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1 Introduction

Our work has for goal to study the convergence of sequences of solutions of degenerate elliptic
problems with variable coercivity and growth exponents p,, of the form

(Pby) : b(uy) — diva,(z, Vuy,) = f, in {2,
" an(2,Vuy) -n =0 on 99,
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where €2 is an open bounded domain of RY (N > 3) with smooth boundary 9 and 7 is the outer
unit normal to 0€2. The function b : R — R is continuous, onto and non-decreasing such that
b(0) = 0; (an(,§)),cn is a family of applications which verify the classical Leray-Lions hypothe-
ses but with a variable summability exponent p,,(z) converging in measure to some exponent p such
that 1 < p_ < pu(-) < p < 400, (fn)nen C L'(£2). The model problem for our study is so the
following:

b(u) —diva(z,Vu) = f inQ,

(Pb) { a(z,Vu)-n=0 on 942, (1.1

where Q C RY (IV > 3) is an open bounded domain with smooth boundary 9 and 7 is the outer
unit normal to ).

This paper is inspired by recent works of Andreianov, Bendahmane and Ouaro (see [1]) on the
structural stability of weak and renormalized solutions u,, of the following nonlinear homogeneous
Dirichlet boundary value problem

(1.2)

b(up) —divay(x, Vu,) = f, inQ,
Uy =0 on 0f2,

where (an(,§)),cy verifies the classical Leray-Lions hypotheses with the variable exponents
pn(x) such that 1 < p_ < p,(-) < p < +oo. In their investigations, the exponent p,, (and thus, the
underlying function space for the solution u,,) varies with n and the convergence of weak solutions
uy, requires some involved assumptions on the convergence of the sequence f,, of the source terms.
To bypass this difficulty, they used the technique of renormalized solutions. Indeed, the study of
convergence of renormalized solutions of the problem permits them to deduce convergence
results for the weak solutions under much simpler assumptions on ( f;,),en, in particular the weak
L' convergence of f,, to a limit f(sufficiently regular) so that to allow for the existence of a weak
solution. Moreover, the structural stability result permits them to deduce also new existence results
of solutions.

As the boundary value condition is a homogeneous Neumann boundary condition, we cannot
work in the space I/VO1 P (')(Q) as in [I]], but in the space W) (Q). The p(z)—Laplacian operator
A (z)u corresponds to the choice a(z, Vu) := |VulP®) =2y,

Problems with variable exponents p(z) and p,(x) were arisen and studied by Zhikov in the
pioneering paper [18]. By the introduction of the p(z)-Laplacian into models of electrorheological
and thermorheological fluids (see [[15} [16} (14, [7]]), and in the context of image processing (see [0]
and [12])), it’s important to lead such studies. Concerning the problem (I.1I), Bonzi, Nyanquini and
Ouaro (see [4]) have proved the existence and uniqueness of a weak solution for f € L*°(2) and
the existence and uniqueness of an entropy solution for L'-data f. For our study, the data f is in
L(£2) and the common notions of renormalized and entropy solutions are used.

Let us give the outline of the paper. In the section 2, we do some important assumptions and
preliminaries for the sequel. In the section 3, we prove the existence and uniqueness of the renor-
malized solution of (1.1) when the right-hand side f € L'(£2). In the section 4, we tackle the
question of continuous dependence for renormalized solutions.
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2 Preliminaries

In this section, we do some assumptions on the model problem (I.I)) and give some preliminary
results.

p: @ — Ris a continuous function such that 1 < p_ < p < +o0, 2.1
where p_ := inf p(z) and p := sup p(z).
zef xeQ)
b : R — R is a continuous, non-decreasing 2.2)
and onto function such that 5(0) = 0. '
a(-,-) : @ x RV — R is a Carathéodory function with
a(z,0) =0 forae. x € Q, (2.3)
satisfying, for a.e. x € €2, the strict monotonicity assumption
(a(x,€) —alz,n)-(E—n) >0 forall{,ne RN, & #n, (2.4)
and the following growth and coercivity assumptions in & :
ja(z,€)| < CL(M(x) + ¢, (2.5)
a(@,€) - € > ColP™), (2.6)

where C) and O are positive constants, M is a non-negative function in L?'() (Q) with 1/p(x) +
1/p/(2) = 1.

For the given exponent p, we denote by p' its conjugate exponent such that 1/p(x)+1/p/(z) = 1
and by p* its optimal Sobolev embedding exponent such that

Np/(N —p) ifp<N,
p*:= ¢ anyreal value ifp= N,
o0 ifp> N.

For any given k > 0, we define the truncation function 7, : R — R by

Ty (r) = max(min(r, k), —k).

We put
1 if z > 0,
sign(z) =< 0 ifz=0,
-1 ifz<0.

The truncation function T}, has so the following properties.

1
|Tk(2)| = min(|z|, k), lim Ty(z) = z and lim —Tj(z) = sign(z).
k—o0 k—0 k

For a Lebesgue measurable set A C €2, x4 denotes its characteristic function and meas(A)
denotes its Lebesgue measure.
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Let u : © — R be a function and £ € R, we write {|u| < k} for the set {z € Q; |u(z)| < k},
(respectively, >, =, <, >). We will also need to truncate vector-valued functions with the help of
the maps

A if |A] < m,
form > 0, hy, : RN — RNk, (N) = { %A i A > m.

2.7

We have the following property (see [1, Lemma 2.1]).

Lemma 2.1 Let h,,(-) be defined by (2.7)) and a(x, -) be monotone in the sense (2.4)). Then, for all
A € RY, the map m — a(z, hyn(N)) - hin(N) is non-decreasing and converges to a(x, \) - X as
m — o0.

The exponent p(-) appearing in (2.5) and (2.6) depends on the spatial variable x and then re-
quires so to work with Lebesgue and Sobolev spaces with variable exponents.

We define the Lebesgue space with variable exponent Lp(')(Q) as the set of all measurable
function u : 2 — R for which the convex modular

Py (1) = / [ulP™) da
Q

is finite. If the exponent is bounded, i.e., if p; < oo, then the expression

- f
HUHP() = ||u||LP(‘)(Q) = 1nf{)\ > O; pp(.) ()\ <1

defines a norm in L) (), called the Luxembourg norm. The space (L’P(')(Q), | - Hp(_)> is a

separable Banach space. Moreover, if 1 < p_ < p; < oo, then Lp(')(Q) is uniformly convex,
hence reflexive, and its dual space is isomorphic to L¥'(*) (€2). Moreover, we have the Holder type

inequality
1 1
wodz| < —i—) w0y, (2.8)

forall u € LP0)(Q) and v € LP'O)(Q).

W1P()(Q) denotes the space of all functions « € L) (Q) such that their gradients Vu, taken
in the sense of distributions, belong to (LP()(Q))N. This space is a Banach space equipped with
the following norm

lullipe) = llullwreo @) = lullpey + 1Vullpe)-

The space (W20 (Q), ]| - Hl,p(')) is a separable and reflexive Banach space; for more details on

the generalized Lebesgue and Sobolev spaces, see [13]. In the sequel, we will use the same notation
LP0)(Q) for the space (L) (Q))N of vector-valued functions.

In manipulating the generalized Lebesgue and Sobolev spaces, the following lemma (cf. [11]])
permits to pass from norm to convex modular and vice-versa.

Lemma 2.2 Ifu,,u € LPO)(Q) and p, < oo, then the following properties hold.

(@) ppcy (w/llullpcy) = 1. if u #0.
(i1) pp(y(u) < 1 (respectively = 1;> 1) <= ||ull .y < 1 (respectively = 1; > 1).
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(i) pogy(u) < 1= [[ul2) < pyiy(u) < [l
(iv) ppy () = 1= [lullbry < ppiy(w) < [l
(0) llunllpy = O (respectively = 50) <= py. (1) = O (respectively — o).

For a measurable function u : {2 — R, we introduce the function

o) = [ @ da+ [ vu

Then, we have the following lemma (see [17]).

Lemma 2.3 If u,,u € W'r() (Q) and p+ < oo, then the following properties are true.
(1) prpey(u) <1 (respectiv;ly =1>1) < Hqu}?(') < 1 (respectively = 1; > 1).
(1) prpy(w) < 1= %) < prpo() <

(1) prpty (1) = 1 = [l ) < o) < P

(iv) ||un||1 () = 0 (respectively — 00) <= py .y (un) — O (respectively — 00).

One has below, imbedding result between Lebesgue and Sobolev spaces (see [9, [11]).

Proposition 2.4 Let p,q € C(Q) with p_ > 1. Assume that q(x) < p*(x) for all = € Q. Then,
there is a compact imbedding Wl’p(')(Q) — Lq(')(Q). In particular, there is a compact imbedding
Wrt)(Q) — LPO(Q).

The following result (corollary of Lebesgue dominated convergence theorem) is useful to prove
strong convergence results.

Lemma 2.5 (Lebesgue generalized convergence theorem) Let (f,,),cn be a sequence of measur-
able functions and f a measurable function such that f,, — f a.e. in Q. Let (g )nen C L*(2) such
| < gn ae inQand g, — g in L*(Q). Then,

/andx—>/ﬂfdx.

For the applications we have in mind, we will need the following theorem in which the results
of (47) and (7i7) express convergence in measure of some sequences.

Theorem 2.6 (Young measures and nonlinear weak-* convergence)

(i) LetQ C RN, N € N, and (v,)nen be an equi-integrable sequence in ) of functions to values
inRY, d € N. Then, there exists a subsequence (vy, )ren and a parametrized family (V) e
of probability measures on R%, weakly measurable in x with respect to the Lebesgue measure
on ), such that for all Carathéodory function F : Q@ x R4 — RY, t € N, we have

lim F(l‘ Up,, (x)) do = // (z,A) dvg(N) de, (2.9)
Rd

k—o0

whenever the sequence (F(, Un(+)))nen is equi-integrable in ). In particular,

v(x) == /Rd Adyg(N) (2.10)

is the weak limit of the sequence (vp, )ren in L' (Q), as k — <.
The family (vy)zecq is called the Young measure generated by the subsequence (vp, )ken-
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(13) If Q) is of finite measure, and (V) cq is the Young measure generated by a sequence (vy,)nen,
then

(Vx = Oy(z) G-€. T € Q) <= (v, converges in measure on Q) to v as n — o).

(7i1) If ) is of finite measure, (un)nen generates a Dirac Young measure (5“(5”))9[:69 on R%,
and (v )nen generates a Young measure (Vy)zeq on R%, then the sequence ((Uy,Vn))neN

generates the Young measure (6u(x) ® Vx):ceQ on Rd1+dz

Whenever a sequence (v, )nen generates a Young measure (v, ).cq, following the terminology
of [10] we will say that (v, ),en nonlinear weak-* converges, and (1) ,cq is the nonlinear weak-
* limit of the sequence (vy,)nen. In the case (vy,)nen possesses a nonlinear weak-* convergent
subsequence, we will say that it is nonlinear weak-* compact. Theorem [2.6(—(7) thus means that
any equi-integrable sequence of measurable functions is nonlinear weak-* compact on 2.

3 Renormalized solution

In this part, we define and prove the existence of associated renormalized solution to the prob-
lem (1.1)).

We define 7570)(Q) as the set of functions u : @ — R measurable such that Tj(u) €
Wr()(Q), for any k > 0.

The following proposition (see e.g. [3l]) is useful because it allows us to give a sense to the
definition of the renormalized solution for the problem (L.1]) (see Definition 3.2 below).

Proposition 3.1 Leru € T'P()(Q). Then, there exists a unique measurable function v : @ —s RY
such that

VTi(w) = vX{ju|<k} Sforallk >0,
where x g is the characteristic function of a measurable set E. The function v is a generalized
gradient and is denoted by V'T}(u) (weak gradient of u). If, moreover, u belongs to Wl’p(')(Q),
then v belongs to (Lp(')(Q))N and coincides with the standard distributional gradient of u.

We define also S as the set of W1 functions S : R — R having a compact support. The
following function,

1 if [z] <k -1,
fork >0,S,:2€Q+—< k—|z| ifk—1<|z| <k, (3.1)
0 if |z| > k,

is an example of function in S that will be used a lot in the sequel. Note that this function is non-
negative with suppSy, = [—k, k| and suppS), is contained in [—k, —k + 1] U [k — 1, k] and that the
sequences Sy and S}, are uniformly bounded by one.

Now, we give the definition of renormalized solution of (1.1) under the assumptions (2.1)) —
).
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Definition 3.2 Let f € L'(Q). A measurable function u : Q — R is a renormalized solution to the
problem (1.1)) if Ty,(u) € WHPO(Q), b(u) € L*(),

lim a(z,Vu) - Vudzr =0, (3.2)
k=00 J{k<|u|<k+1}

and, for all S € S and for all $ € WO (Q) N L>®(Q), we get

/ (S(u)a(z, Vu) - Vo + S (u)a(z, Vu) - (Vu)p + b(u)S(u)qS) dz = / fS(u)pdz. (3.3)
Q Q

Remark 3.3 Since the support of S is compact, we can write suppS C [—k, k|, and since
u € THPO)(Q), then, by Proposition we can replace the terms NVu by VTy(u) in the equa-
tion . Consequently, as Tj,(u) € WHPO)(Q), then by the growth assumption |D the terms
S(u)a(x, Vu) and S'(u)a(x, Vu) - Vu both lie in L'(2). Also, we have X (j<|u|<k+130(2, V) -
Vu € LY(2). Hence, the Deﬁnitionmakes good sense.

3.1 Existence of renormalized solution
In this part, we discuss the existence of the renormalized solution to the problem (L.T).

Theorem 3.4 Assume that . hold and f € L(Q). Then, there exists at least one
renormalized solution to the pmblem

For the proof, we have to consider the notion of weak solution to the problem (I.T).

Definition 3.5 (cf. [4]). Let f 6 L*>°(Q2). A measurable function u : 0 — R is a weak solution to
the problem (1.1)) if u € W'2()(Q), b(u) € L>®(Q) and

/ﬂa(w,Vu)-V(ﬁdx—i-/ﬂb(u)qﬁdw—/gfqﬁdx, (3.4)

for all p € WHPL)(Q).

Proof of Theorem 3.4] The proof of existence of a renormalized solution of (I.1I) is done in three
steps: firstly, we introduce approximating problems for which existence of weak solutions wu,, is
obvious; secondly, we establish some convergence results of this sequence of solutions u,,; thirdly,
we prove that these approximate solutions u,, tend, as n goes to infinity, to a measurable function
which is a renormalized solution of the problem (I.T).

3.1.1 Approximate solutions

Let fn = T,(f), then f,, € L°°(Q) and converges strongly to f in L'(2). Moreover, || fu| 11 () <
| f1| 1 (c2)- Now, we consider the problem

{ b(un) — diva(z, Vu,) = f, inQ, (3.5)

a(x,Vu,) -n=0 on 0f.
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Under assumptions (2.1)) — (2.6]) and since f,, € L°°(Q2), the problem (3.5) admits a unique
weak solution u,, (see [4]), i.e. u, € WO (Q), b(u,) € L>(R) and, for all € WP (),

/Qa(:c,Vun)-V(]ﬁdﬂ:—k/ﬁb(un)gbdx:/ﬂfmﬁdx. (3.6)

Our goal is to prove that the sequence of these approximated solutions u,, to (3.5) converges to
a measurable function u which is a renormalized solution of the limit problem (I.T).

3.1.2 Convergence results

The following proposition regroups convergence results of these approximated solutions (see [2, 4,

SI).
Proposition 3.6

The sequence (un)nen is a Cauchy sequence in measure. In particular,
(1) | there exists a measurable function u and a subsequence, still denoted by (uy,)nen,
such that w,, — u in measure and u,, — u a.e. in €.

(i1) Forall k > 0, Ty(up) — Ty(u) in W PO(Q) and Ty,(u,) — Ti(u) in LPO(Q).
(#ii) For all k > 0, VT (uy) converges to VT (u) in (L*(Q))V.

(iv) Forall k > 0, a(z, VT (uy)) converges strongly to a(x, VT (u)) in (LY(Q))N and weakly in
(L7 O@).

Below, we give another result of convergence.

Lemma 3.7 Forall k > 0, the sequence a(x, VT (uy))-VTi(u,) converges strongly in (L*(Q))Y
to a(z,VTi(u)) - VIi(u).

Proof. We use Vitali’s theorem to get this strong convergence in L!(£2). By Proposition one
has
a(x,VTi(uy)) - VIg(un) — a(z, VIg(u)) - VTi(u) ae. in Q.

Moreover, by Holder type inequality, we get, for £ C €2,
/ a(, Vi (un)) - VIi(un) dz < 2ja(z, VT (un))| Lo o) (o) VTR (un) XE | oo ()
E

But, the sequence (a(z, VTk(un)))n <y is bounded in LP'()(Q) because it converges weakly in
L7 ()(Q) and (VT (un) \p(x))neN is equi-integrable in 2 because (VT (uy,))nen converges weak-
ly in L()(Q). So,

lim VT (un)[P®) dz = 0.
meas(FE) E‘ k( )’

Therefore, by Lemma 2.2 [|VT}(un)XE| r()(q) — 0 as meas(E) — 0. Hence, one has the
sequence a(z, VT (uy)) - VI (uy,) is equi-integrable in €2 and so, by Vitali’s theorem, one has the
result. O
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3.1.3 Existence of renormalized solution

Lemma 3.8 The function u verifies the renormalized formulation (3.3)).

Proof. Let ¢ € WhPO)(Q) N L®(Q) and S € S. We take S (u,,)¢ as test function in (3.6) to get

/ S’ (up)a(x, Vuy) - (Vuy ) dz + / S(up)a(z, Vuy) - Vo dx —|—/ b(un)S (un)p dx
Q Q Q
= [ fStusda, (3.7)

Since suppS C (—k, k) for some real number k£ > 0, Vu,, can be replaced by VTj(uy) in (3.7)
and we get

/ S (un)ale, VT (un)) - (VTi(un))b da + / S(un)a(e, VTi(un) - Vo da
Q Q

—i—/Qb(un)S(un)d)dx:/anS(un)gbdx. (3.8)

By definition, the functions b and S are continuous and suppS is compact. So, both sequences
b(un)S(uy) and S(uy) are bounded. Moreover, b(uy)S(uy,) and S(u,) converge almost every-
where to b(u)S(u) and S(u) respectively. So, by Lebesgue dominated convergence theorem, they
converge to b(u)S(u) and S(u), respectively, strongly in L'(£2). One has so

lim b(un)S(un)qﬁdx:/Qb(u)S(u)gbdx.

n—oo Q

By Proposition [3.6}(iv), one can see that a(z, VT (u,)) converges weakly to a(x, VIj(u)) in
L7 ()(), and as S (u,) V¢ converges strongly to S(u)V¢ in LP()(2), we deduce that

lim [ S(up)a(x, VIg(uy)) - Vodr = /QS(u)a(:c, VTi(u)) - Vodz.

n—oo Q

According to Lemma[3.7} a(z, VT}(uy)) - VT (uy,) converges strongly to a(z, VT (u)) - VT (u)
in L1(9). So,

lim [ S (un)a(x, VTk(uy)) - (VT (up))ddz = /QS’(u)a(x, VTi(w)) - (VIk(u))pde.

n—o0 0

Now, we are interested in the term of the right-hand side of (3.8)). Since T},(f) converges strongly
to f in L(Q), we conclude that

lim fnS(un)(;de:/fS(u)gZ)dx.
Q Q

n—oo

Thus, passing to the limit in (3.8)), we get that  verifies equality (3.3). O

Lemma 3.9 The function u respects the estimate (3.2)).
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Proof. Let’s take Ty 1(un) — Tk (uy) as test function in (3.6) to get

/Qa(x, Vuy) - V(Tit1(un) — Tk(uy)) de + / b(un)(Thg1(un) — Ti(uy)) dz

Q
= /an(Tk+1(Un) — Tis(un)) da. (3.9)
sign(z) if |2| > k+1,
One has Ty +1(2) — Tx(2) = ¢ 0O if |z| < k,

z—ksign(z) ifk<|z|<k+1.
The test function T} 1(uy,) — Tk (uy) has a support contained in the set {|u,| > k}, is bounded
by one and has the same sign as w,, which has the same sign as b(u,,) when b(0) = 0 and b is
non-decreasing. So, b(uy,)(Tkt1(un) — T(uyn)) > 0. We have also V(Txy1(un) — T(uy)) =
Vun X {k<|un|<k+1} and the equality becomes

/ a(x,Vuy) - Vu, dr < / fndax. (3.10)
{k<|un|<k+1} {lun|>k}

Recalling that f,, := T,,(f) converges strongly to f in L (£2), one can see that the sequence (f;, )nen
is equi-integrable on ). It is sufficient so to prove that meas({|u,| > k}) converges to zero as k
goes to infinity uniformly in 7. Indeed, we take T}, (uy,) as test function in the weak formulation (3.6)
to get

/Q a(2, VTi(un)) - VT (up) da + /Q b (1t ) T (1) dar /Q FuT(un) dz.

Since a(x, VI (uy)) - VI (uy,) is positive by (2.6), we get

/b(un)Tk(un)de/fnTk(un)dx, (3.11)
Q Q

which becomes
/ b(un)Tk(un)de/fnTk(un)d:c, (3.12)
{lun|>k} Q

because b(uy, )Ty (uyn) > 0.

Since b is non-decreasing and b(0) = 0, one has |b(u,)| > min(b(k), |b(—k)|) on the set
{|un| > k}, and the inequality above becomes

min(b(k), |b(_k)|)/

|Tk(un)]d$§/fnTk(un)dx.
{lunl>k} Q

Therefore, since |T)(uy,)| = k on {|u,| > k} then, one gets

k- min(b(E). [b(—0)) - meas({fual = kD) < & [ fde <kl Lo

which leads to

£l 21 ()

meas({|un| > k}) < min(b(k), |b(—k)|)

50, ask —> o0, (3.13)




STRUCTURAL STABILITY OF p(x)-LAPLACIAN KIND PROBLEMS 127

since b is non-decreasing and onto so, b has an infinity limit at infinity. Hence, by equi-integrability
of f,, the right-hand side of (3.10) tends to zero uniformly in n as ¥ — oco. And so, by monotonic-

ity (2.4), the inequality (3.10) becomes

lim sup/ a(x,Vuy) - Vu, dxr =0
(k<|un|<k-+1}

k—o0 n
or again
lim lim [ a(z, Vg1 (un)) - Vi1 (Un) X {k<|un|<k+1} A2 = 0. (3.14)
k—oon—o0 [
Let

Dy = a(x, Vi1 (uy)) - Vg (uy).

According to Lemma (3.7, D,,  — a(x, VIj41(w)) - V41 (u) strongly in L' (€2). Moreover, since
u, converges a.e. to u by Proposition then by the continuity of X(k,kﬂ)u(,k,l,,k)(-) on the
image of 2 by u(-), we conclude that, as n — oo,

X{k<|un|<k+1} = X(kk+1)U(—k—1,—k) (un) — X(kk+1)U(—k—1,—k) (u) = X{k<|u|<k+1} a&.C. in .

Indeed, X (&, k+1)u(—k—1,—k)(+) is continuous if meas ({|u| = k}) = 0 for a.e. k > 0. But, for all n,
one has,

{ITk(U)I >k — ;} C{ltn| > k—1}U {|Tk(un) — T(u)| > ;}

and so
meas <{Tk(u)\ >k ;}) < meas ({[un] > k — 1}) + meas ({m(un) — Th(u)| > ;}) .

From (3.13)) and as Ty (u,,) converges to Ty (u) in measure in 2, one gets, as n — 0o,

meas ({Ju| = k}) < meas ({Tk(u)\ >k — ;}) < 0 = meas ({|u] = k}) = 0.

Now, since

D X (h<fun|<k+1y = 0@, VIpy1(w)) - VIqq (W)X {k<|u|<k+1} €. in .
| DX (o< fun| <413 < D € LH(Q) ace. in Q, for all n € N, and
Dy g — a(x, VTji1(w)) - VIgs1(u) in L),

then, by the Lebesgue generalized convergence theorem, we can write

lim 0 Dn,kX{k<\un|<k+1} dox = /Qa(a;, VTk+1 (U)) : VTk+1(u)X{k<|u|<k+1} dx. (3.15)

n—oo

Now, coming back to the equality (3.14)), we get the equality
lim a(x,Vu) - Vudzr =0, (3.16)
k=00 J{k<|u|<k+1}

which proves the Lemma[3.9] O

Lemma 3.10 w is a renormalized solution to the problem (1.1)).
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Proof. By the Proposition(z'z'), one has Ty (u) € WP()(Q). Moreover, one can show that
[6(wn )| L1 () is uniformly bounded. Indeed, by (3.12)), one has

/ |b(un)|dx§/fnd:n.
{‘“n|2k} Q

Then,

b(uy)|dz = bluy)| dz bluy)| dz
| ) /{mm}r (un)] +/{|un2k}| (un)]
< max(b(k), |b(—k)|) - meas(€2) +/ fndx.
Q

Since fy, converges strongly, then the right-hand side is bounded. Therefore, [|b(un)|z1(q) is uni-
formly bounded. One has also, by the continuity of b, b(u,,) —> b(u) a.e. in 2. So, Fatou’s lemma

gives us
/ Ib(w)| dz < lim inf / b(u)| da
0 n—o0 Q

Hence, b(u) € L*(£2). Also, thanks to the lemmas[3.8|and[3.9] we conclude that w is a renormalized
solution to the problem (1.1)). This is the end of the proof of Theorem 3.4 O

3.2 Uniqueness of renormalized solution

Now, let’s go to the uniqueness of the solution of problem (L.T).

Theorem 3.11 Assume that (2.1)) — (2.6)) hold and f € L'(Q). Then, there is uniqueness of the
renormalized solution to the problem (|1.1]).

Proof. Let k,h > 0 and u; and us be two renormalized solutions of problem (I.1)) associated to
the same data f € L'(Q). As Ty(uz) € WPO(Q) N L>(N), then one has T, (u1 — T, (u2)) €
WP (Q) N L>°(2) which can be taken as test function in for u;. Similarly, we can take
Ti(ug — Tp(uy)) as test function in for us. By addition, we get

/ Su(ur)a(z, Vur) - V(ur — Th(uz)) dz
{lu1 =T (uz)|<k}
-I-/ Su(uz)a(z, Vug) - V(ug — Th(ur)) dz
{lua =Ty (ua)|<k}
+ /Q Shr(ur)a(z, Vur) - (Vur) Ty (ur — Th(uz)) dz
+ /Q Shy(u2)a(z, Vug) - (Vuz)Tj(uz — T (uy)) da
+ /Q SM(U1)b(U1)Tk(U1 — Th(UQ)) dz + /QSM(UQ)Z)(’U,Q)T]C(UQ — Th(ul))dx

= /Qf(SM(ul)Tk(ul — Th(UQ)) =+ SM(UQ)Tk(UQ — Th(ul))> dl’, (3.17)
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where (Sy/) is the sequence of functions in S defined in (3.1). While M and k are fixed, h can be
sent to infinity. Define the sets

Eq = {|lu1 —ua| < k,|ua| < h}, Ey:=EiN{|ui| < h}and Es := Ey N {|ui| > h}.

We start with the first integral in (3.17). By (2.4), we have

/ Sny(ur)a(x, Vuy) - V(ur — Ty (ug)) de
{lur =T (u2)|<k}

Sy (ur)a(z, Vuy) - V(ug — Th(ug)) dx

/{UlTh(u2)|<k7u2|<h}

+ / SM(ul)a(a:, Vul) . V(u1 — Th(UQ)) dx
{lur =Tk (uz)|<k,|uz|>h}

Sa(ur)a(z, Vuy) - V(ug — ug) de

/{UlTh(u2)|<k:u2|<h}
+ / Sy (ur)a(z, Vuy) - Vug de
{lur =T (u2)|<k,luz|>h}

>

/ Sa(ur)a(z, Vuy) - V(ug —ug) de
{lu1=Th (u2)|<k,|uz|<h}

= Syr(ur)a(z, Vuy) - V(ur —ug) dz + Sy (ur)a(z, Vuy) - V(up — ug) do

E2 ES
= Sn(ur)a(x, Vuy) - V(up — ug) do + Sn(ur)a(x, Vuy) - Vug do
E2 EB
- S (ur)a(x, Vuy) - Vug dx
E3
> Sy(ur)a(x, Vuy) - V(ur — ug) de — Sy (ur)a(z, Vuy) - Vug de. (3.18)
E2 E3

Using (2.5) and Holder type inequality, the last integral in (3.18)) gives

Sy (ur)a(z, Vuy) - Vug de
E3
< C1 (1Ml + 190 PO 0 s i) V82l o0 btz B19)

Now, we take ¢ = Tp(u; — Th(u1)) as test function in (3.3) for u; and S € S such that S =
Shik+1. We get

/Q S(ur)a(w, Vuy) - VT (w1 — Ty(ur)) dz + /Q S (ur)a(z, Vur) - (Van) To(ur — Th(ur)) da
+/ b(u1)S(ur)Tk(ur — Th(ur))dz = /fS(U1)Tk(U1 — Th(u1)) d.
Q Q

Since the third is non-negative, then one has

/ a(x,Vuy)-Vuy dx—k/ a(x,Vuy)-Vupde < k‘/ | f| dz.
{h<|u1|<h+k} {h+k<|ui|<h+k+1} {lu1|>h}



130 K. Kansié and S. Ouaro, J. Nonl. Evol. Equ. Appl. 2020 (2020) 117-[T4§]

By using (2.6)), we get

C’g/ IV P dz < k / |f|dx +/ a(x,Vuy) - Vurde | .
{h<|u1r|<h+k} {|u1|>h} {h+k<|ui|<h+k+1}

By (3.2) and since meas({|ui| > h}) — 0 as h — oo, and since f € L(£2), we deduce that

lim |Vuy [P®) da: = 0, for any fixed number k > 0,
h—=00 J{h<|us|<h+k}

. 1 o
and so, by Lemma we get hlg](r)lo ||V [P \|Lp/<‘>({h<|ul|§h+k}) =0.

Similarly, taking ¢ = Ty (ua — T (us2)) as test function in (3.3) for ug with the same S in S, we
get

lim |Vug|P(®) dz = 0, for any fixed number & > 0.
h=00 J{h<|uz|<h+k}
Hence,
lim |Vug [P dz = lim [Vug|P®) dz = 0,
h—=00 J{h—k<|ug|<h} =00 J{i<|ug|<l+k}

for any fixed number £ > 0 with | = h — k.

So, by Lemma 2.2 |[Vua|| 1o¢) ({h—k<|us|<n}) —> 0ash — oo, for any fixed number k& > 0.
Therefore, from (3.18)) and (3:19), we obtain

/ Sur(un)alz, Vaur) - V(ur — Th(ug)) da
{lua =T (uz2)|<k}

> Iy + Sn(ur)a(x, Vuy) - V(up — ug) dz, (3.20)
Es

where [Ij, converges to zero as h — c0.

We may adopt the same procedure to treat the second term in (3.17) to obtain

/ Sar(ug)a(x, Vug) - V(ug — Tp(u1)) da
{luz=Th (u1)|<k}
> Jp — Sy (ug)a(x, Vug) - V(up — ug) dz, (3.21)
Es

where J;, converges to zero as h — oc.

Now, for all i, k > 0, we set
Ky = / Sn(u1)b(u) Ty (ur — Th(uz)) dz + / S (u2)b(uz) Ty (uz — Th(wr)) dz,
Q Q
Rh = / wa(ul)a(x, Vul) . (Vul)Tk(ul — Th(UQ)) dx
Q

+ / S (us)ale, Vug) - (Vuz) Ty (uz — Th(ur)) da
(9]
and

Fy = /Qf<5M(U1)Tk(U1 = Th(u2)) + Sar(u2) Ti(uz — Th(ul))) de.
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We have
St (un)b(ur ) T (ug — Ty (ua)) — Sag (un)b(uy)Th(uy — up) ace. in ©, as b — oo,
and
[Sar (u)b(wr) T (ur — Th(uz))| < kfb(ur)| € L(Q).

Then, by Lebesgue dominated convergence theorem, we deduce that

lim SM(ul)b(ul)Tk(ul — Th(UQ)) dr = /QSM(ul)b(ul)Tk(ul — UQ) dx. (3.22)

h—oo J

Similarly, we have

hlLI{.lo o SM(UQ)b(UQ)Tk(UQ — Th(ul)) dr = /Q SM(UQ)b(UQ)Tk(UQ — ul) dx. (323)
Using (3.22) and (3.23)), we get
lim K, = /Q (Sar(un)blur) — Syr(uz)b(uz)) Ti(ur — us) da. (3.24)

By the same procedure as above, we use the Lebesgue dominated convergence theorem to obtain

hlim Ry, = / (Shr(ur)a(z, Vuy) - Vuy — Syp(ug)a(z, Vug) - Vug) Ti(ur — ug) dz (3.25)
—00 (9]
and

hli_)n;() F, = /Qf(SM(ul) — Snr(u2)) T (uy — ug) dz. (3.26)

Using (3.20), (3.21)), (3.24]) — (3.26)), we get from (3.17) the following inequality as h — oco.

/{ o (St V) = Sfu)a(e, V) - Vo ) do
+ /Q (Sh(wr)a(z, Vuy) - Vauy — Shy(ug)a(z, Vug) - Vug) Th(us — ug) da
+ /Q (Sar (un )b(ur) — Sy (u)b(uz)) Ti(ur — us) dz
< /Qf(SM(ul) — Snr(u2)) T (uy — ug) dz. (3.27)

Now, we fix £ > 0 and we pass to the limit in (3.27)), as M tends to infinity.
The second term of the left-hand side of (3.27) is, in absolute value, smaller than

k (/ a(z,Vuy) - Vuy dz + / a(z,Vug) - Vusg d:r)
{M—1<Ju1|<M} {M—1<uz|<M}

which converges to zero, as M — oo, thanks to relation (3.2) for u; and ug. Therefore, the second
integral of (3.27)) converges to zero as M — oo.
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Since Sy — 1as M — oo, then (Sy(u1)a(z, Vur) — Sy (u2)a(z, Vug)) - (Vur — Vuy)
converges a.e. to (a(a;, Vup) — a(z, Vuz)) . (Vm — VuQ) and moreover, thanks to |i and to
Holder type inequality, one has, a.e. in {Ju; — ug| < k},

‘(SM(ul)a(:U, Vuy) — Sy(ug)a(z, Vug)) . (Vul — Vug)‘
< (la(z, V)| + |a(z, Vuz)|) - (I[Vu| + [Vus|) € L1(Q).

Thus, by the Lebesgue dominated convergence theorem, the first integral in (3.27) converges to the
integral of (a(x, Vup) — a(z, Vug)) -V (up — ug) in {|Ju; — ug| < k}.

Similarly, by the Lebesgue dominated convergence theorem, the third integral in (3.27) con-
verges to the integral of (b(u1) — b(uz))Th(u1 — u2) in .

We next examine the right-hand side of (3.27). For all £ > 0,
f(Sar(ur) — Sar(uz)) Ty (uyr — uz) — O ace. in Qas M — oo,

and
|f(Sar(ur) — Snr(u2)) Tho(ur — ug)| < 2k[f] € LN(R).

The Lebesgue dominated convergence theorem allows us to write

N}im F(Sm(ur) = Sar(ug)) Ti(ur — ug) dz = 0.
—00 JO

Thus, as M — oo, (3.27) gives
/ (a(z, Vur) — a(x, Vug)) - V(ur — ug) da
{lu1—u2|<k}
—l—/ (b(ur) — b(u2)) Tk(u1 — ug)da < 0, (3.28)
Q
for all k£ > 0. From (3.28)), since all terms are non-negative, then one deduces
/ (a(:c, Vui) — a(z, VuQ)) -V(up —ug)de =0 (3.29)
{lur—uz|<k}
and
/ (bur) — bluz)) T(us — z) da = 0. (3.30)
Q
From (3.29) and the strict monotonicity assumption (2.4), one has

u1 — ug = ca.e. in €, where c is a real constant. (3.31)

From (3.32)), one has

/ b(u1) — blug)|dz = lim [ (b(u1) — b(uz)) 1Tk(ul —ug)dz =0 (3.32)
Q k—oo Jq k

which gives
b(ul) = b(UQ) (333)

Thus, from (3.31)) and (3.33), the uniqueness of the renormalized solution follows in the sense of b.
d
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4 Continuous dependence for renormalized solutions

We consider elliptic problems

(Pb,) : b(uy) —diva,(z, Vuy,) = f,, in {2,
" an(z,Vuy) -n =0 on 092,

where the assumptions ([2.1)) — (2.6)) are verified, for all n € N, with the diffusion flux function-

s an(-,-), the exponents p, : € — [p_,p,] and the non-negative functions M,, in LP»()(Q)

such that the sequence (HMnH Loh (.)(Q)> N is uniformly bounded, and with Cy, Co, p4 and p_
ne

independent of n.

Note that, for f,, € L'(2) and under assumptions (2.1)) — (2.6]), the problem (Pb,,) admits a
unique renormalized solution ,,.

The purpose of this section is to prove that the sequence of solutions (., ),en to problems (Pb,,)
converges to a function u which is a solution of limit problem (I.1I)) with the exponent p, when we
have the following convergence assumption:

for all bounded subset K of RY,
sup |an (-, €) — a(-, £)| converges to zero in measure on €2, 4.1)
(eK

where a(zx, §) verifies the assumptions — with the exponent p verifying such that
Pp, converges to p in measure on 2. 4.2)
We assume also that
fn converges to f weakly in L!(Q). (4.3)
We further assume that the exponents p and p,, verify log-Holder continuity assumption:

de > 0,Vr,y € Q, z # y, —(log |z — y|)|p(z) — p(y)| < c. (4.4)

Remark 4.1 Note that several regularity results for Sobolev spaces with variable _exponents can
be obtained thanks to log-Hdlder continuity condition ; in particular, C*°(Q)) is dense in
WPC)(Q) (for more details, see |8)).

Now, through the theorem below, we establish a structural stability result for the renormalized
solutions.

Theorem 4.2 Under the assumptions — (4.3)), let (up)nen be the sequence of renormalized
solutions of the problems (Pb,,) associated to ay(-,-), [, and the exponents p,, with a(-,-), f and
p the respective limits of a,, [, and p, in - . Assume that the exponents p, p, satisfy
the log-Holder continuity assumption . Then there exists a measurable function u on ) such
that w,, Vu, converge to u, Vu, respectively, a.e. in ), as n — oo. The function u is, in fact,
a renormalized solution of the problem associated to the diffusion flux a(-,-) and the source
term f.
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Proof of Theorem 4.2, We shall divide the proof into several steps. Throughout the proof, we
reason up to an extracted subsequence of (uy,)nen (still denoted by (uy,)nen) and every positive
constant independent of n will be denoted by C'.

Lemma 4.3 (i) Forall k > 0, the sequence (HTk(un)HLpn(.))neN is bounded.

(1) The sequence of renormalized solutions (uy)nen of the problems (Pby,) verifies, for k > 0
large enough,

Cll fnll 1

meas({|un| > k}) < — , 4.5)
min (b(k), [b(—k)[)
supmeas({|un| > k}) = 0, as k — oo, (4.6)
and
lim sup/ |V |P®) da: = 0. 4.7)
k=oo n J{k<|un|<k+1}

(7i7) There exists a measurable function u on ) such that, up to a subsequence, Ty (u,) — Ty (u)
in WHP=(Q), for all k > 0. Moreover;, u,, — u a.e. in €, VTj(uy) converges to a Young
measure (V) ,cq on RY in the sense of the nonlinear weak-* convergence and

VT (u) = /R A drF (). (4.8)

(iv) For all k > 0, |I\|P®) is integrable with respect to the measure dvF(\)dz on RN x Q and
Ti(u) € WHPO(Q).

(v) One has
lim [ [V(Thpr () — Tr(w)[P® dz = 0. (4.9)
k—oo Jo

Proof. (i) In the renormalized formulation of the problem (Pb,,), we choose S = Sj41 € S
defined in (3.1) with h,k > 0, h large enough. Because u,, is a renormalized solution of the
problem (Pb,,), we have T, (uy,) € WhPr()(Q) N L>(£2) and so, we can take ¢ = T}, (uy,) as test
function in the renormalized formulation to obtain, the term [¢, b(un)S (un )Tk (uy) da being
non-negative,

/ (2, VT () - VT (1) der + / S (wn)an (2, Vi) - (Vi) Te(un) dz < K / 1l da.
Q Q Q

While £ is fixed, h can be sent to infinity. By (3.2)), the second integral vanishes, as h — oo, because

/ S’ (up)an(z, Vg - (Vug)Te(uy) dz| < k an(z, Vuy,) - Vu, dz. So, by
Q {h+k—1<|un|<h+k}
using coercivity condition (2.6), as h — oo we have

c/ IV T () [P daz < k/ | fn| daz.
Q Q

Since the sequence (f,,)nen converges weakly to f in L(£2), then the right-hand side of this last
inequality is uniformly bounded. So, we obtain

/ VT (un) [P dz < Ck. (4.10)
Q
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Moreover,

/ T (wn) [P dz < / kP2(®) dz: < max(kP+, kP~ Ymeas(S2). (4.11)
Q Q

From (4.10) and (4.11), we deduce that the sequence py ;,, (.)(Tk(uy)) is uniformly bounded. By
the Lemma[2.3|and the fact that p,,(-) € [p_, p-], one has

”Tk(un)HLpn() < max <p1,pn(~)(Tk(un))l/p77pl,pn(~)(Tk(un))1/p+) .

We conclude that the sequence T (un)l|1 p,,(.) is uniformly bounded.

(4) In the renormalized formulation || of problem (Pb,,), we take S = S, € Sand ¢ = T% (un)
as test function, with £ > 0 large enough. We obtain

/ S(up)an(x, Vuy,) - VT% (un) dz +/ S’ (up)an(z, Vuy,) - (Vun)T% (up) dz
Q Q

+ [ ) STy () de = [ £5(00) T )

which gives
/ an (:v, VT (un)) -VTi(uy)dz —|—/ S’ (up)an(z, Vuy) - (Vup)T1 (uy,) dz
0 k k Q k

1
+ [ b STy () do < Ll
Q

or again

k/QS’(un)an(:U, Vuy,) - (Vun)T% (up)dx +/ b(un)S(un)kT% (un) dz < || full L1 (-

Q

The term k/ S’ (up)an(z, Vuy,) - (Vun)T% (uy,) dz vanishes, as k — oo, due to 1' Also, one

has kT'1 (u,) — sign(uy,) as k — oo. So, by using Fatou’s lemma, we get, as k — oo,
k

/Q bun)| dz < [l 4.12)

Therefore, for & > 0,
[ b)lde < [l (4.13)
{lun|>k}

Since |b(uy,)| > min(b(k), |b(—k)|) on {|u,| > k}, then the relation (.13) gives
min(b(k), [b(=k)|)meas({[un| > k}) < || follL1 (o)

or again
[ £l @)
min(b(k), [b(—k)|)

Being weakly convergent in L!(2), the sequence (fy,)nen is bounded, so the right-hand side
of (4.14) tends to zero as k — oo, then meas({|u,| > k}) tends to zero as k — oo uniformly
in n and (.6) is proved.

meas({|u,| > k}) <

4.14)
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For the proof of (4.7), let’s take ¢ = Tyy1(un) — Tk (uy) as test function and S € S such that
S = Skio in the renormalized formulation (3.3). The function Ty 1(u,) — Tk (uy,) has a support
contained in the set {|u,| > k} and is bounded by one. We obtain by (2.6)

C / V[P iz + / S () (2, Vi) - (Vi) s < / \ful dz. (4.15)
(k< un|<k+1} Q {un|>k}

By the property (3.2)) and by equi-integrability of f,,, and because of (4.6)), for £k — oo, one deduces,
from (4.13), the estimate (4.7).

(#ii) From Lemma[4.3]— (i), one gets

L) 51 g = /Q Te(un) P~ d + /Q VT ()P de

</ (1 + !Tk(un)|p"($)> dx—i—/ (1 + |ka(Un)|pn(x)> dx
Q Q
<2meas() + p1 p, () (Tk(un))

<const (k).

And so, the sequence T}, (uy,) is uniformly bounded in WP~ (§2). Therefore, up to a subsequence,
we can assume that the sequence T}, (u,,) converges to a certain function o), weakly in W1P-(Q),
and by the compact imbedding theorem of WP~ (Q) in LP-(£2), one can see that T} (u,,) converges
strongly to oy in LP~(2) and so a.e. in §2. Now, we have to prove that o, = Tj(u) a.e. in 2 where
Up, — wa.e. in Q.

Let s > 0 and define the sets
E, = {lup| >k}, Ep = {|um| >k} and E, ,, = {|Tk(un) — Tr(um)| > s},
with & > 0. One has {|u, — um| > s} C E, U E,, U E, , which gives
meas({|un — um| > s}) < meas(Ey,) + meas(Ey,) + meas(Ey ).
Let ¢ > 0. According to (4.6), we can choose k = k(<) to get

meas(E,) < = and meas(Ey,) <

Wl M
Wl M

Since T} (u,) converges strongly in LP-(£2), then it is a Cauchy sequence in LP- (2). Hence, there
exists ng = ng(e, s) € N such that for all n, m > ny,

1
meas(Enm) < —— / (T () — Ti (1) [P~ dzz <
sP— Q

Wl m

So, we deduce that
meas({|un, — um| > s}) <e, foralln,m > ng.

Finally, the sequence (u,)necn is @ Cauchy sequence in measure. Hence, by extraction of subse-
quence, there exists a measurable function v such that u,, — w a.e. in . Since T}, is continuous,
we have Ty (u,) — Tk (u) a.e. in £ and, by the uniqueness of the limit, one has o, = T} (u) a.e. in
Q) because T (uy) — oy a.e. in Q.
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Also, the weak convergence of T}, (uy,) to T (u) in W1P-(Q) leads to the weak convergence
of VI (uy) to VI (u) in LP-(Q2). Thanks to Theorem (1), VT (uy,) nonlinear weak-* con-
verges to a Young measure (Vﬁ)m cq and since its weak limit is V7, (u), then VT (u) verifies the

equality (4.8) according to (2.10).

(iv) By assumption (4.2), p,, — p in measure on €2, and since VTj(u,) — VTi(u) in LP-(Q),
then according to Theorem [2.6}-(ii),(iii), for all k € N, the sequence (py,, VT (uy)), converges
to the Young measure 6,(,) © dvk on R x RY.

Let us now consider the Carathéodory function
F: (2, (Mo, N) € Q% (R xRY) — |hpn (M), m €N,

where A, is defined by (2.7). The sequence (E, (-, (pn(-), VTk(un))))nen is equi-integrable in 2
since it is uniformly bounded in L!(f2) according to (4.10). Then, we apply the nonlinear weak-*
convergence property (2.9) to the function F;;, to get

lim [ Fo(z, (pu(@), Vk(un) () de = / / £, (M0, ) d6, 0 (o) drA (V) da
n=o0 Jo RxRN

//RN ), A)) dvE(\) da
= [ P dk) da

Moreover,

tim [ Fon(z, (pa(x), VTk(un) () dz = lim / o (VT (1)) [P @

n—oo Q n—oo

< lim / VT () [P ®) daz
n—oo
<Ck,
according to (#.10). So,
/ B (V)@ dvF () da < Ck.
QxRN

Since the sequence (|hy,|)men is increasing and h,,,(\) —> X as m — oo, then by the monotone
convergence theorem, we deduce that

/ IAP®) duk(X) de < Ck.
QxRN

By the formula (4.8)) and Jensen inequality, one has

VT (u) P®) d = AdrF(N)
/ LIL.

Hence, we deduce that VT, (u) € LP()(Q) and thus T}, (u) € WPO(Q).

p(z)

da < / IAP® dvk(N) de < Ck.
QxRN

(v) Up to a subsequence, by (iii), Tgy1(un) — Tk (uy,) converges to Tyy1(u) — Ti(u) a.e. in 2
and weakly in WP~ (Q). By arguing as in (iv), we get V(Tj11(u) — Ty(u)) € LPO)(Q) and its
modular is upper bounded by

n

by (@.7). Thus, @.9) follows. O

sup/ IV (Tpg1 (1) — Tp(w))|P®) da = sup/ [Vun|P*®) dz — 0, as k — oo,
n Jq {k<|un|<k+1}
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Lemmad.4 (i) Forall k > 0, the sequence (V¥)nen, YE(z) := an(z, VT (un(z))), is equi-
integrable in Q and its weak limit Y* € LP'()(Q) is such that

VE(z) = /]RN a(z,\)dvF(\), a.e.z € Q. (4.16)

(13) For all k> k>0, one has Y* = yEX{|u\<k}.

Proof. (i) We first show that the sequence (V¥),en, V¥ := an(z, VT (uy)), is equi-integrable in
2. The assumption (2.5)) applied on a, (-, -) with exponent p,,(x) implies, for all measurable subset
EcCQ,

[ Whlde <0 [ (14 Mo+ 9T () PO do
E E
gclgl+quM+QOMVQWMWM%mewmﬂmm>

< [ (14 Ma) et () (o () )

SC’/ (1+ M,) dz + ¢’ max (meas(E)l/p+, meas(E)l/p—) 4.17)
E

by using Holder type inequality and Lemma where 20[|V T (un ) [P @)1 Lph() 1S upper
bounded by C’ by (4.10).

The whole right-hand side of (4.17) tends to zero when meas(F) tends to zero because the
sequence (M) e is equi-integrable in €2. And so, the sequence (J¥),,cn is equi-integrable in .
By Theorem(i), there exists a weak limit J* for the sequence V) in L!(1).

In the following lines, we prove that the weak limit J* verifies the formula (4.16) and belongs
to L' ()(Q). We put the set

Ry = {z € Qs [p(x) — pu(x)| < 1/2}

and we consider auxiliary functions Y¥ := a(z, (VTk(un))XR,)- Let’s show that the sequence

<)7,’§) . is equi-integrable in ). Indeed, we apply 1D with the exponent p(-) on a (-, -) to get
ne

/ Vedz < 0/ (1+M)dz+C VT () [P®) 1 daz, (4.18)
E E ENR,

The first term of the right-hand side of (4.18) tends to zero when meas(FE) tends to zero. Also, for
x € Ry, one has p(x) < p,(z) + 1/2 and, by using Holder type inequality, we have

/ IV T () PO dgy < / (14 VT () P& 2) da
ENRy, E

<meas(E) + C [V T(wn) P2 oy 0o X8l poomcr- @19)
But, by (4.10), one has

piopy (19 Th(un) PO Y2) = gy, (TTi(un) < C (4.20)
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Also, by Proposition [2.3] one has

I z2cr < max ((p2p, ()% (ap, ()P

< max ((meaS(E))l/(Zp)+, (meas(E))l/(Qp)*> : (4.21)

From (4.19) — (4.21)), the second term of the right-hand side of (4.18)) is uniformly small for
meas(F) small, and the equi-integrability of (:)Z’f) N follows. Now, we assert that, by extrac-
ne

tion of a subsequence, the sequence 5),’3 converges weakly to some function V¥ in L (Q)asn — oo
thanks to Theorem (7).

It remains to prove that ¥ = Y*. For that, it is sufficient to prove that Yk 377’1“ converges
strongly to zero in L'(2). Indeed, let ¢ > 0. By the Chebyshev inequality, one has

meas({{VTk(un)| > L}) < </Q|VT;€(un)dzn) /L

g/Q (1+|VTk(un)\Pn<w>) dx/L

< (meas(Q) + Ck) /L,

by inequality @.10). It follows that sup(meas({|VTy(u,)| > L}) — 0 as L — oo. The
n

sequence VX — 372 is equi-integrable in (2, so there exists Ly = Lg(¢) such that for L. > Lg, one
has

/ |VE — V¥ dx < e/4, for all n € N. (4.22)
{IVTi(un)|>L}

By the assumption (4.1)), one has for all ¢ > 0,

lim meas ({Jz € Q; sup |ap(z, A) —a(z,\)| > a}) =0.

Hence, by equi-integrability of V¥ — V¥ on Q, there exists ng = ng(c, Ly) € N such that for all
n > no,

/ VE— V¥ da < /4. (4.23)
ze; sup |ap(z, A) —a(z,\)| > o

AL
By the definition, one has V¥ = a(z, VT (u,)) on the set R,, and we consider the following set

RLe .= {:c € Rp; sup |ap(z,\) — a(z,\)| < 0, |VTi(uy)| < L} .
IA<L

Since | VT (un)| < L on R57, then one has
|an (2, VTi(un)) — a(z, VTi(un))| < o on RL,

and so, for all n,
/L |V — Vil dz < omeas(Q) < e/4, (4.24)

n
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by taking o = o(e) < ¢/(4meas(QQ)). Also, by (4.22) and (4.23)), we have

\VE— V¥ da < /2, forall n > ng(o(€), L(e)). (4.25)
Rn\RTI{’U n n

Since p,, converges to p in measure on €2, one has meas(Q \ R,) = meas({|p — pn| >1/2})
converges to zero as . — oo; and the equi-integrability of V¥ gives, for sufficiently large n,

/ Vi =V dz = / V¥ dz < ¢/4. (4.26)
Q\Ry, O\R»,

Now, by using (4.24), (4.25) and (4.26)), we get, for n > ng(o(e), L(¢)),

|- <
Q
Hence, the sequence V¥ — 5/f§ converges strongly to zero in L(£2), as n goes to infinity, and so,
yh=y"
Let us show the representation formula (4.16) for Y*. Since meas(2\ R,,) — 0as n — oo, so,

by the equi-integrability of VT}(uy,) in €2, one can see that V7 (u,)(1 — xg, ) converges to zero

as n — oo. Therefore, the sequence VT},(un,) xR, converges to the same Young measure /¥ as the

sequence VTj(up). Now, fix ¢ € D() and let’s consider the Carathéodory function a(, -) - 1.
Since the sequence V¥ = a(x, VT, (un)xr, ) is equi-integrable in 2, then we can use the nonlinear
weak-* convergence property (2.9) to get

lim [ a(z,VIg(un)xr,) ¢ de = / a(z,\) - dvF () da. (4.27)

n—=0o0 Jq QxRN

Since a(z, VT}(un) xR, ) converges weakly to V¥, (4.27) becomes

/ijwdx:/mm a(x,)\)-q/zdyﬁ(A)dx:/Q</RNa(:c,>\)du§()\)) S de

which means that

YE=yF = / a(z, \) dvF()\) in D'(Q) and so, a.e. in Q.
RN

Now, we end the proof with ¥ € ') (€2). One uses Jensen inequality, the assumption 1) and
Lemma4.3]-(v) to obtain

/ VE@)P@ de = / / ale, A) dvE(N)
Q Q RN
< / la(z, AP @ dvk (A dz
QxRN

p'(x)
dx

g/ CM(z) + NP@) dik (A) dar < oo.
QxRN
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(ii) Let k > k > 0 and let’s put g* := an(x, VT, (tn)) X{ju/<k}- According to (i), (g5), oy

converges weakly to yzx{|u|<k} in L'(Q). If we prove that this sequence converges weakly to J*

in L'(Q), we can conclude that V¥ = ykx{‘ukk}, by uniqueness of the limit. Let’s put

hfl = ap(z, VTE(Un))X{|un\<k}'

Since k > k, one has
Ty (un) = T (T3 (un)),

and so
VTi(un) = VIG(un)X {17 o) <r} = VI Un)X {fun| <k}

Moreover, from assumption tl one has a,(z,0) = 0 a.e. x € Q. Hence,
an(z, VTE(UH))X{|un|<k} = an(z, VT (un))

and the sequence (hF) converges weakly to V* in L(Q), according to ().

neN

Consider the sequence (dﬁ)n cn such that

i = gk — hf = an(2, VT () (X{jul<k} — X{Jun|<k}) -

The function x(_j, z)(-) is continuous on the image of Q2 by u(-) for a.e. k¥ > 0. Indeed, one has
meas ({|u| = k}) = 0 fora.e. k > 0 by arguing as in the proof of Lemma[3.9} Therefore, since u,,
converges to u a.e. in €, then

X{Jun|<k} = X(=k,) (Un) = X(=k,k) (W) = X{ju|<k} @.€.inQ as n — oo.

So,
d¥ — 0 ae. in Q.

Moreover, by (i), the sequence (dfl)n N is equi-integrable in €2. Hence, by Vitali’s theorem, the
sequence (dy), . converges strongly to zero in L'(§). Therefore, g = hf + d; tends to V¥
weakly in L!(Q). So, this ends the proof of (i7). i

Lemmad4.5 (i) Forallk >0,

n—oo

/ V¥ VT (u)de > liminf [ YF - VT (u,)dz (4.28)
Q Q
and the "div-curl” inequality
/ (a(z,\) — a(z, VTi(w))) - (A = VT (w)) dvE(\) dz < 0 (4.29)
QxRN

holds.

(13) Forall k > 0,
V¥(x) = a(z, VT (u(z))) for ae x € Q, (4.30)

and VT (uy) converges to VT (u) in measure in Q as n — 0o.
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Proof. (i) Let ¢p € C*°(Q2). Since p,(-) is log-Holder continuous, then C*°(2) is dense in
Wipn()(Q). So, we can take v as test function in the renormalized formulation (3.3) for u,,.
We get

‘ /Q (b(un)S(Un)Tb S - VY — £S5 () w) "

< Il /Q 1 () [V VT (1) “31)

where S € S with suppS C [-M,M], M > 0. We are going to pass to the limit in (4.31)),
as n tends to infinity. By Lemma (zu), uy converges to w a.e. in (). By the continu-
ity of b and S, the term b(uy,)S(u,) converges a.e. in € to b(u)S(u). Also, [b(un)S(un)| <
1S oo max(b(M), |b(—M)|)|1| € L*(£2) and so, by the Lebesgue dominated convergence theo-
rem,

/ b(un)S (un)y de — / b(u)S(u)y de, as n — oo. (4.32)
Q Q
Let’s prove now that
/ fuS(up)pde — / fS(w)de, asn — co. (4.33)
Q Q
One has
| Sids = [ pS@ude+ [ fu(St) - St)vds (434)
Q Q Q

On the one hand, one has [, f,,S(u)y dz — [, fS(u) da since f,, — fin L'(£2). On the other
hand, one has, for R > 0,

/ (S (uun) — S(u))] da
Q

= / | fn(S(un) = S(u))¢|dz + / [ (S(un) = S(u))¢p| dz
{lfnl>R} {Ifnl<R}

< 2pll = 1S / ful dz + R|j] 1o / 1 (un) — S(u)] da. (4.35)
{l R} Q

For R > 0 fixed, the second term of the right-hand side of the inequality (.35)) tends to zero as
n — oo. Indeed, because of the continuity of .S and the compactness of suppS, S(u,) converges
strongly to S(u) in L'(£2) by the Lebesgue dominated convergence theorem. By the Chebyshev
inequality and since f;, is bounded in L'(£2), one has

sup || fo|1

supmeas({|fn| > R}) < HT < 7 0 as R — oo.

Since the sequence f, is equi-integrable in €2, then the first term in the right-hand side of

can be made as small as desired by the choice of R. Hence, the second term of the right-hand side
of (4.34)) tends to zero. And so, we deduce the convergence result (4.33).

Next, we prove that

/S(un)yfy Vi da — / S(u)YM . Vipdx, asn — oo. (4.36)
Q Q
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Indeed, for R > 0,

/ S(u)YM .V da = / S(un)YM . Vopda + / S(un)YM Ve da. (4.37)
Q {IV¥I<R}

{IVy|=R}
For the first term of the right-hand side of (#.37)), one has

/ S(un)¥M - Vi da
{IVy|<R}

= / S(u)YM Vi da + / (S(un) — S(u)YM . Ve da. (4.38)
{IVyI<R} {IVel<R}

Since YM — yM in L' ()(Q) by Lemma(i), then the first term of the right-hand side of (4.38)

tends (0 ¢y < ) S(u)YM - Vip dz as n — oo.

For o > 0 fixed, we can rewrite the second term of the right-hand side of (#.38)) as follows.

/ ((S(un) — S(u)YM - V| da
{IVy|<R}

[(S(un) = S(u))Ya" - V| do

/{|V¢<R}ﬂ{|yﬁdlﬁa}

T / (S () — S(w)YM - V3| da
{IVY|<RIN{|YM|>a}

< aR/ 1S ) — )|dx+2R||SHLoo/ VM| da. (439)
{1V 1>a}
The sequence VM is equi-integrable in  and is bounded in L' () as it converges weakly in L'(Q),
so using the same argument which leads to assert that the right-hand side of (#.33) tends to zero, as
n — 00, in the inequality (#.39), then the second term of the right-hand side of (#.38)) tends to zero
as n — oo. Thus, the first term of the right-hand side of (E converges to |, (Vo|<R} S(u)yM
Vi dx asn — oc.

For the second term of the right-hand side of (4.37), we note that, by Holder type inequality,

) /{Iv¢|>R} Vo' - (VS (un)) da

SCHS”L‘”||y1]1\/[HLP$1(-)(Q)||X{|V¢|2R}v¢||LPn<‘>(Q)' (4.40)

One has |V, ., ()(q) < € by Lemma4.3|and the growth assumption 1| Since ¥ € C*°(Q),
one clearly has meas({|V¢| > R}) — 0 as R — 0 because | V| is bounded. Therefore,

/ (V[P dz < C'meas({|Vih| > R}),
{IVy|=R}

where C'is independent of R. So, by Lemma (4i7), (iv), sup IX{v¢1>Rr VY Lo () tends to

zero as R — oo. Therefore, the second term of right-hand side of (@37) tends to zero as R — oo.
Hence, as n — oo and R — oo in the equality (4.37), we deduce (4.36).

Thanks to convergences (4.32)), (4.33)) and (#.36), we deduce for n large enough,

’ / ( W+ S - Vi - fS(U)¢> da

< ||| e sup/Q 18" (un)|an (2, VT (up)) - VI (uy) dz. (4.41)
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Now, fix k£ > 0. By Lemma(z’v), one has T, (u) € W'20)(Q) N L>®(Q). So, by the density of
C>°(Q) in WHP)(Q), we can replace 1 by T}, (u) in (4.41)).

Consider the sequence (Sys)ar C S such that :

e Syr and S}, are uniformly bounded;
oSy =1on[-M+1,M — 1], suppSyr C [-M, M], for all M € N*;
o the map M —— b(z)S/(2) is non-decreasing, for all z € R.

From now on, we replace S by Sy in (4.41). According to Lemma [4.4}-(ii), for M > k, one has
Y= YMX{uj<ky- Since VT, (u) = 0 outside {|u| < k}, then we can replace Y - VT},(u) by
V¥ - VT (u). Also, one has suppSy; C [-M,—M + 1] U [M — 1, M] and the sequence S}, is
uniformly bounded i.e. ||| o« () < C, where C'is a positive constant independent of M. So, the
term of the right-hand side of is bounded by

C'sup an(x, VT (up)) - VI (uy) de

n /{M1<|un|<M}

< Csup

/ (Mn]VTM(unN + \VTM(un)]p"(‘”)> dx
n J{M 1< un| <M}

< Csup HMnX{\un|2M—1} HLP;’L(')(Q) |WTM(Un)X{M—1§\un|§M} ||LPn(')(Q)

+ C'sup IV Tag (un ) [P ™) da, (4.42)

n /{M—1<|un|<M}

by using the growth condition on a, (-, -) and the Holder type inequality. Thanks to Lemma
the estimates (4.6) and (4.7)), and the fact that M,, is equi-integrable, one can see that the term of
the right-hand side of (#.41)) tends to zero when M — oo in (4.42). By the monotone convergence
theorem, since b(u)Sys(u) is non-decreasing and converges a.e. in €2 to b(u), then b(u)Sys(u)y
converges strongly to b(u) in L(£2). Moreover, by the Lebesgue dominated convergence theorem,
the terms Sy;(u)Y* - Vap and fSps(u)y converge, respectively, strongly to ¥ - V) and to f in
L(€2). Hence, the inequality becomes, with v replaced by Ty (u),

/Q <b(u)Tk(u) + VR VT () — ka(u)> da = 0. (4.43)

Now, we consider the renormalized formulation (3.3)) for u,, where we take T} (u,,) as test function
and S € Swith § = 5},

/ (S (un) V- VT4 (1) + ()t (@, Vtn) - (Vi) T (1) + b(1tn) Sp (1) T (1) ) da
Q
— [ FaSh(ua)Tiu) d (4.4
Q
We are going to pass to the limit in (4.44)), as h — oco. We use the property (3.2) to pass to the
limit, as h — oo, in the term containing the factor S;L(un) and, since S}, is monotone in h, we use

monotone convergence theorem to pass to the limit in the terms containing the factor Sy (u,). We
get then

/Q (yif VT (un) + b(un)Tk(un)> dr = /anTk(un) dz, (4.45)
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as h — oo in (4.44). Since u,, converges to u a.e. in €2, and also because f,, — f in L'(Q) and
| Tk|| < oo, arguing as in (4.34) and (4.35)), we have

/Q JuTo(un) d = /Q fuTh(w) da + /Q fo (Ti(um) — To(uw)) dzx — /Q fTi(u) dz, as n — co.

In the sequel, since b(uy, )T} (uy,) > 0, by Fatou’s lemma, one deduces

/Q (b(u)T(w) — fTi(u)) da < lim inf ( /Q (b(ttn) T (t1) — fnTk(un))dx)

n—oo

And so, from the inequality above and by using (4.45)) and {.43), we get (4.28).

Now, let’s go to the proof of the “div-curl” inequality (4.29). Thanks to Lemma 2.1 we know
that the sequence

(an . (VL)) - B (VT () )

m>0

is upper bounded by V¥ -VT}, (u,,) because it converges while growing to ¥ -V}, (uy, ), as m — oo.
So, one has, by (#28),

/ VE VT (u) dz > lim inf / (@, hon (VT (1)) - o (VT (1)) iz, for all m > 0.
Q Q

n—oo

Since [, AdvF(A\) and [, a(z,\)dvF()) are, respectively, the weak limits of V7 (u,) and
an(z, VT (uy)), then using the nonlinear weak-* convergence property (2.9), we get

lm | ap(z, hin (VT (un))) - (VT (uy)) de = / a(z, b (X)) - hon(N) dvF () da,

n—o0 Jq QxRN

and so
/yk-VTk(u) dxz/ a(z, hn (X)) - () drF () de.
Q QxRN

Now, thanks to Lemma [2.1] we can apply the monotone convergence theorem on the sequence
(a(z, him (X)) - hum(A))m to deduce that, as m — oo,

/ Vi VT (u) de > / a(z, \) - AdrF(\) da. (4.46)
Q QxRN

Now using the representation formulas |i and || and the fact that 2¥()\) is a probability
measure on RY for a.e. z € €, we find

/QxRN (a(:p,)\) — a(:c,VTk(u))) . ()\ _ VTk(u)) dyif()\) da
= /QX]RN a(z,A) - Advp(X) de —/Q (/RN a(z,\) duj;(A)> VT (u) dz

_/Qa(x,VTk(u)) </RNA<1V;§(A)> da

N /Q (a(z, VTi(w)) - VTi(w)) (/RN dvzf()\)) dz

= /mzv a(z, \) - AdrF(\) dx—/Q </ a(z,\) dyjj(A)> (/RN)\de;()\)> dz

RN
= / a(z,\) - AdvF(\) dz — / V¥ VT (u) de. (4.47)
QxRN Q
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From and (.46), we deduce {.29).

(ii) We prove (4.30) i.e. V¥ = a(x, VTi(u)) a.e. in €.
Thanks to the “div-curl” inequality (4.29) and the strict monotonicity assumption (2.4) on a(z, -),
one has

(a(x, ) — alz, VTk(u))) : ()\ - VTk(u)> dvF(\) = 0 forae. z € Q,
and, subsequently for a.e. z € Q, A = VT (u) wrt the measure /¥ on RY. Since, by the repre-
sentation formula (4.8), V71 (u) = / AdvF()), then the measure v/* reduces to the Dirac measure
Q
OV, (u)- Now, from the representation formula (4.16) we can deduce (4.30). Indeed, one has
yk(x) = /]RN a(z, \) dl/;f()\) = /RN a(z, \) d5VTk(u(m))(>\) = a(x, VI (u(z))).

Moreover, the sequence VT}(u,) generates the Young measure V]; = dyT,(u) €. in Q. So, from
Theorem (43), VT (uy,) converges to VTj(u) in measure on 2 as n — oo. O

Lemma 4.6 For a.e. k > 0, ap(x,VIi(uy)) - VIi(uy) converges to a(x,VIi(u)) - VI (u)
strongly in L*(Q).

Proof. By Lemmal[d.5]— (i) and (4.1)), up to a subsequence, we have an,(z, VT (un)) - VI (uy)
converges to a(x, VI (u)) - VI (u) ae. in Q. Since a,(x, VI (uy,)) - VIk(uy) > 0, by Fatou’s
lemma, one has

/ a(z,VTi(u)) - VI (u)de < liminf/ an(z, VTi(uy)) - VIg(uy) da
Q Q

n—oo

and so, by {.28), we have

lim inf/Qan(x, VTi(up)) - VT (uy,)de = / a(x, VIi(u)) - VIi(u) dz.

n—oo Q
Thus, by the Scheffé’s theorem (see [19]), up to subsequence, one has a, (x, VTk(uy)) - VI (uy)
converges to a(x, VT (u)) - VTj(u) strongly in L (£2). O

Lemma 4.7 w is a renormalized solution of ((1.1)).

Proof. By Lemma— (iv), one has Tj,(u) € WP()(Q). Now, we prove that b(u) € L'().
Indeed, from (4.43)), one has

1
[ b0 T do < ey
Q
which becomes by Fatou’s lemma, for £ — 0,
| bl < 17lo

Next, we prove (3.2)) with the diffusion flux a(-, -). By (2.3) and Holder type inequality, we get

/ a(z,Vu) - Vudx SC’/ <M\Vu| + \Vu]p(’”)) dux
{k<|ul<k+1} {k<|u|<k+1}

SCIMX g1 Lo @) (V) X k< ul <kt 13 | Lo (0

+C |Vul[P@®) dz. (4.48)
{k<|u|<k+1}
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Thus, (3.2) follows from @&.9).

It remains to prove (3.3) for u. Because C™(Q) is dense in Wl’p(')(Qland in Wr()(Q), p
and p,, verify (4.4), we can take test functions in C*°(€2). So, let ¢» € C™°(€) be a test function for
the renormalized formulation (3.3) for u,,. One has

/Q <S(un)an(‘r7 vun) -V + Sl(un)an(xv vun) - Vup + b(un)s(un)w> dz
Q

where S € S with suppS C [-M, M]. Asn — oo in (4.49), reasoning as above to pass from (4.31))
to (#.41)), we get the different limits given in (4.32), #.33)), and {#.36). So, we should direct espe-
cially our attention to the term

/ S () an (@, Vitn) - (Vi )t dar = / S () VM - (Vs () )00 da.
Q Q

The sequence S’(uy,) is uniformly bounded and converges to S’(u) a.e. in Q. Thanks to Lem-
ma () and by using Lebesgue generalized convergence theorem, this term converges to

/ S (u)YM . VT (u)tp de = / S'(u)a(x, Vu) - Vup da.
Q Q

We deduce the renormalized formulation (3.3)) for u with all test function in C*°(£2), which ends
the proof of Theorem4.2] O
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