω 6= ∅, there exist an open set ω0 such that

ω0 ⊂ ω1 ⊂ Od ∩ ω ⊂ ω with d0 = dist(ω0,Ω \ ω̄1) > 0 (2.22)

and a function ψ such that 
ψ ∈ C2(Ω̄), ψ ≥ 0 in Ω,

|∇ψ| ≥ τ0 > 0 in Ω̄ \ ω0,

∂ψ

∂ν
≤ 0 on ∂Ω,

∑
|β|≤2

|Dβψ| ≤ τ1 in Ω,

(2.23)

where τ0 and τ1 are two positive constants. For the existence of such a function ψ in the case when
Ω is unbounded, we refer to [14, Example 1, p. 7].

Let λ be a positive real number. For any (t, x) ∈ Q, we set

ϕ(t, x) =
eλ(m1+ψ(x))

t(T − t)
, (2.24)

η(t, x) =
eλ(‖ψ‖L∞(Ω)+m2) − eλ(m1+ψ(x))

t(T − t)
, (2.25)

with m2 > m1. Then, there exists a positive constant (still denoted by C(T )) such that∣∣∣∣∂η∂t
∣∣∣∣ ≤C(T )ϕ2, (2.26a)∣∣∣∣∂ϕ∂t
∣∣∣∣ ≤C(T )ϕ2. (2.26b)
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For any F0 ∈ L2(Q) and z0 ∈ L2(Ω), consider the following system
−∂z
∂t
−∆z = F0 in Q,

z = 0 on Σ,

z(T, .) = z0 in Ω.

(2.27)

Now, we state a Carleman estimate for solutions to the heat equation (2.27).

Proposition 2.3 ([14]) Suppose that assumptions (2.22)–(2.23) hold true. Let ϕ and η be de-
fined by (2.24) and (2.25), respectively. Then, there exist positive constants σ1(τ0, τ1, d0) ≥ 1,
λ1(τ0, τ1, d0) ≥ 1 and C(τ0, τ1, d0) > 0 such that for all λ ≥ λ1, s ≥ s1 = σ1(T + T 2) and for
any solution of (2.27), which we denote by z, we have

sλ2

∫
Q
e−2sηϕ|∇z|2 dx dt+ s3λ4

∫
Q
e−2sηϕ3|z|2 dx dt

≤ C(τ0, τ1, d0)

(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|z|2 dx dt+

∫
Q
e−2sη|F0|2 dx dt

)
.

(2.28)

Now, consider the following system
−∂z
∂t
−∆z + az = f in Q,

z = 0 on Σ,

z(T, .) = z0 in Ω,

(2.29)

with f ∈ L2(Q), z0 ∈ L2(Ω). Then, we have the following result for (2.29).

Proposition 2.4 Suppose that assumptions (2.2) and (2.22)–(2.23) hold true. Let ϕ and η be defined
by (2.24) and (2.25), respectively. Then, there exist positive constants s2 ≥ 1, λ1 ≥ 1 and
C = C(τ0, τ1, d0) > 0 such that for all λ ≥ λ1, s ≥ s2 and for any solution of (2.29), which we
denote by z, we have

sλ2

∫
Q
e−2sηϕ|∇z|2 dx dt+ s3λ4

∫
Q
e−2sηϕ3|z|2 dx dt

≤ C
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|z|2 dx dt+

∫
Q
e−2sη|f |2dx dt

)
.

(2.30)

Proof. System (2.29) can be rewritten as
−∂z
∂t
−∆z = −az + f in Q,

z = 0 on Σ,

z(T, .) = z0 in Ω.

Hence, z is the solution of (2.27) corresponding to F0 = −az + f ∈ L2(Q). Thus, applying
Proposition 2.3 to z and using (2.2), we deduce that there exists C = C(τ0, τ1, d0) such that
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sλ2

∫
Q
e−2sηϕ|∇z|2 dx dt+ s3λ4

∫
Q
e−2sηϕ3|z|2 dx dt

≤ C
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|z|2 dx dt+

∫
Q
e−2sη|f |2 dx dt

)
+ C

(
s2λ4K

∫
Q
e−2sηϕ3|z|2 dx dt

)
,

because s, λ > 1 and ϕ−1 ∈ L∞(Q). Choosing s ≥ s2 = max (s1, 2C(τ0, τ1, d0,K)) in the latter
inequality, we obtain (2.30). �

Remark 2.3 Note that if we make a change of variable t for T − t in (2.29) we obtain
∂z̃

∂t
−∆z̃ + az̃ = f̃ in Q,

z̃ = 0 on Σ,

z̃(0, .) = z0 in Ω,

(2.31)

where z̃(t, x) = z(T − t, x) and f̃(t, x) = f(T − t, x). Then, the global Carleman inequality
(2.30) is also valid for any z̃. This means that there exist positive constants s2 ≥ 0, λ1 ≥ 1 and
C(τ0, τ1, d0) > 0 such that for all λ ≥ λ1, s ≥ s2 and for any solution of (2.31), which we denote
by z̃, we have

sλ2

∫
Q
e−2sηϕ|∇z̃|2 dx dt+ s3λ4

∫
Q
e−2sηϕ3|z̃|2 dx dt

≤ C
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|z̃|2 dx dt+

∫
Q
e−2sη|f̃ |2 dx dt

)
.

(2.32)

From now on, we will adopt for a suitable function z the following notation

K(z) = sλ2

∫
Q
e−2sηϕ|∇z|2 dx dt+ s3λ4

∫
Q
e−2sηϕ3|z|2 dx dt. (2.33)

In the following result, we present the Carleman inequality for the solutions to systems (2.19) and
(2.20).

Proposition 2.5 Assume that α is large enough. Then, under the assumptions of Proposition 2.4,
there exist positive constants s3 ≥ 1, λ2 ≥ 1 and C = C(K,T, τ0, τ1, d0) > 0 such that for all
λ ≥ λ2, s ≥ s3 the following estimate holds true for any solution (ϕ,Ψ) of (2.19)–(2.20)

K(ρ) +K(Ψ) ≤ Cs7λ9

∫
ωT

e−2sηϕ7|ρ|2 dx dt. (2.34)

Proof. We proceed in two steps.

Step 1. We prove that there exists C = C(τ0, τ1, d0) > 0 such that

K(ρ) +K(Ψ) ≤ C
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3
(
|ρ|2 + |Ψ|2

)
dx dt

)
. (2.35)
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Applying (2.30) to the solution ρ of (2.19) and (2.32) to the solution Ψ of (2.20), and then using
the notation (2.33), we, respectively, obtain

K(ρ) ≤ C(τ0, τ1, d0)

(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|ρ|2 dx dt+

∫
OT

d

e−2sη|Ψ|2 dx dt

)
and

K(Ψ) ≤ C(τ0, τ1, d0)

(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|Ψ|2 dx dt+
1

α2

∫
OT

e−2sη|ρ|2 dx dt

)
.

Since s, λ > 1 and ϕ−1 ∈ L∞(Q), we can write

K(ρ) +K(Ψ) ≤ C
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3
(
|ρ|2 + |Ψ|2

)
dx dt

)
+ C

(
1 +

1

α2

)
·
(
s2λ4

∫
Q
e−2sηϕ3

(
|Ψ|2 + |ρ|2

)
dx dt

)
,

where C = C(τ0, τ1, d0) > 0. Set s3 = max
(
s2, 2

(
1 + 1

α2

)
C
)
. Choosing in the latter inequality

s ≥ s3, we deduce (2.35).

Step 2. Now, we want to eliminate the local term on the right-hand side corresponding to Ψ in the
estimate (2.35).

So, let ω2 be a non-empty open set such that ω1 ⊂ ω2 ⊂ Od ∩ ω. Introduce as in [1, 7] the cut
off function ξ ∈ C∞0 (Ω) such that

0 ≤ ξ ≤ 1, ξ = 1 in ω1, ξ = 0 in Ω \ ω2, (2.36a)

∆ξ

ξ1/2
∈ L∞(ω2),

∇ξ
ξ1/2

∈ [L∞(ω2)]N . (2.36b)

Set u = s3λ4ϕ3e−2sη. Then, u(T ) = u(0) = 0 and we have

∂u

∂t
= u

[
3ϕ−1∂ϕ

∂t
− 2s

∂η

∂t

]
, (2.37a)

∇(uξ) = u [(3λ+ 2sλϕ)ξ∇Ψ +∇ξ] (2.37b)

and

∆(uξ) = uξ(14sλ2ϕ+ 4s2λ2ϕ2 + 9λ2)|∇ψ|2 + uξ∆ψ(3λ+ 2sλϕ)

+ 2u(3λ+ 2sλϕ)∇ψ.∇ξ + u∆ξ.
(2.38)

Now, if we multiply the first equation of (2.19) by uξΨ and integrate by parts over Q, we obtain

− 1

α

∫
Q
ρ2uξ dx dt+

∫
Q
ρξΨ

∂u

∂t
dx dt− 2

∫
Q
ρ∇Ψ.∇(uξ) dx dt

−
∫
Q
ρΨ∆(uξ) dx dt =

∫
Q
uξ|Ψ|2χOd

dx dt.

(2.39)
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If we set

J1 = − 1

α

∫
Q
ρ2uξ dx dt, J2 =

∫
Q
ρξΨ

∂u

∂t
dx dt,

J3 = −2

∫
Q
ρ∇Ψ.∇(uξ) dx dt, J4 = −

∫
Q
ρΨ∆(uξ) dx dt,

the formula (2.39) can be rewritten as

J1 + J2 + J3 + J4 =

∫
Q
uξ|Ψ|2χOd

dx dt. (2.40)

Let us estimate Ji, i = 1, . . . , 4. We have

J1 = − 1

α

∫
Q
ρ2uξ dx dt

≤ 1

α

∫
Q
s3λ4ϕ3e−2sη|ρ|2 dx dt.

Using the Young inequality, (2.26a), (2.26b), (2.36b), (2.37a), (2.37b) and (2.38), we obtain

J2 =

∫
Q
ρξΨ

∂u

∂t
dx dt

≤ γ1

2

∫
Q
ξu|Ψ|2 dx dt+

1

2γ1

∫
Q
ξu|ρ|2

[
18ϕ−2

(
∂ϕ

∂t

)2

+ 8s2

(
∂η

∂t

)2
]

dx dt

≤ γ1

2

∫ T

0

∫
ω1

u|Ψ|2 dx dt+ C(T )

∫ T

0

∫
ω2

s5λ4ϕ7e−2sη|ρ|2 dx dt

for some γ1 > 0. Furthermore,

J3 = −2

∫
Q
ρ∇Ψ.∇(uξ) dx dt

= −2

∫
Q
ρξu(3λ+ 2sλϕ)∇ψ.∇Ψ dx dt− 2

∫
Q
ρu∇Ψ.∇ξ dx dt

≤ 1

2

∫
Q
sλϕe−2sη|∇Ψ|2 dx dt+ C(τ1)

∫ T

0

∫
ω2

s7λ9ϕ7e−2sη|ρ|2 dx dt

and

J4 = −
∫
Q
ρΨ∆(uξ) dx dt

= −
∫
Q
ρuξΨ(14sλ2ϕ+ 4s2λ2ϕ2 + 9λ2)|∇ψ|2 dx dt

−
∫
Q
ρuξΨ∆ψ(3λ+ 2sλϕ)|∇ψ|2 dx dt

− 2

∫
Q
ρuΨ(3λ+ 2sλϕ)∇ψ.∇ξ dx dt−

∫
Q
ρuΨ∆ξ dx dt,



STACKELBERG CONTROL FOR A PARABOLIC EQUATION 107

which after some calculations gives

J4 ≤
5∑
i=2

γi
2

∫ T

0

∫
ω1

u|Ψ|2 dx dt+ C(τ1)

∫ T

0

∫
ω2

s7λ8ϕ7e−2sη|ρ|2 dx dt

for some γi > 0, i = 2, . . . , 5. Finally, choosing the γi such that
∑5

i=1
γi
2 = 1

2 , it follows from
(2.40) that∫ T

0

∫
ω1

s3λ4ϕ3e−2sη|Ψ|2 dx dt

≤
∫
Q
sλϕe−2sη|∇Ψ|2 dx dt+ C (K, τ1, T )

∫ T

0

∫
ω2

s7λ9ϕ7e−2sη|ρ|2 dx dt

+
1

α

∫
Q
s3λ4ϕ3e−2sη|ρ|2 dx dt.

(2.41)

Combining (2.35) with (2.41), we deduce that

K(ρ) +K(Ψ) ≤ C(τ0, τ1, d0)

∫
Q
sλϕe−2sη|∇Ψ|2 dx dt

+ C(K,T, τ0, τ1, d0)

∫ T

0

∫
ω2

s7λ9ϕ7e−2sη|ρ|2 dx dt

+
1

α
C(τ0, τ1, d0)

∫
Q
s3λ4ϕ3e−2sη|ρ|2 dx dt.

Choosing in the latter inequality λ ≥ λ2 = max(λ1, 2C(τ0, τ1, d0)), we obtain

K(ρ) +K(Ψ) ≤ C(K,T, τ0, τ1, d0)

∫ T

0

∫
ω2

s7λ9ϕ7e−2sη|ρ|2 dx dt

+
1

α
C(τ0, τ1, d0)

∫
Q
s3λ4ϕ3e−2sη|ρ|2 dx dt.

If we take α large enough, we can absorb the last term of the latter relation on the left-hand side.
Using the fact that ω2 ⊂ ω, we deduce (2.34). Therefore, the proof is complete. �

Now, we are going to establish the observability inequality of Carleman in the sense that the
weight functions do not vanish at t = 0. We define the functions ϕ̃ and η̃ as follows:

ϕ̃(t, x) =

{
ϕ(T2 , x), if t ∈ [0, T2 ],

ϕ(t, x), if t ∈ [T2 , T ]
(2.42)

and

η̃(t, x) =

{
η(T2 , x), if t ∈ [0, T2 ],

η(t, x), if t ∈ [T2 , T ],
(2.43)

where the functions ϕ and η are given by (2.24) and (2.25), respectively. From now on, we fix
λ = λ2 and s = s3. We have the following result.
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Proposition 2.6 Assume that the assumptions of Proposition 2.5 hold true. Then, there exist a
weight function θ, positive constants s3 ≥ 1, λ2 ≥ 1 and C = C(K,T, τ0, τ1, d0) > 0 such that the
following estimate holds true for any solution (ϕ,Ψ) of (2.19)–(2.20)

‖ρ(0, .)‖2L2(Ω) +

∫
Q

1

θ2
|ρ|2 dx dt+

∫
Q

1

θ2
|Ψ|2 dx dt ≤ C

∫
ωT

|ρ|2 dx dt. (2.44)

Proof. Let us introduce a function β ∈ C1([0, T ]) such that

0 ≤ β ≤ 1, β(t) = 1 for t ∈ [0, T/2], β(t) = 0 for t ∈ [3T/4, T ], |β′(t)| ≤ C/T. (2.45)

For any (t, x) ∈ Q, we set ζ(t, x) = β(t)e−r(T−t)ρ(t, x), where r > 0. Then, in view of (2.19), the
function ζ is a solution of

−∂ζ
∂t
−∆ζ + aζ + rζ = βe−r(T−t)ΨχOd

− β′e−r(T−t)ρ in Q,

ζ = 0 on Σ,

ζ(T, .) = 0 in Ω.

(2.46)

If we multiply the first equation in (2.46) by ζ and integrate by parts over Q, we get

1

2
‖ζ(0, .)‖2L2(Ω) + ‖∇ζ‖2L2(Q) + r‖ζ‖2L2(Q)

≤ (K + 1) ‖ζ‖2L2(Q) +
1

2

∫ 3T/4

0

∫
Ω
|Ψ|2 dx dt+

1

2

∫ 3T/4

T/2

∫
Ω
|ρ|2 dx dt.

Hence, if we choose in the latter identity r such that r = K + 3
2 , using the definition of ζ , we deduce

that ∫
Ω
|ρ(0, x)|2 dx+

∫ T/2

0

∫
Ω
|∇ρ|2 dx dt+

∫ T/2

0

∫
Ω
|ρ|2 dx dt

≤ C(K,T )

(∫ 3T/4

0

∫
Ω
|Ψ|2 dx dt+

∫ 3T/4

T/2

∫
Ω
|ρ|2 dx dt

)
.

Now, using the fact that the functions ϕ̃ and η̃, defined by (2.42) and (2.43), respectively, have lower
and upper bounds for (t, x) ∈ [0, T/2]× Ω, we get∫

Ω
|ρ(0, x)|2dx+ K̃[0,T/2](ρ)

≤ C(K,T )

(∫ 3T/4

0

∫
Ω
|Ψ|2 dx dt+

∫ 3T/4

T/2

∫
Ω
|ρ|2 dx dt

)
,

(2.47)

where

K̃[a,b](z) =

∫ b

a

∫
Ω
e−2s3η̃ϕ̃|∇z|2 dx dt+

∫ b

a

∫
Ω
e−2s3η̃ϕ̃3|z|2 dx dt. (2.48)

Adding the term K̃[0,T/2](Ψ) to both sides of inequality (2.47), we obtain∫
Ω
|ρ(0, x)|2 dx+ K̃[0,T/2](ρ) + K̃[0,T/2](Ψ)

≤ C(K,T )

(∫ 3T/4

0

∫
Ω
|Ψ|2 dx dt+

∫ 3T/4

T/2

∫
Ω
|ρ|2 dx dt

)
+ K̃[0,T/2](Ψ).

(2.49)
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In order to eliminate the term K̃[0,T/2](Ψ) on the right-hand side of (2.49), we use the standard
energy estimates for the first equation of (2.20) and we obtain∫ T/2

0

∫
Ω
|∇Ψ|2 dx dt+

∫ T/2

0

∫
Ω
|Ψ|2 dx dt ≤ 1

α2
C(K,T )

∫ T/2

0

∫
Ω
|ρ|2 dx dt,

where C is independent of α. Since the functions ϕ̃ and η̃ have lower and upper bounds for
(t, x) ∈ [0, T/2]× Ω, from the previous inequality we obtain

K̃[0,T/2](Ψ) ≤ 1

α2
C(K,T )

∫ T/2

0

∫
Ω
e−2s3η̃ϕ̃3 |ρ|2 dx dt. (2.50)

Replacing (2.50) in (2.49) and taking α large enough, we obtain∫
Ω
|ρ(0, x)|2 dx+ K̃[0,T/2](ρ) + K̃[0,T/2](Ψ)

≤ C(K,T )

(∫ 3T/4

T/2

∫
Ω

(|ρ|2 + |Ψ|2) dx dt

)
.

(2.51)

Since the functions ϕ and η defined by (2.24) and (2.25), respectively, have the lower and upper
bounds for (t, x) ∈ [T/2, 3T/4]× Ω, using (2.34) we obtain∫

Ω
|ρ(0, x)|2 dx+ K̃[0,T/2](ρ) + K̃[0,T/2](Ψ)

≤ C(K,T ) (K(ρ) +K(Ψ))

≤ C(K,T, τ0, τ1, d0)

∫
ωT

e−2s3ηϕ7|ρ|2 dx dt.

(2.52)

On the other hand, since η = η̃ and ϕ = ϕ̃ in [T/2, T ] × Ω, we use again estimate (2.34) and we
obtain

K̃[T/2,T ](ρ) + K̃[T/2,T ](Ψ) = K(ρ) +K(Ψ)

≤ C(K,T, τ0, τ1, d0)

∫
ωT

e−2s3ηϕ7|ρ|2 dx dt.
(2.53)

Adding (2.52) and (2.53) and using the fact that e−2s3ηϕ7 ∈ L∞(Q), we deduce that

‖ρ(0, ·)‖2L2(Ω) + K̃[0,T ](ρ) + K̃[0,T ](Ψ) ≤ C(K,T, τ0, τ1, d0)

∫
ωT

|ρ|2 dx dt. (2.54)

Using the definition of K̃[a,b] given by (2.48), we can rewrite the inequality (2.54) as

‖ρ(0, ·)‖2L2(Ω) +

∫ T

0

∫
Ω
e−2s3η̃ϕ̃3|ρ|2 dx dt+

∫ T

0

∫
Ω
e−2s3η̃ϕ̃3|Ψ|2 dx dt

≤ C(K,T, τ0, τ1, d0)

∫
ωT

|ρ|2 dx dt.

(2.55)

If we set
1

θ2
= e−2s3η̃ϕ̃3, (2.56)

then, in view of (2.55) and (2.56), we deduce the estimation (2.44). �
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2.3 Solution of Problem 2 for system (2.1)

In this subsection, we are interested in the following null controllability problem. Assume that
(2.2) holds. Given zd ∈ L2(OTd ) and y0 ∈ L2(Ω), find a control ĥ ∈ L2(ωT ) such that if
ŷ(ĥ) = ŷ(t, x; v̂(ĥ), ĥ) ∈ L2((0, T );H1

0 (Ω)) ∩ C([0, T ];L2(Ω)) and p̂ ∈ L2((0, T );H1
0 (Ω)) ∩

C([0, T ];L2(Ω)) are solutions of (2.12)–(2.14), then

ŷ(T, .; ĥ) = 0 in Ω. (2.57)

Proposition 2.7 Let Ω be an unbounded open subset of RN with boundary Γ of class C2. Let alsoO,
ω, ω1 andOd be four non-empty subsets of Ω such that ω1 ⊂ ω,O∩ω = ∅ andOd∩ω 6= ∅. Assume
that (2.2) holds true. Then, there exists a positive real weight function θ given by (2.56) such that
for any function y0 ∈ L2(Ω) and zd ∈ L2(OTd ) with θzd ∈ L2(OTd ) there exists a unique control
ĥ ∈ L2(ωT ) such that the null controllability problem (2.12)–(2.14) and (2.57) holds. Moreover,

ĥ = ρ̂ in ωT , (2.58)

where ρ̂ satisfies

−∂ρ̂
∂t
−∆ρ̂+ aρ̂ = Ψ̂χOd

in Q (2.59)

and Ψ̂ is a solution of
∂Ψ̂

∂t
−∆Ψ̂ + aΨ̂ = − 1

α
ρ̂χO in Q. (2.60)

In addition, there exists a constant C = C(K,T, τ0, τ1, d0) > 0 such that

‖ĥ‖L2(ωT ) ≤ C
(
‖y0‖L2(Ω) + ‖θzd‖L2(OT

d )

)
. (2.61)

Proof. To prove the null controllability (2.12)–(2.14) and (2.57), we proceed in three steps using a
penalization method.

Step 1. For any ε > 0 we define the cost function

Jε(h) =
1

2ε
‖ŷ(T, .;h)‖2L2(Ω) +

1

2
‖h‖2L2(ωT ). (2.62)

Then, we consider the optimal control problem: find hε ∈ L2(ωT ) such that

Jε(hε) = min
h∈L2(ωT )

Jε(h). (2.63)

Using classical arguments we can prove that there exists a unique solution hε to (2.63) (see [19] for
example). If we denote by (ŷε, p̂ε) = (ŷε(hε), p̂ε(hε)) the solution to (2.12)–(2.14) corresponding
to hε, using an Euler–Lagrange first order optimality condition, we can prove that there exist ρε and
Ψε such that (ŷε, p̂ε, ρε,Ψε, hε) is a solution of the following optimality system

∂ŷε
∂t
−∆ŷε + aŷε = v̂εχO + hεχω in Q,

ŷε = 0 on Σ,

ŷε(0, .) = y0 in Ω,

(2.64)
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v̂ε = − p̂ε
α

in OT , (2.65)
−∂p̂ε
∂t
−∆p̂ε + ap̂ε = (ŷε − zd)χOd

in Q,

p̂ε = 0 on Σ,
p̂ε(T, .) = 0 in Ω,

(2.66)


−∂ρε
∂t
−∆ρε + aρε = ΨεχOd

in Q,

ρε = 0 on Σ,

ρε(T, .) = −1

ε
ŷε(T, ·) in Ω,

(2.67)


∂Ψε

∂t
−∆Ψε + aΨε = −ρε

α
χO in Q,

Ψε = 0 on Σ,

Ψε(0, .) = 0 in Ω

(2.68)

and
hε = ρε in ωT . (2.69)

Step 2. We give estimates on ŷε, v̂ε, p̂ε and hε independent on ε.

If we multiply the first line in (2.64) by ρε (i.e., the solution of (2.67)) and the first line in (2.66)
by Ψε (i.e., the solution of (2.68)), and integrate by parts over Q and use (2.65), we obtain the
following equations

− 1

ε
‖ŷε(T, ·)‖2L2(Ω) −

∫
Ω
y0ρε(0, x) dx+

∫
OT

d

ŷεΨεdx dt

= − 1

α

∫
OT

p̂ερε dx dt+ ‖hε‖2L2(ωT )

(2.70)

and
− 1

α

∫
OT

p̂ερε dx dt =

∫
OT

d

ŷεΨε dx dt−
∫
OT

d

zdΨε dx dt. (2.71)

Combining (2.70) and (2.71), we obtain

‖hε‖2L2(ωT ) +
1

ε
‖ŷε(T, ·)‖2L2(Ω) =

∫
OT

d

zdΨε dx dt−
∫

Ω
y0ρε(0, x) dx,

which using the Cauchy–Schwarz inequality and the fact that θzd ∈ L2(OTd ) gives

‖hε‖2L2(ωT ) +
1

ε
‖ŷε(T, ·)‖2L2(Ω) ≤ ‖θzd‖L2(OT

d )

∥∥∥∥1

θ
Ψε

∥∥∥∥
L2(Q)

+ ‖y0‖L2(Ω)‖ρε(0, ·)‖L2(Ω).

This implies that

‖hε‖2L2(ωT ) +
1

ε
‖ŷε(T, ·)‖2L2(Ω)

≤
(
‖θzd‖2L2(OT

d )
+ ‖y0‖2L2(Ω)

)1/2
×

(∥∥∥∥1

θ
Ψε

∥∥∥∥2

L2(Q)

+ ‖ρε(0, ·)‖2L2(Ω)

)1/2

.

(2.72)
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Now, if we apply the Carleman inequality (2.44) to ρε and Ψε, then there exists C =
C(K,T, τ0, τ1, d0) > 0 such that∫

Q

1

θ2
|ρε|2 dx dt+

∫
Q

1

θ2
|Ψε|2 dx dt+ ‖ρε(0, .)‖2L2(Ω) ≤ C

∫
ωT

|ρε|2 dx dt. (2.73)

Using (2.72), (2.73) and (2.69), we obtain

1

ε
‖ŷε(T, ·)‖2L2(Ω) + ‖hε‖2L2(ωT ) ≤ C

(
‖θzd‖L2(OT

d ) + ‖y0‖L2(Ω)

)
‖hε‖L2(ωT ).

It follows that
‖hε‖L2(ωT ) ≤ C

(
‖θzd‖L2(OT

d ) + ‖y0‖L2(Ω)

)
(2.74)

and
‖ŷε(T, ·)‖L2(Ω) ≤ C

√
ε
(
‖θzd‖L2(OT

d ) + ‖y0‖L2(Ω)

)
, (2.75)

where C = C(K,T, τ0, τ1, d0) > 0. In view of Remark 2.1, (2.18) and (2.74), we have that

‖v̂ε‖L2(OT ) ≤ C
(
‖zd‖L2(OT

d ) + ‖θzd‖L2(OT
d ) + ‖y0‖L2(Ω)

)
, (2.76)

where C = C(K,T, τ0, τ1, d0) > 0. Since ŷε and p̂ε satisfy (2.64)–(2.66), using (2.69), (2.74),
(2.76), we prove that

‖ŷε‖L2((0,T );H1
0 (Ω)) ≤ C

(
‖zd‖L2(OT

d ) + ‖θzd‖L2(OT
d ) + ‖y0‖L2(Ω)

)
, (2.77a)

‖p̂ε‖L2((0,T );H1
0 (Ω)) ≤ C

(
‖zd‖L2(OT

d ) + ‖θzd‖L2(OT
d ) + ‖y0‖L2(Ω)

)
, (2.77b)

where C = C(K,T, τ0, τ1, d0) > 0.

Step 3. We study the convergence when ε→ 0 of sequences hε, v̂ε, ŷε, p̂ε, Ψε and ρε.

In view of (2.74), (2.75), (2.76) and (2.77), we can extract subsequences of hε, v̂ε, ŷε and p̂ε
(still denoted hε, v̂ε, ŷε and p̂ε, respectively) such that when ε→ 0, we have

hε ⇀ ĥ weakly in L2(ωT ), (2.78a)

v̂ε ⇀ v̂ weakly in L2(OT ), (2.78b)

ŷε ⇀ ŷ weakly in L2((0, T );H1
0 (Ω)), (2.78c)

p̂ε ⇀ p̂ weakly in L2((0, T );H1
0 (Ω)), (2.78d)

ŷε(T, .)→ 0 strongly in L2(Ω). (2.78e)

From (2.65), (2.78b) and (2.78d) we obtain

v̂ = − p̂
α

in OT . (2.79)

Moreover, using the weak lower semi-continuity of the norm, we deduce from (2.76) and (2.78b) that

‖v̂‖L2(OT ) ≤ C
(
‖zd‖L2(OT

d ) + ‖θzd‖L2(OT
d ) + ‖y0‖L2(Ω)

)
, (2.80)

where C = C(K,T, τ0, τ1, d0) > 0.
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Let D(Q) be the set of functions of class C∞ on Q with compact support. If we multiply the
first equation in (2.64) by Φ ∈ D(Q) and the first equation in (2.66) by ξ ∈ D(Q), integrate by parts
over Q, and then take the limit when ε→ 0 while using (2.78), we, respectively, deduce that∫

Q
ŷ

(
−∂Φ

∂t
−∆Φ + aΦ

)
dx dt =

∫
OT

v̂Φ dx dt+

∫
ωT

ĥΦ dx dt

and ∫
Q
p̂

(
∂ξ

∂t
−∆ξ + aξ

)
dx dt =

∫
Q

(ŷ − zd)χOd
ξ dx dt.

This, after an integration by parts over Q, gives, respectively,∫
Q

(
∂ŷ

∂t
−∆ŷ + aŷ

)
Φ dx dt =

∫
OT

v̂Φ dx dt+

∫
ωT

ĥΦ dx dt for every Φ ∈ D(Q)

and ∫
Q

(
−∂p̂
∂t
−∆p̂+ ap̂

)
ξ dx dt =

∫
Q

(ŷ − zd)χOd
ξ dx dt for every ξ ∈ D(Q).

Hence, we deduce that

∂ŷ

∂t
−∆ŷ + aŷ = v̂χO + ĥχω in Q, (2.81a)

−∂p̂
∂t
−∆p̂+ ap̂ = (ŷ − zd)χOd

in Q. (2.81b)

Observing that ŷ, p̂ ∈ L2((0, T );H1
0 (Ω)) and ∂ŷ

∂t ,
∂p̂
∂t ∈ L2((0, T );H−1(Ω)) we deduce that

(ŷ(0), ŷ(T ), p̂(T )) exists in (L2(Ω))3. The traces of ŷ(t) and p̂(t) exist in L2(Γ) for almost ev-
ery t ∈ (0, T ). It then follows from (2.78c) and (2.78d) that

ŷ = 0 on Σ, (2.82a)

p̂ = 0 on Σ. (2.82b)

If we multiply the first equation in (2.64) by Φ ∈ C∞(Q̄) such that Φ|Σ = 0 and the first equation
in (2.66) by ξ ∈ C∞(Q̄) such that ξ|Σ = 0, ξ(0) = 0 in Ω, and then integrate by parts over Q, we,
respectively, get∫

OT

v̂εΦ dx dt+

∫
ωT

hεΦ dx dt

= −
∫

Ω
y0 Φ(0) dx+

∫
Ω
ŷε(T ) Φ(T ) dx+

∫
Q
ŷε

(
−∂Φ

∂t
−∆Φ + aΦ

)
dx dt

for every Φ ∈ C∞(Q̄) such that Φ|Σ = 0

and ∫
Q

(ŷε − zd)χOd
ξ dx dt =

∫
Q
p̂ε

(
∂ξ

∂t
−∆ξ + aξ

)
dx dt,

for every ξ ∈ C∞(Q̄) such that ξ|Σ = 0, ξ(0) = 0 in Ω.

Passing in these latter identities to the limit when ε tends toward zero, while using (2.78), then
integrating by parts over Q and using (2.82), we obtain
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OT

v̂Φ dx dt+

∫
ωT

ĥΦ dx dt

=

∫
Ω

(ŷ(0)− y0) Φ(0) dx−
∫

Ω
ŷ(T ) Φ(T ) dx+

∫
Q

Φ

(
∂ŷ

∂t
−∆ŷ + aŷ

)
dx dt

for every Φ ∈ C∞(Q̄) such that Φ|Σ = 0

and ∫
Q

(ŷ − zd)χOd
ξ dx dt

=

∫
Ω
p̂(T ) ξ(T ) dx+

∫
Q
ξ

(
−∂p̂
∂t
−∆p̂+ ap̂

)
dx dt

for every ξ ∈ C∞(Q̄) such that ξ|Σ = 0, ξ(0) = 0 in Ω.

This, in view of (2.81), gives, respectively,

0 =

∫
Ω

(ŷ(0)− y0)Φ(0) dx−
∫

Ω
ŷ(T )Φ(T ) dx for every Φ ∈ C∞(Q̄) such that Φ|Σ = 0 (2.83)

and

0 =

∫
Ω
p̂(T ) ξ(T ) dx for every ξ ∈ C∞(Q̄) such that ξ|Σ = 0, ξ(0) = 0 in Ω. (2.84)

From (2.84) we deduce that
p̂(T, .) = on Ω. (2.85)

Taking Φ in (2.83) such that Φ(T ) = 0 in Ω, we deduce that

ŷ(0, .) = y0 on Ω. (2.86)

And it finally follows from (2.83) that

ŷ(T, .) = 0 on Ω. (2.87)

If we apply the Carleman inequality (2.44) to ρε and Ψε, then there exists C = C(K,T, τ0, τ1, d0) >
0 such that ∥∥∥∥1

θ
ρε

∥∥∥∥
L2(Q)

+

∥∥∥∥1

θ
Ψε

∥∥∥∥
L2(Q)

≤ C
(
‖y0‖L2(Ω) + ‖θzd‖L2(OT

d )

)
,

because (2.69) and (2.74) hold true. Hence, in view of the definition of θ given by (2.56), we obtain

‖ρε‖L2((τ,T−τ)×Ω) + ‖Ψε‖L2((τ,T−τ)×Ω) ≤ C
(
‖y0‖L2(Ω) + ‖θzd‖L2(OT

d )

)
,

where τ > 0. Consequently, there exist ρ̂ and Ψ̂ in L2 ((τ, T − τ)× Ω)) such that

ρε ⇀ ρ̂ weakly in L2((τ, T − τ)× Ω),

Ψε ⇀ Ψ̂ weakly in L2((τ, T − τ)× Ω).

Therefore,

ρε ⇀ ρ̂ weakly in D′(Q),

Ψε ⇀ Ψ̂ weakly in D′(Q),
(2.88)
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where D′(Q) denotes the dual of D(Q), and it follows from (2.69) and (2.74) that

ρε ⇀ ρ̂ weakly in L2(ωT ). (2.89)

From (2.69), (2.78a) and (2.89), we have that ĥ = ρ̂χω.

Proceeding as for the convergence of ŷε on pages 112–114 while passing to the limit in (2.68),
we prove using the second convergence of (2.88) that Ψ̂ satisfies (2.60). Passing to the limit in (2.67)
while using the first convergence of (2.88), we have that ρ̂ satisfies (2.59).

It then follows from (2.79), (2.81), (2.82), (2.85), (2.86) and (2.87) that (ĥ, ŷ, p̂) is a solution
of the null controllability problems (2.12)–(2.14) and (2.57). Finally, using the weak lower semi-
continuity of the norm and (2.78a), we deduce from (2.74) the estimate (2.61). �

Remark 2.4 By Proposition 2.7 we proved that there exists a positive real weight function θ given
by (2.56) such that for any function y0 ∈ L2(Ω) and zd ∈ L2(OTd ) with θzd ∈ L2(OTd ), there exists
a unique control ĥ ∈ L2(ωT ) such that if ŷ = ŷ(v̂, ĥ) is a solution of (2.1), then ŷ satisfies (2.57).
Moreover, v̂ is given by (2.14) and ĥ = ρ̂ in ωT , where ρ̂ satisfies (2.59)–(2.60) and the estimation
(2.61).

3 Proof of Theorem 1.1

We rewrite the system (1.1) as follows
∂y

∂t
−∆y + a0χΩ\ωy = vχO + hχω in Q,

y = 0 on Σ,

y(0, .) = y0 in Ω,

(3.1)

where k = (a0y + h). Then, h is a control of system (3.1) if and only if k = a0y + h is a control of
system (1.1). The advantage of writing the system (1.1) in the form (3.1) is that the potential is now
bounded and we can use the Carleman inequality (2.44).

Now, taking a = a0χΩ\ω ∈ L∞(Q) in (2.1), it follows from Proposition 2.7 and Remark 2.4
that there exists a unique control ĥ ∈ L2(ωT ) such that if ŷ = ŷ(v̂, ĥ) is the solution of (2.1), then ŷ
satisfies (2.57). Moreover, v̂ is given by (2.14) and

ĥ = ρ̂ in ωT ,

where ρ̂ satisfies (2.59)–(2.60) and the estimation (2.61). Now, observing that k̂ = (a0ŷ + ĥ), we
have that there exists a unique control k̂ ∈ L2(ωT ) such that if ŷ = ŷ(v̂, ĥ) is the solution of (1.1),
then ŷ satisfies (1.5). Moreover, v̂ is given by (2.14) and

k̂ = (a0ŷ + ĥ) in ωT ,

where ρ̂ satisfies (2.59)–(2.60). Moreover, using (2.61) we have that

‖k̂‖L2(ωT ) ≤ C
(
‖y0‖L2(Ω) + ‖θzd‖L2(OT

d )

)
, (3.2)

where C = C(‖a0‖L∞(Ω\ω), T, τ0, τ1, d0) > 0. The proof of Theorem 1.1 is then complete.
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4 Conclusion

In this work, we proved the null controllability through Stackelberg control associated to system
(1.1) in an unbounded domain. We obtained the result under the assumptions that on the one hand
O ∩ ω = ∅ and the other hand that the set Ω \ ω is bounded.

Note that the first positive result on null controllability in an unbounded domain was obtained in
[4] under the assumption that the set Ω \ ω is bounded. The fact that Ω and ω are such that Ω \ ω
is bounded is just one example of unbounded domains. We refer the reader to [14] where he/she
will find other examples of unbounded domains where the Carleman inequality (2.28) that we have
established remains true.

We can extend this work to the case when the unbounded sets Ω and ω are such that Ω \ ω is an
unbounded set with infinite measure. We refer to [14] for more detail.

It is also possible to extend this work using arguments given in [3] to control the linear system
(1.1) with a control acting on an unbounded region ω of finite measure. This can allows us to remove
the hypothesis (1.2).
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