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Abstract. In this paper, we study the null controllability for a system of two stroke equations arising
from coupled population dynamics models. First, we transform the system of two stroke equations
with the same control to a system of coupled two stroke equations with a control function acting only
in one equation. Then, we establish a global Carleman inequality and we deduce an observability
inequality that we use to solve the problem thanks to appropriate estimates adapted to the system.
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1 Introduction and main result

We consider a linear model describing the dynamics of population with age dependence and spatial
structure. More precisely, let € be an open and bounded domain of RY, where N € {1, 2, 3}, with
boundary I" of class C*°. For the time 7" > 0 and the life expectancy of an individual A > 0, we
setU = (0,7T) x (0,A),Q=UxQ,Q4=(0,4) xQ,Qr =(0,T) x Qand ¥ = U x I. Let
y := y(t, a, x) be the distribution of individuals of age a at time ¢ and location x € 2. We denote
by p := u(t,a,z) > 0and 8 := B(t,a,z) > 0, respectively, the natural death and birth rates of
individuals of age a at time ¢ and location x. We mention that if the flux of individuals takes the form
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—Vy(t,a,x), where V is the gradient vector with respect to the spatial variable x, then y solves the
following evolution system:

oy Oy _ )
2% T 9 Ay+py = f inQ,
Yy = on >,
y(0,a,x) = yo(a,aj) in Q 4, a.D

A
y(t,0,x) :/0 B(t,a,z)y(t,a,z)da in Qp,

where A is the Laplacian with respect to the spatial variable and y°(a, ) is the initial distribu-
tion of individuals of age a at location x. The function f is an external input. The formula
fOA B(t,a, z)y(t,a,x) da denotes the distribution of newborn at time ¢ and position z. We assume
as in [1] that:

[ B € C*([0,T] x [0, A] x Q),
(H1) ¢ B(t,a,z) >0in[0,T] x [0, A] x Q,
there exist 0 < a; < ag < A such that 5(¢,a,x) = 01in [0,T] x [(0,a1) U (agp, A)] x £,
wu(t,a,x) = po(a) + pi(t,a,z) ae. in U x Q,

pur € LU x Q) and pq (t,a,x) > 0 forae. (t,a,z) € U x Q,
(H2) wu(t,a,x) > 0forae. (t,a,2) € U x Q,

a
o € L (0, A) and lim / to(s)ds = +oo.
a—A 0

The third assumption in (H;) means that younger and older individuals are not fertile. The fourth
assumption in (H2) means that all individuals die before the age A. For more literature on the
significance of assumptions (H1) and (Hz), we refer to [24, 3] and the reference therein.

Since f € L?(Q) and 3° € L?*(Q4), we can prove as in [20] using assumptions (H;)—(Hz) that
the problem (1.1) has a unique solution y € L2(U; H}(2)) and 2 + % € L2(U; H-'(92)).

a

Let w € () be a subdomain compactly embedded in 2. In the sequel, we set G = U X w
and W(U) = {p € LX(U; H}Y(Q)) : % + % ¢ L2(U; H~'(Q))}. The space W (U) is continu-
ously injected into C((0,T); L2(Q4)) N C((0, A); L?>(Qr)). So, the solution of (1.1) belongs to
C([0,T); L*(QA)) N C([0, A]; L*(Q)) N L*(U; H (2)). The adjoint system associated to (1.1) is
the following:

0q Oq .
_a_%_AQ‘i‘,Uq:ﬁQ(t,O,x)‘i‘g ana
q = 0 on E, (12)
q(T,a,z) =0 inQy,
q(t,A,z) =0 in Qr,
for some & € L?(Q). For i = 1,2 we consider the following two stroke equations
0q;  0¢; .
—% - 6% — Ag; + pigi = Bigi(t,0,2) + h +vx, in@,
q; = 0 on E, (13)
ql(Ta a,x) =0 in QA)

QZ(ta A,.’I}) =0 in QT7
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where h € L%(Q) is some function, v € L?(G) represents the control function and Yy, is the
characteristic function of w, the set where the controls are chosen. In the system (1.3), we have the
same control function v and the same function % on the right-hand side of the evolution equations.
Using assumptions (H1)—(Hz), we can also prove as in [20] that the problem (1.3) has a unique
solution ¢; € W(U). Sometimes, to underline that the solution ¢;, where ¢ = 1, 2, depends on v, we
will write ¢;(t, a, x, v) instead of ¢;.

The null controllability of the system (1.3) can be formulated as follows: given h € L?(Q) find
v e L*(G) (1.4)

such that the solutions ¢;, ¢ = 1, 2, of (1.3) satisfy
q1(0,a,z) = q2(0,a,2) =0in Q 4. (1.5)

Controllability problems for an age and space structured population dynamics model have been
studied by several authors. For instance, B. Ainseba and M. Langlais proved that the set of profiles is
approximatively reachable [4]. It has been shown in [5] that if the initial distribution is small enough,
we can find a control which leads to extinction of the population. The result was achieved by means
of Carleman’s inequality for parabolic equations. Exact and approximate controllability results are
obtained for a linear population dynamics problem structured in age and space by Ainseba (see [1]).
Concerning the nonlinear population dynamics model, a null controllability result was established by
B. Ainseba and M. Iannelli by means of the Kakutani fixed point theorem [2]. Using an extension of
the Leray-Schauder fixed point theorem and Carleman’s inequality for the adjoint system, O. Traoré
showed that for all given initial densities, there exists an internal control acting on a small open
set of the domain and leading the population to extinction [25]. S. Sawadogo and G. Mophou [23]
gave a null controllability result for a population dynamics model with constraints on the state when
the age of the population belongs to (y, A) for any v > 0. Following this work, M. Mercan and
G. Mophou [16] proved a null controllability problem with constraints on the state for the adjoint
system of a population dynamics model. The result was achieved by means of Carleman’s adapted
to the constraints. C. L. Rose solved a problem of simultaneous null controllability with constraint
on the control for a system of coupled linear heat equations by means of an appropriate Carleman’s
estimate adapted to the constraint [15]. M. Kéré and O. Nakoulima proved a simultaneous null
controllability for coupled backward heat equations and used the result to build a simultaneous
sentinel [12]. However, the problem of simultaneous null controllability is little known in population
dynamics problems. This is what motivates us to extend the results from [15, 12] to the population
dynamics problem. More precisely, we study a simultaneous null controllability for a system of two
stroke equations. Assume that

p1 # p2 and B # B2 in G. (1.6)
By setting
P1=q1 + g2, P2 = q1 — q2, ap = 3(p1 + p2), by = 3(u1 — pa2), an
as =3(BL+ Pa), bp=3(B1—PBa), f=2h k= 2v, '
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one gets:
dp1  Op1
_E — % — Apl +aup1 + bup2 = aﬁpl(tvoa 1‘)
+ bgpg (t, 0, x)
+ f + k’Xw in Qa
Opy  Op2
B " aa ~ Ap2taupa+bupr = bspi(t,0,2) (1.8)
+aﬁp2(t707x) in @,
pl = p2 = 0 On E,
p1(T,a,x) = pa(T,a,z) =0 inQa,
pi(t,A,x) =pa(t,A,z) =0 in Q7.

Consequently, our aim is: for any a,, by, ag, bs € L>=(Q), f € L*(Q) find a control
ke L*(G) (1.9)
such that the solution (p1, p2) of (1.8) satisfies

pl(O,a,:r) :p2(07a7x) =0 in Qa. (1.10)
The main result of this paper reads as follows.

Theorem 1 Let w C Q. Assume that (H1), (Hz) and (1.6) hold true. Then, there exists a positive
real function 0 (a precise definition of 6 will be give later on) such that for any function f € L*(Q)
and ay, by, ap, bg € L>®(Q) with 0f € L?(Q), Gag, b, Bag, Obg € L>°(Q) there exists a unique
control k, of minimal norm in L*(Q), such that (k, p1, p2) is a solution of the simultaneous null

controllability problem (1.8)—(1.10). Moreover, the control k is given by

k= pixe, (1.11)
where p = (p1, p2) satisfies
( Op1 | Opr - - _ ~
W—F%—Apl—kaupl—kbupgzo inQ,
0pa  Opa N N - .
ﬁ‘i‘%_ApQ‘i‘auPQ‘i‘buPl:O inQ,
p1=p2 =0 on %, (1.12)

A
pt.0,2) = [ asin + b da inQr,
0

A
p2(t,0,x) :/ (bgp1 + agp2)da in Q.
0

The rest of this paper is organized as follows. In Section 2, we establish a global Carleman’s
inequality from which we deduce an observability inequality adapted to our problem. In Section 3,
we prove the existence of the solution of the problem (1.8)—(1.10). The Section 4 is devoted to
proving Theorem 1.



CONTROLLABILITY FOR A SYSTEM OF TWO STROKE EQUATIONS 37

2 Carleman’s inequalities
Let us recall the following lemma due to A. V. Fursikov and O. Yu Imanuvilov.

Lemma 1 ([10]) Let wy € w be a subset of w. Then, there exists a function vp € C?(Q2) which
satisfies the following conditions:

@) |V(z)| > 0forall z € Q\ wy,
(b) Y(z) > 0forall x € 9,
(¢) Y(x) =0forallz € T and g—f <0onT,
(@ min{(e) : z € O} > max{2 [l . In 3}, where | oo = | |10
For any positive parameters A and 7, let us consider the weight functions which for all (¢, a, x) €
@ are given by

eékllwlm _ () ()

d(t = — .
T =D > 0and ¢(t, a,x) at(T—t)>O

a(t,a,z) =1

. . 4
Remark 1 Note, in particular, that ¢ > are

In the sequel, C' represents different positive constants. We adopt the following notations:

V={peC™ (@) :pn=0}, W=VxV, Qu=(0T)x(0,4)xwp

and
dp Op dp Op
- PP _A Lip= L4+ 2F _A
ot 9a P P=%t " 9a P
M(p1,p2) = L*p1 + appr + bup2, N(p1,p2) = L*p2 + bup1 + aup2,
M (p1, p2) = Lp1 + aup1 + bypa, N(p1,p2) = Lpa + bup1 + aup2,
(s bu) 12 = llawllZ + 16l dQ = dt da dz.

Adapting the method of [19] the following result can be easily proved.

Theorem 2 There exist \y > 0, 79 > 0 and a positive constant C' such that for A\ > g, 7 > 79 and
for s > —3 the inequality

1 L
+ 3 180" + A7%0? [Vpl* + Nt p!2> e dQ

bl

holds for any function p € V such that the term on the right-hand side of the inequality (2.1) is finite.

) 2.1)

()02367204 dQ + )\47_4/ ’P’Q 25+3 —2a dQ)

«wo
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Following [13], for given A and 7 as in Theorem 2, we consider the functional

1|0p 8p2 1 9 2 9 2 4 4 4, 2\ 2s—1 —2
I = Sl 2 ApP A A e dQ.
(s,p) /Q(A 2% T B4 +A\ pI” + AT [Vpl” + A% [p]” | ™ e Q

Lemma 2 Let C be the constant given by Theorem 2. For any \ > X, T > T =

1 -

1 2
422 (9G) 0y b, and s > 3, we have for all p = (o1, p2) € W,

X /Q (012 + 122 ()3 2 4Q
< 20(3 /Q (IM(0) P+ IN(0)2) (o) e 2 dQ 22)

Y / (o1[2 + [pal?) (r)?+8 2 d@).

0

Proof. Let p = (p1, p2) € W. Applying (2.1) to p;, i = 1, 2, and then adding the results, we deduce
the following relation

I(s,p1)+1(s,p2) < C<’7’/ (|L*P1\2 + |L*p2|2)¢236—2a dQ
Q

- A474/ (Ip1* + |paf?) > T3e 2 dQ)-

0

2.3)

The first term on the right-hand side of (2.3) can be estimated as follows
/ (|L*p1‘2 + ‘L*p2’2)<p28€_2a dQ
Q
< 2/@ (‘M(P)P + ’N(P)P) @ e dQ + 4 (ay, b;t)Hgo /Q (’p1’2 + ‘PQ‘Q) @ e 2 dQ.
This, together with (2.3), yields
2 2\, 25 —2«a
o)+ 105, 2) 027 [ (MR + NG dQ

47| (a2 / (101 + lpal?) e dQ 2.4

Q
T prA
+/\4T4/0/0/(\p1\2+Ipzlz)w%“e”‘“d@)-
wo

For p = (p1, p2) let us define I (s, p) and I2(s, p) by
L(s,p) =7 /Q M(p) — aupr — bupal e AQ

Ls,p) =7 /Q M (p) — bupr — aups| 2 dQ.
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We have
e R M e L N

Ly(s,p) < 3T/@|N(p)l2<p2562“ dQ+3r/Q (1BllZln? + a2l o2l?) e dQ.

Summing these two above inequalities (after some estimations), from Remark 1 and the rela-
tion (2.3), we deduce that

44 AT2 3 2 2 2\, ,25+3 —2a
A —37C e ||(auabu)Hoo Q(‘pl‘ + |p2] )90 e 7dQ

<c (37 /Q (IM(p)? + [N (p)) e 22dQ + Aot /G (Ioal? + |p2|2)so28+3e-2adc2).

Note that if 7 > 7 and A > ), then (ATTQ)?’SCH(QM,Z)M)HEO < $A$r3 and, consequently,

STC(ATTQ)gH(aH, bu)||% < 3A17%. Therefore, for 7 > 71 and A > \g we have

A4T4/Q (Ip1]* + [p2]?) > e 27dQ

<20(sr L OM@R + VR aQ 4317 [ (4 1paf) P10 ).

wo

To obtain (2.2) it suffices now to multiply both sides of the above inequality by 7251, (Il

Let us consider the following adjoint problem associated to (1.8):

(001 0 |
B T oa D01 T @b+ bugz =0 inQ,
foler foler .
0o 082 o eyt b =0 vo
b= =0 on,
#(0,a,x) = ¢(0,a,2) =0 in Qa, 2.5)

A
61(t,0,2) = /0 (61 + bads)da in Qr,

A
$2(t,0,x) :/0 (agp + bgpr)da in Qr.

One obtains the following result.

Theorem 3 Let all the assumptions of Lemma 2 be satisfied. Further, assume that 7, > 1 and that
there exists a constant by > 0 and a set wy, such that

Wy Cw and |b,| > by in (0,T) x (0,A) X wp. (2.6)
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Then, for all v € [0,2), there exists a constant C' = C(A, T, ||(au, by)||cos bo, ) such that for all
¢ = (¢1,02) € W we have:

/OT/OA/w,(|¢12 + |p2]?)e2dQ

2.7)
< o( / 612 e mdQ + / (M) + \N<¢>|2)so2$e—2adcz)
G Q

for all W' such that W' C wy C w.
Proof. The aim is to estimate [, , [¢2|?e 2*dQ by [ |$1]*e~"*dQ for all r € [0, 2) and for all

¢ = (¢1,02) €W.
Let ¢ € C*° (R"™) be a function such that

((z) =1, ifred,
((z) € (0,1], ifzew”, (2.8)
¢(x) =0, ifz e R"\ ",

with w’ C w” C @y, C w. Let us suppose that
—by > bp >0 in (0,7) x (0, 4) x wy. 2.9

Set
n=_¢° (2.10)

and for all A\g, A1, p,q > 0let

Aft,a) = /Q (e ni 6ol — doe 2162 + e~ " i 0 ?) da @.11)

£ Plloo z) . o
ESA”ZJ(T:BW( " in Q. Let us remark that if instead of (2.9) we had b, > by > 0,

then in the expression for A one should take )\06_20‘77@51 ¢9 instead of —)\06_20‘77@51 ¢s. From the
definition of the function o one deduces that

recall that o = 7

A(0T,07) = A(0T,a) = A(t,07) = A(T",a) = 0 for (¢t,a) € (0,T) x (0, A). (2.12)
So,

OA

0
E(tv a) = /Q %£ <—pn%‘¢2‘2€_pa - qA1‘¢1‘26_qa) da

+ / n% <277%p26_p0‘ — /\0¢16_2“> dx
q Ot
(2.13)

28¢1 1 —2a —qu
+/Q773 N ( Aon3 doe " 4+ 21 p1e )dw

_9q O
+2X / ne 2o d16a da.
0 t
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Let us integrate (2.13) with respect to the variable ¢ over (0,7"), and use (2.12). Then, integrating the
obtained result with respect to a over (0, A), we get

2 0 2 —pa —qa
02/62?73&(—1?773}02!26 P — A || e )dQ

0
+/ "77(;;2 (2"7%¢2€_pa—>\0¢16_20‘> d@
Q
96 (2.14)
2091 (- 1 —2a —qu
+/Q773 o ( A3 doe ™2 4+ 2\ e )dQ

0
+2/\0/ U€_2a£¢1¢2d62-
Q

Let us differentiate A with respect to a. Using the same approach as before, but this time integrating
% first with respect to a over [0, A] and then with respect to ¢ over [0, 7, and using (2.12), we
obtain

T 2 O 2012 —pa 2 4
[ s aye= [ S (i foner - a0

0 1
+/ "77;2 (277§¢2€_p°‘ - )\0¢>1€_2a) d@
Q a
(2.15)

0
+ [ A5 (“xanbone ™ 4 2ndne ) dQ
Q aCL
o«
+)\0/ 776_2a67¢1l)2d@-
Q a

From (2.5), for : = 1,2, we have %(Z" = A¢; — aup; — bypj, where j € {1,2} and j # i. Now,
let us replace %ai by A¢; — a,p; — bu¢; in (2.15) and sum the equalities (2.14) and (2.15) term by
term. We obtain

—)\0/ nbue*a\pg\z dQ = J1 + Jo + J3 + Jy + J5 + Jg + J7, (2.16)
Q

where the terms J;, ¢ = 1,...,7, will be defined (and estimated) below.

Suppose now that for every r € [0, 2),
p>2,q>1+g,)\021,)\121. 2.17)

We are going to estimate the terms J;, 7 = 1,...,7. Let us begin with the sum J; + J2 + J3, where

da O
Ji = / <)\177rlse_(q_’”)°‘{—2au —~ q<a + O‘) } + Ao1w§e‘@‘”‘)‘)77;)e‘7”°‘|¢>1|2 dQ,
Q at 8@

L oa da  Ou —%
1= [ (b2l w2 —p( G+ 50 ) }peiea a0

J3 = 2/ (Aoﬁe_Qa{au + <6a + 804) } - Alngbue_qa - bwée‘po‘> P12 dQ.
Q ot  Oda
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We have
J3</ Anie @l g, + Yo | O 2+)\2]b 2~ 2(a-1)~]o
= Jo\"? a ot ' da 119

+—ww%ﬁe[“p1>Th)n%er“¢u%ug+3/gne2&@ﬂ?a@.

Thus,

2 2
Ji+Ja+Js < / <A3n3e(2’“)a{au - (80‘ + 8)} + A2|by|Pe 2@ 1)l
Q ot 9

2% - —1l)—Trja lffra foJe oo
o e o0 e g, oG4 5

2
+ Aobmse‘@‘”“> nse?¢1[°dQ

z 0 0
e e ()

The function 2 at + ga is not bounded in U. From (2.12) and from the definitions of « and 7, one
deduces that 7 ( + %‘;‘) —la ¢ [2°(Q) forall j > 0 and ¢ > 0, and thus, in particular, for
te{(2-7),2(¢— 1) —r,2(p—1)—r,qg—r,p—2,2}. Applying Holder’s formula to the previous
inequality, we get

2

)

2

J1+ o+ J3

< [228 (el = ke 0B+ ok (G + )0

Oa

1 9 ) )
*‘A%(”bﬂ’i>*’Hnﬁe‘“q‘”‘“aH ) Il + -8

[e.9]

)

g (224 2 e

2 1
m)]l/in36_“ﬂpﬂ2dQ
+><3+ﬂauHé Hn3e o= 2)‘IH -+pHn3(+>gZ)nle P2 Hw>j2n6_&ﬂpﬂ2dQ-

From the definition of 7 and from (2.17), one deduces that there exists a positive constant C' =
C (p7 q,7, HU‘ |OO) such that

Jy 4+ Jo + Js3
<c{[x2< +llau 2 + 1bull% +‘

*V('ﬂww2+mw2

+)\1<||a“\| Hnge (g—r)a

1 2
# oo ( Il + [oF et

G+ 5 )
(é%% +_§;j> R oo)] (2.18)

%<7 4 8a> —(p—2)a >

1
></ 3¢ p]?dQ + <1+HaHH2 +p’ -
Q a

X / ne*2a‘p2|2 dQ}.
Q
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To conclude this estimation, we need to study the functions (%@‘ + g—‘;‘)e_ﬁa in U for £ > 0. For all

IS { r),2(¢q—1)—nr2(p—1)—r,qg—7r,p—2, 2} we get the following inequalities
4
oo _y, esAM¥lee _ eAv(@) oa _, T(T—2t), 4
o < F Thetal « TN 7 AV slYllee _ M) o
‘Bae T ek P L - G ) X Fu

where the functions F}, and F} are defined respectively on (0,T) and (0, A] b

1 .y 1 1,1
Fa(t) = me MHT and Ft(a) = ﬁe Zliza
with
(e§A||w||oo — M) (e%Alelw — @)
mr(a,z) = 7 inQu, altir) =7 in Qr.

p HT — 1)

We must study the functions F,, and F; on (0, 7") and (0, A, respectively. Set z; = t(T%t) and zp = =

Then, z9 > i . Note that zl = ﬁ is equivalent to 212 — (z;T)t + 1 = 0. The above equation

admits a solutlon if 21 > =. Consequently, the study of functlons F, and F, respectively, on
(0,T) and (0, A) can be reduced to the study of functions Fi(z) = z2e %1% and Fy(z) = z2e %27,
respectively, on [,400) and [§,+00). The function F(z) = 22 % 2z > max(7z, %) is

decreasing on [%, +00) and increasing on [max (%, ix) , zn] Thus, in particular, if Kgl > %,
then Fy(2) < F1(%) = (QZ: )2. Consequently,
Do 4y 12AT?e2
ot o2 (63)\”1/1”00 e)‘Hw(I)HOO)
So, there exists a constant C; > 0, which depends on ¢, ||1||~, A, A and T', such that
da —flo
— < (1. 2.19
T < O (2.19)

If 2 - < ;}2, the function F7 is decreasing on [%, +00), and so Fi(z) < Fl(%). Thus,

Ja
ot ¢

—Za

68Tk ,4é~1 17B
< T2
- 77 - a

44
2% with B= T;(Q%Allw||oo _ 6A1j)(m)>'

B . . . .
The function a — %ef a admits a maximum at B and the maximal value is %e‘l. Therefore, there
exists a positive constant C, which depends on ¢, ||?||, 7, A, A and T, such that

Ja —Lla
ae
From (2.19) and (2.20) for C's = min (C, C2), one obtains

< . (2.20)

8@ lo

—e Y < (. 2.21

T < (3 (2.21)
Now, we come back to the function F5. For zi <> the function F3 is decreasing on [ Ty , +00)

and increasing on [17£n ]. So, F3(2) < Fa(7%) =) and ‘80‘ —le| < w Fg(em)
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constant Cy, which depends on Z, ||1||0, 7, A, A and T', such that

Proceeding in the same way as in the case when % > %, one can prove that there exists a positive

—fla

<. (2.22)

6704
Oa

For % < % < z, the function F5 is decreasing [%, +00). So, F5(z) < F5(A) and one deduces
that

Oa lo K9 Lrg D _¢D 1
—e < ——Ze A < ——e TAUT-D)
da - A? — (T —t)
Setting z = ﬁ we consider the function F'(z) = ze~ 747 defined on [£r,400). One de-

duces from the above estimates done for the function Fj, that there exists a constant Cs =
CW, |1Y]lso, Ty A, A, T) > 0, and for Cs = min(Cy, Cs) one has

‘80‘@—“ < Cg. (2.23)
oa

From (2.21) and (2.23), one deduces that there exists C' such that

Oa 0o\ _y,
'(aﬁaa)e

Consequently, there exists a constant C = C(p, q, 7, || 1 ||oo, A2,), Wwhere A2, = A} + A2, such that
the relation (2.18) becomes

<C. (2.24)

T4 1
stk n < el (141t + 3 ) [ beimPaq
Q

(2.25)
2 2 —2a |2
+ 1+Ha,uHoo+ﬁ ne |P2| dQ .
Q
Now, we will estimate
Ti= <o [ 57 (@180 + Ga01) Q.
Q
J5 = 2)\1/ nie 1%, Agy dQ,
Q
Jo = 2/ N3 e P Go Ay dQ.
Q
Similar methods to those used in [12, 15], give us the following inequalities
Hn—%e<1+%>% (=22 H <C (2.26)
(e.)
and
2 7 L 2
@ 2.27)

1
45 [ 02 mld@ — 2% [ e 295 Tpd0,
2 Jq Q
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2
J5 < MC (1+;2> / n5e " pi2dQ — 2 / ne Vi PdQ,  (2.28)
Q Q
72 —2a . |2 i _po 2
Jo <C {1+ 75 /776 |p2] dQ—2/773€ PV po|” dQ. (2:29)
Q Q

Finally, let us estimate J; = — fOT A(t, A) dt. Moreover, suppose that
p+q<4 and A3 <2\ (2.30)

One deduces that .
1
Jr < —2/ / e P3| pa(t, A, 7) 2 dQr < 0. (2.31)
0 JQ

From relations (2.16), (2.25), (2.27), (2.28), (2.29), (2.31) and (2.9), one obtains

)\obo/ ne 2% pa|>dQ < —Ao/ nbue ¥ po?dQ < Jy + Jo + J3 + Jy + J5 + Je.
U><wb Q

Now, on the left-hand side of the inequality, we will regroup all integral terms that contain ne =2 |pz|?;
one has

T

2 2
2 T 1 2 —2a
0= Clo e d) (14 ol + 5 ) = €(1+ ) = 5| [l 0a0
9 7_4 9 7_4 7_2
< €t e ) (1 N bl + 7 ) 4280 (14 75 ) 0 (14 75|

1 4 2
X/ n3e”"|p|?dQ — 2/ (775"”‘3_m|vp2’2 — Aone **Vp2. V1 + )\1773€_qa’VP1\2) d@.
Q Q

The inequality (2.30) shows that the latest term on the left-hand side of the above inequality is
negative. So, choosing by so that

1 9 72 72 1
bo > o —C (P ¢; 7, [1lloos Am) {1+ llanllSe + T2 -C(1+ T2) "3
we see that there exists a positive constant C' = C(p, q,7, ||0]|co, Am, T') such that
2 2« 1 —ra 2
nlp2"e™**dQ < C [ n3e"|p1]*dQ.
Q Q
From the properties of the function 7, we deduce that
|p2)?e™2*dQ < C / e " p12dQ. (2.32)
w’ G
The relation (2.32) allows to deduce (2.7). ]
Thanks to (2.2), we can write the following result.
Corollary 1 Under the hypothesis of Theorem 3, for all r € [0,2) there exists a positive constant

C = C(A,T,||(au bu)|loos co, ) such that for all p = (p1, p2) belonging to the space W(U) we
have

/(yp12+ lpal?)e2*dQ < C (/ lp1? e T dQ +/(|M(p)]2+ N(p)Q)eQO‘dQ>. (2.33)
Q G Q
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Setting 6 = ¢ and § = e(1~2), we obtain the following proposition.

Proposition 1 Under the hypothesis of Theorem 3, for all p = (p1,p2) € W(U) there exists a
positive constant C' such that

/012(|P1|2+|p2|2) dQsc(/ (IM(p)? + N (p)[?) dQ+/62|p1]2dQ>. (2.34)
Q Q G

Lemma 3 Under the hypothesis of Proposition 1, there exists a positive constant C' such that for all
p = (p1,p2) € W(U) we have

T
[ [ (ost.0.008 +102(0.0.00P)
0 JQ
2 2 1 2 2
+/QA(V” (0,a,2) [ +1p2 (0, a,2) | )dQA+/QQQ(!m\ + |p2l?)dQ (2.35)

<o /Q (MG + NP Q+ [ &1l 4Q).

Proof. In order to proceed as in [15], let us consider the set Jr4 = [, 3] x [%, Al. Then, « is
bounded on Jr4 x () and there exists a constant C' such that

e EN AT _
pil | dQ>C lpi” dQ, i=1,2. (2.36)
§ 4 Ja\d §Jae

From (2.36) and Proposition 1, we deduce that

/JT L (ol + pal)? dQSC(/Q (M) + [N () dQ + /G 62|p1|2d@). 2.37)

02
AXQ 0

Let us consider the function Y € C'*° (U) such that

Y(t,a) =1, if (t,a) € [0, %) x [0, A)
Y(t,a) € (0,1), if(t,a) € [£, 3] x [4,A), (2.38)
Y(t,a) =0, if (t,a) € [£,T] x (0,4]U (3L, 7] x [4, A

For p; € V,i=1,2,and p € R let us set £(t,a,x) = Y(t,a)e P p;(t, a, x). Then, ilss =0,
él(Ta a, {II) = f’b(ta A?‘T) =0, fz(t,O,x) = e_ptpi(t707$) and fi(07a7$) = e_papi(07a7x)' One
obtains

ay oy
L(&1) + (au — 2p)€1 + bu&a = <_6t - a@) e7Patt) ) 4 yePlatt), (2.39)

Let us multiply (2.39) by &; and integrate by parts over ). We obtain

1 (T 1[4
/ / |£1(t,0,x)|2dtdx+/ / !51(0,a,x)|2dada:+/ Ve | de
2 Jo Ja 2 Jo Ja Q

oy oY

(2.40)
- /Q (au — 2p) |67 dQ + /Q bué1&2dQ = — /Q (aﬁ%) e Pt pig1 dQ.
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In the same way, we get

//fgt()x] dtdx + = //]520&30)\ dad$+/|V§2‘2dx

oy Oy 241)
+ / (bu — 2p)|§2|2dQ/ a,§182dQ = —/ <6t + 8> e Pt a6y dQ.
Q Q Q a
Summing (2.40) and (2.41), one deduces that
1 1
2/;2 (|£1 (t,o,l’)|2+ |€2 (t,0,$)|2) dQT+2/Q (lgl(oaaa {E)|2—|— |£2(0,CL,.CL')|2) dQA
+/ (IV&)? + |V€2|2) dz + /Q (ap —2p) |67 dQ + /Q (by — 2p) |&2|* dQ (2.42)

’ + S8 (R 03) e 000~ [ (0 +b) 16200,
Q
According to Young’s inequality, there exist k1, k2 € R’ such that
—/ (0 + B) 61620Q < / [ (ay + by 1] d@+/ GfdQ. @43
Q

From the definition of the function Y, we see that T 0, 2 9L £ 0in [£, 2] x [A A] and, moreover,

4074
that the function Eg aY ‘ is bounded. There ex1sts a positive constant C' such that

/ ‘ — | (Ip1]? + [p2l*) el dQ < / (I +1p2?) dQ. (2.44)
(JTA)XQ

Using the inequalities (2.43)—(2.44), from the inequality (2.42), one deduces that

]]/ (mma0a»9+-@(uOJ»P)dQT+—1/g (162 (0,a,2)  + [€2 (0,0, 2) P) dQa

2 Qr
Qs o0 k
o [ (a2 Y (6 Pagr [ (b -2 7 ) lea
Q
2
<C (Ip1]* + |p2|7) dQ.
(JTA)XQ
For p € R such that p < %au — % and p < 1b — k2 , one obtains
L//\mt0x9+m60wﬂ)”WWT
5 [ (O P+ lpa(0.0.0)P) e dQa < C (101 +12P) a@.
Qa (JTa)xQ

The function ¢ — e 2Pt

C" such that
T
/“/gapluxxxﬂ2+wpzuxxx>ﬁ>dQT
0
1
+24 wummwﬁ+wﬂmmmﬁwwAsd/° (Io1? + lp2l?) dQ.
A

(JTA)XQ

is bounded, respectively, on [0, 7] and [0, A], and so there exists a constant

(2.45)

From (2.33), (2.37) and (2.45) we get (2.35). O
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3 Existence of the control

In this section we solve the problem (1. 8) (1.10). Let us consider the auxiliary problem: for
feL2(Q), ay, b, € L=(Q) find ((p1, p2), k) in W(U) x L*(G) such that

'—%?—%Z—A@+@@mea:f+%@in@
P At tbp =0 G
pr=p2=0 on X, (3.1)
p1(T,a,z) =p2(T,a,z) =0 inQy4,
p1(0,a,7) = p2(0,a,2) =0 inQa,
Pt A x) =Da(t, A,z) =0 in Q7.

The adjoint problem associated to (3.1) reads as follows:

0 0

O 0 Adyt a1 + bt =0 Q.

Op2 O . (3.2)
E‘F%_Agh‘ka;ﬂb‘kby@bl =0 ana

¢1=¢2 =0 on.
The problems (2.5) and (3.2) give the same Carleman’s inequalities.

For all p = (p1,p2) € W(U) and 0 = (01,02) € W(U) let us consider the bilinear form

:/QM( dQ+/N dQ+/5p1a1dQ

—/prldQ-

One deduces from (2.35) that B is a scalar product on W. Let H be the completion of the space W
with respect to the norm ||p||% := \/Bi (p, p). Then, H = W(U) is a Hilbert space.

and the linear form

Lemma 4 Let0 be a weight function such that 0f € L2 (Q). Then, for any p = (p1, p2) € W(U)

we have
M (p) (,0,2), N (p) (t,0,z) € L*(Qr), (3.3)
1M (P) | z20) < Cllfll2(@) (3.4)
IN(P) l2(@) < Cllfllz2q)- (3.5)

Proof. Let us consider the problem

Bi(p, o) = L(0). (3.6)

According to (2.34), L is continuous on V. Since the bilinear form B; is a scalar product on WV,
we deduce from the Lax—Milgram theorem that there exists a unique function p € H which solves
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the problem By (p, o) = L(o) forall o € W. Set py = M(p), p2 = N(p), and k = —p1xw. As
p € H,wehave p1,ps € W(U) and k € L?(Q). Let us replace in (3.6), M (p) by b1, N(p) by p2
and —dp1 X by k. For all o € H, after integrating by parts over (), we have

/[(M*(ﬁl)—f—gxw)}al d@+/ [N*(p1)] 02 dQ
Q

Q
+ 0 p1(t, A, x)o1(t, A, x) — pi(t,0,2)01(t,0,2)] dQr
+ Q [ﬁl(T? a, ‘T)O-l(Tv CL,ZE) —]/)\1(0,&,.1})0'1(0,61,37)] dQA 3.7

+/ [p2(t, A, x)oa(t, A, z) — pa(t,0,2)02(¢,0,2)] dQr
+A [1/7\2(T7 a, x)ag(T,a,x) _1/9\2(07a7$)02(07a7x)] dQA =0.

In particular, for o = (01,0) € D(Q) x D(Q) and 0 = (0,02) € D(Q) x D(Q), respectively,
from (3.7) one deduces that

op1  Opi . . P
_W — % — Ap1 + aup1 + b,up2 = f + 6ka m Q (3.8)
and % 9%
P2 P2 ~ ~ ~ :

Since p1,p2 € L?(Q), we see that 88—’?, %—% € HY(U;L?*(f)). Using (3.8)~(3.9), one has
—Ap1, —Apy € H 1 (U; L%(Q)). We also have the existence of restrictions Dl D2|y, Which
belong to H~1(U; H —2 (I')) and the existences of the restrictions %%’2, %—ﬁj]g which belong to
H=Y(U; H~2(T)). It follows that APy, APy € L2(U; H=2(2)). So, from (3.8)-(3.9), we get

Opi Opi

2 . —2 s
o € P(USH (), i = 1,2,

Then, the functions (t,a) — pi(t,a,x), i = 1,2, with values in H'(Q) are continuous on U.
So, pi(T, a, ), pi(t, A, x), ps(t,0,2),p;(0,a,z), i = 1,2, exist in H~1(Q). Let 01,02 € C®(Q).
Multiply, respectively, (3.8) and (3.9) by o1 and o9 and integrate by parts over ). One deduces from
(3.6) that for o;|x, = 0,7 = 1,2, it is:

- <]/)\Z(t7 Av ')7 Gi(tv Aa )>H*1(Q),H&(Q) + <ﬁz(t> Oa ')7 Ui(t7 07 )>H71(Q)7H(%(Q)

- <Z/)\Z(T7 a, ')7 Ui(T7 a, ')>H—1(Q)7H01 (Q) + <p2(07 a, ')7 Ui(oa a, )>H_1(Q),H&(Q) (310)

(5 %> =0
Poron ) - wsm-r o by mom ety
It follows that
Pils =0,i=1,2, 3.11)

pi(T,a,2) =0,i=1,2, in Q, (3.12)
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pi(t,A,z) =0,i=1,2, in Qr, (3.13)
pi(0,a,2) =0,i=1,2, in Q4. (3.14)

From the relations (3.8)—(3.9) and (3.11)—(3.14), one deduces that (5\@, D1, D2) satisfies the auxiliary
problem.

A~

Since B1 (7, 7) = [71/12q, + I72ll 20| + IRl 22(q) = 1713, from
~ o~ 1
Bi(5.5 —/fﬁ 4Q < 17 20| 2 71
.= [ 7 oflz0| 551,

and from Proposition 1, one deduces that

1AlIw < CIOFl L2 (), (3.15)
1B1lw < ClOF2(0). (3.16)
1P2llw < ClIOF]I12(0): (3.17)

%] < 16F1l22()- (3.18)

From (3.16) and (3.17), we obtain (3.4)—(3.5).

Multiply the first and second equation of (3.1) by p; and po, respectively. After integrating by
parts over (), we get

1 ~ ~ ~ PN oA
3 |, 6000 Qe+ [ (VAP +aulmi)dQ + | namde = [ (F+ihmae 619
T

1 ~ ~ ~ ~
5 / [P2(t,0,2)* dQr + /Q (IVBa|* + ap [P[*) dQ + /Q bup152dQ = 0. (3.20)
T

Applying Young’s inequality to fQ bup1p2 dQ, we deduce from (3.15), (3.16) and (3.17), (3.18) the
following inequalities

1 - —~—
T
1 R —~
5 | B0, d@r < ClA IR o (622
T
That gives (3.3). ]

Lemma 5 Assume that ag,bg € L>(Q), f € L*(Q) are such that fag,0bg € L>=(Q), 0f €
L% (Q). Forall p = (p1, p2),0 = (01,02) € H we define the bilinear form

B (P, 0) =B (pa U) - / [agM(p) (t7 0, CL') + bﬁN(p) (tv 0, x)] Ul(tv a, (IZ) d@
@ (3.23)
- /Q [asN () (1,0, 3) + bsM(p) (1,0, 2)] 72(t, a, ) dQ.

Then, there exists a unique pg = (p1,, p2,) € H such that for all ¢ € H we have

B(ps,0) = L(0). (3.24)
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Proof. As B is a continuous and coercive bilinear form, and £ a continuous linear form, according
to the Lax—Milgram theorem, there exists a unique py = (p1,, p2,) € H such that B (py,0) = L (o)
for all o € ‘H. This ends the proof of Lemma 5. U

Proposition 2 Assume that ag,bg € L®(Q), f € L*(Q) are such that fag,0bs € L*(Q), 0f €
L*(Q). Let pg = (p1,, p2,) be the unique solution of (3.24). Let us set

k@ = _5p19X0.M (325)
1, = M(pg), (3.26)
P2, = N(pg). (3.27)

Then, (0kg, (p1,,P2,)) is a solution of the null controllability problem (1.8)—(1.10). Moreover, there
exists a constant C = C(A, T, ||(ay, bu) s, [|(Pag, 0bg)||sc, co, ) > 0 such that

lpollze < C10f 2@y + 1P16 (5 0, ) L2(0r) + 11P26 (50, )l 22(0)) 5 (3.28)
P16l 22(0) < CN0f1r2(q) + 1P1s (5 0, )l r2(0p) + I1P20 (5 0, )l 2201 ) (3.29)
P2 22(@) < C (N0 L20) + 1155 0, )l L2(@ry + 1226 (-5 0, ) £2(01)) (3.30)

kol L2y < C U012y + I1P1s (5 0, )l £2(00) + 1926 (5 0, ) £2(0g)) - (3.31)

Proof. Since py € H, we have p1,,p2, € L*(Q), p1,(-,0,),p2,(-,0,-) € L?(Qr) (see Lemma 4)
and ky € L?(G). Let us replace M (pg) by p1g, N(pg) by p2g and —5p19X. by kg in (3.24). Let
o € H. Proceeding in the same way as in the proof of Lemma 4, from (3.8)—(3.9) and (3.10)—
(3.14), one deduces that (dkg, (p1,,p2,)) satisfies (1.8)—(1.10). From (3.15)—(3.18) we obtain the
inequalities (3.28)—(3.31). ]

Proposition 3 Under the hypothesis of Lemma 2, there exists a unique control % such that

]| = min[£] (3.32)
ked
where 9 = {k € L*(G) : (k, p) satisfies (1.8)~(1.10) }.

Proof. The set 9 is non empty according to Proposition 2. Furthermore, ¥J is a closed and convex
subset of L?(G). So, there exists a unique control in ¥ which is of minimal norm in L?(G). O

4 Proof of the main theorem

This section is entirely devoted to the demonstration of Theorem 1. The proof will be done in three
steps.

Step 1. For a positive real number ¢, let A be the set of all pairs (k, p), where k € L? (G) and
p = (p1,p2) € L? (Q)? which satisfy the following conditions
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M(p) — agpi(t,0,2) — bgpa(t,0,2) € L*(Q),
N(p) = agpa(t,0,2) — bgpi(t,0,2) € L*(Q),
pily, =0, 1=1,2,

pi(0,a,2) =0in Q4,1 = 1,2,

pi(T,a,2) =0in Q4,1 =1,2,

pi(t,A,x) =0in Qp,i = 1,2,

and for all (k, p) € A we define the functional

1 1
Tolksp) = 5 WKy + 5 IM(9) = agpr(,0,1) = bapa(,0,) = F = bl

1 4.1
+ 5 IV () = a3pa(,0,1) = bapa (50,320
Let us consider the following optimal control problem
inf{J.(k,p) : (k,p) € A}. 4.2)

Note that the set .4 is non-empty because (dkg, pg) € A according to Proposition 3. As A is a non-
empty closed and convex subset of L?(G) x L?(Q)? and J. is strictly convex, lower semi-continuous
and coercive on A4, there exists a unique (ke, pe) that solves (4.2).

Step 2. The goal is to give the system of optimality that characterizes the solution of the problem of
minimization. According to the Euler-Lagrange optimality conditions, we have

dJ.

(M(k+Ak&)—O forall k € L*(G)

and
dJ.

oy
with (k, p) € A and (k., p.) being a solution of (4.2). Namely, for all &, p such that (k, p) € A, we
have

(kespe +A) =0 forallp € LQ(Q)27

g@m-;mam—%m< )= bepa(n0,) — f— ko )lwdQ =0, (@43)

Ame@—%m< )~ bapa(0,)) dQ

“4.4)
+4m4ﬂ@—%m( )~ bapi(-,0,-)) dQ = 0,
with
M= S(M(pe) — agpre0,) = bapas(,0,) = f — o), (4.5)
2. = é(N(ps) —agpac(0,7) = bppic(-,0,-)), (46)

M. M2, € L2 (Q). Thus, similar reasoning to the one used in [12, 15] leads to the following conclusion:
(ke, pe) is a solution of the problem of optimisation if and only if there exists a function 7. = (71_,71.)
such that (k, pe, 1c) satisfies

ke =M. Xw 4.7)
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and
( M(Pf—:) = %Pls(', 0, ) + bﬁp2s('7 0, ) + f + ksz +eni, in Qa
N(ps) :a/B,OQg(',O,') +b,5p16('707'> +€7725 in Q7
= =0 on X,
Ple P2e ) (4.8)
pla(oaav‘r) :p25(05a7‘r) =0 m QAa
pls(Tv a,x) = p2€(T>a7x) =0 in QAa
Pla(tv A7 .YJ) - st(ta A7 x) =0 on QT?
as well as
( M) =0 in Q,
N(ﬂa) = 0 in Q7
"715 = 7725 = O in E?
A ] 4.9)
M. (ta 07 :E) = / (%7715 + 557725) da in QTv
0
A
n2.(t,0,2) = / (agn. +bgmi.)da in Qr.
0

Step 3. We will demonstrate the uniqueness of the solution for the problem of optimisation. That
will complete the proof of the main theorem. From (3.32) and Proposition 2, one deduces that

|kellL2(c) <Cllokell L2y, (4.10)
1M (p:) = agp1.(-,0,-) = bgpa.(-,0,) = f — kexwll 22 (@) SCVEellokoll L2 () (4.11)
IN(pe) — agpa.(,0,:) = bap1. (-, 0, )|l L2(@) <CVelldkal 2(c)- (4.12)
So,
loell 2,2 )y < C (4.13)
[mexwllL2Q) < Clldkall L2y (4.14)
and 7). is a solution of (4.9), then
[mellae < Cllokell2(cys (4.15)
according to Proposition 1 and we obtain that
1
o], = clom e @16)
From (4.14), one obtains
Im N2y < Cllon 2 @) - (4.17)

We extract from the sequences (k¢ )., (pe)e, (7:)e subsequences, denoted again by (k¢ )-, (pe)e, (1)es
such that

ke — k weakly in L(@), (4.18)
pi. — pi weakly in L*(U, H3(Q)),i = 1,2, (4.19)

€
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1. — 7; weaklyin V, ¢ =1, 2, (4.20)
m,. — 1, weakly in L*(Q). 4.21)

One deduces from (4.21) that 1;_x., — 71 weakly in L?(G). From the compactness of the injection
of L2(U; HZ(2)) into L?(Q), one deduces that (k, (j1, p2)) satisfies the simultaneous null control-
lability problem (1.8)—(1.10). Consequently, ked. According to Proposition 3, for the only one
k € 9 satysfying (3.32), we have

&l 22y < 1Bl L2c)- (4.22)

Let p = (p1, p2) be the solution of (1.8) associated to %. Since (ke, pe) satisfies (4.1), then

1 ~ 1, ~
§||ka||%2(c) < Je (ke,pe) < Je(k, p) = §”kH%2(G)'

On the other hand, ) )
1 - o ~
5”’“”%2((;) < hfg{}(glfinsH%%G) = 5kl 2 6)-

Consequently,

k=kF
Finally, k satisfies (4.7) with 7; instead of n;_, and thanks to (4.9), (4.18)—(4.21), it follows that 7
satisfies (1.12). This ends the proof of the main theorem.
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