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1 Introduction

Recently, fractional differential equations have been studied intensively [1, 2, 3, 4, 5, 9, 11, 16, 17, 18,
20]. The mathematical modelling of many real world phenomena based on fractional-order operators
is regarded as better and improved than the one depending on integer-order operators. In particular,
fractional calculus has played a significant role in the recent development of special functions and
integral transforms, signal processing, control theory, bioengineering and biomedicine, viscoelasticity,
finance, stochastic processes, wave and diffusion phenomena, plasma physics, social sciences, etc.
The motivation for this work arises from both the development of the theory of fractional calculus
itself and its wide applications to various fields of science, such as physics, chemistry, biology,
electromagnetism of complex media, robotics, economics, etc.

Much attention has been paid to the existence and uniqueness of solutions of fractional dynamical
systems [6, 7, 8, 13, 15, 21, 23] due to the fact that existence is the fundamental problem and a
necessary condition for considering some other properties for fractional dynamical systems, such as
controllability, stability, etc. Chai [10] provided sufficient conditions for the existence of solutions to
a class of anti-periodic boundary value problems for fractional differential equations, while Sheng
and Jiang [19] considered a class of initial value problems for fractional differential systems.

Motivated by the works of Chai [10] and Sheng and Jiang [19], we will establish in this paper
existence and uniqueness results of the solutions of the fractional dynamical system with Caputo
fractional derivative

cDα
0+x(t)−AcDβ

0+
x(t) = f

(
t, x(t),cDβ

0+
x(t),cDα

0+x(t)
)
, t ∈ J := [0, T ], (1.1)

x(0) = x0, x
′(0) = x∗0, (1.2)

where T > 0, cDα is the Caputo fractional derivative, f : J × Rn × Rn × Rn → Rn is a given
function, x0, x∗0 ∈ Rn, A is an Rn×n matrix and 0 < β ≤ 1 < α ≤ 2 with 1 + β < α. The
present work is organized as follows. In Section 2, some notations are introduced and we recall some
concepts of preliminaries about fractional calculus and auxiliary results. The proofs of the main
results, based on the Banach fixed point theorem and Schaefer’s fixed point theorem, are presented in
Section 3. An illustrative example is presented in Section 4.

The present results extend those obtained in [19] in the case of a right-hand side independent of
the fractional derivatives.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout
this paper. Let | · | be a suitable norm in Rn and ‖ · ‖ be the matrix norm. By C(J,Rn) we denote the
Banach space of continuous functions from J into Rn with the norm ‖x‖∞ = sup

{
|x(t)| : t ∈ J

}
.

Denote by L1(J,Rn) the space of Lebesgue-integrable functions x : J → Rn with the norm

‖x‖L1 =

∫ T

0
|x(t)|dt.

Let C1(J,Rn) = {x : J → Rn : x′ exists and x′ ∈ C(J,Rn)} be the Banach space with the norm
‖x‖1 = max

{
‖x‖∞, ‖x′‖∞

}
, and set

ACn(J) = {x : J → Rn : x, x′, . . . , x(n−1) ∈ C(J,Rn) and x(n−1) is absolutely continuous}.
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Definition 1 ([16]) The Riemann–Liouville fractional integral of order α > 0 of a function h ∈
L1((a, b],R), 0 ≤ a < b, is given by

Iαa+h(t) =
1

Γ(α)

∫ t

a
(t− s)α−1h(s) ds, t ∈ (a, b],

where Γ is the Euler gamma function defined by Γ(ζ) =
∫ +∞
0 tζ−1e−t dt, ζ > 0.

Definition 2 ([16]) The Riemann–Liouville fractional derivative of order α > 0 of a function
h ∈ L1((a, b],R) is given by

Dα
a+h(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

h(s)

(t− s)α−n+1
ds, t ∈ (a, b],

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 3 ([16]) The Caputo fractional derivative of order α > 0 of a function h ∈ ACn([a, b])
on (a, b] is defined via the above Riemann–Liouville derivatives by

cDα
a+h(t) =

(
Dα
a+

[
h(t)−

n−1∑
k=0

h(k)(a)

k!
(t− a)k

])
(t), t ∈ (a, b].

Definition 4 ([16]) The Caputo fractional derivative of order α of a function h ∈ ACn(J) is defined
by

cDα
0+h(t) =

1

Γ(n− α)

∫ t

0

h(n)(s)

(t− s)α−n+1
ds.

Remark 1 ([16]) From the definitions of fractional integrals and Caputo derivatives, we have

Iα0+
(c
Dα

0+h(t)
)

= h(t)−
n−1∑
k=0

h(k)(0)

k!
tk, t > 0, n− 1 < α < n.

Especially, if 1 < α < 2, then we have Iα0+
(
cDα

0+h(t)
)

= h(t)− h(0)− th′(0).

Lemma 1 ([16]) Let α > 0 and h ∈ C(J,R). Then, the equality cDα
0+

(
Iα0+h(t)

)
= h(t) holds on

[a, b].

Lemma 2 ([12]) Let 0 < β < 1 < α < 2. Then, we have

Iα0+
(c
Dβ

0+
x(t)

)
= Iα−β

0+
x(t)− x(0)tα−β

Γ(α− β + 1)
.
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We state the following generalization of Gronwall’s lemma for singular kernels.

Lemma 3 ([22]) Let υ : [0, T ] −→ [0,+∞) be a real function and let ω(·) be a non-negative,
locally integrable function on [0, T ]. Assume that there are constants a > 0 and 0 < α ≤ 1 such that

υ (t) ≤ ω (t) + a

∫ t

0
(t− s)−α υ (s) ds.

Then, there exists a constant K = K (α) such that

υ (t) ≤ ω (t) +Ka

∫ t

0
(t− s)−α ω (s) ds for every t ∈ [0, T ] .

Theorem 1 (Banach’s fixed point theorem, see [14]) Let C be a non-empty closed subset of a
Banach space X . Then, any contraction mapping T of C into itself has a unique fixed point.

Theorem 2 (Schaefer’s fixed point theorem, see [14]) Let X be a Banach space, and let
N : X −→ X be a completely continuous operator. If the set E = {y ∈ X :
y = λNy for some λ ∈ (0, 1)} is bounded, then N has fixed points.

3 Existence of solutions

Lemma 4 For any x ∈ C1(J,Rn) and 0 < β ≤ 1, we have

‖cDβ
0+
x‖∞ ≤

T 1−β

Γ(2− β)
‖x′‖∞, and so ‖cDβ

0+
x‖∞ ≤

T 1−β

Γ(2− β)
‖x‖1.

Proof. Obviously, when β = 1, the conclusions are true. So, we only consider the case 0 < β < 1.
We observe that for all 0 ≤ t ≤ T ,∫ t

0
(t− s)−β ds =

1

1− β
t1−β ≤ 1

1− β
T 1−β =

∫ T

0
(T − s)−β ds.

Then, by Definition 4, for any x ∈ C1(J,Rn) and t ∈ J , we have

|cDβ
0+
x(t)| = 1

Γ(1− β)

∣∣∣∣∫ t

0
(t− s)−βx′(s) ds

∣∣∣∣
≤ ‖x′‖∞

1

Γ(1− β)

∫ t

0
(t− s)−β ds

≤ T 1−β

Γ(2− β)
‖x′‖∞.

The proof is complete. �
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Lemma 5 Let 0 < β ≤ 1 < α ≤ 2 and h ∈ C(J,Rn). The function x is a solution of the following
fractional dynamical system

cDα
0+x(t)−AcDβ

0+
x(t) = h(t), t ∈ J, (3.1)

x(0) = x0, x
′(0) = x∗0, (3.2)

if and only if x ∈ C1(J,Rn) is a solution of the integral equation

x(t) = x0 + tx∗0 −
Atα−β

Γ(α− β + 1)
x0 +

A

Γ(α− β)

∫ t

0
(t− s)α−β−1x(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds.

(3.3)

Proof. Let x ∈ C1(J,Rn) be a solution of the dynamical system (3.1)–(3.2). Then, by applying
Iα0+ to both sides of equation (3.1) and using Remark 1, we get

x(t) = x(0) + tx′(0)− Atα−β

Γ(α− β + 1)
x(0) +

A

Γ(α− β)

∫ t

0
(t− s)α−β−1x(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds.

Applying the conditions (3.2), we obtain x(0) = x0 and x′(0) = x∗0. Thus, x is a solution of the
integral equation (3.3).

Conversely, assume that x satisfies the fractional integral equation (3.3). Using the fact that cDα

is the left inverse of Iα, and the fact that cDαC = 0, where C is a constant, we get

cDα
0+x(t)−AcDβ

0+
x(t) = h(t) for each t ∈ J.

Also, we can easily show that x(0) = x0 and x′(0) = x∗0. �

We are now in a position to state and prove our existence result for the dynamical system
(1.1)–(1.2) using Banach’s fixed point theorem. Let us introduce the following hypotheses.

(H1) The function f : J × Rn × Rn → Rn is continuous.

(H2) There exist constants L1, L2 > 0 and 0 < L3 < 1 such that

|f(t, u, v, w)− f(t, ū, v̄, w̄)| ≤ L1|u− ū|+ L2|v − v̄|+ L3|w − w̄|

for any u, v, w, ū, v̄, w̄ ∈ Rn and t ∈ J.

Set

R1 =
TαL1Γ(2− β) + T 1−β+α (L2 + L3‖A‖)

Γ(α+ 1)Γ(2− β)(1− L3)
+
‖A‖Tα−β

Γ(α− β + 1)

and

R2 =
Tα−1L1Γ(2− β) + Tα−β (L2 + L3‖A‖)

Γ(α)Γ(2− β)(1− L3)
+
‖A‖Tα−β−1

Γ(α− β)
.
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Theorem 3 Assume that (H1) and (H2) hold. If

max{R1, R2} < 1, (3.4)

then the dynamical system (1.1)–(1.2) has a unique solution on J .

Proof. Transform the dynamical system (1.1)–(1.2) into a fixed point problem. Consider the operator
N : C1(J,Rn)→ C1(J,Rn) defined by

(Nx)(t) = x0 + tx∗0 −
Atα−β

Γ(α− β + 1)
x0 +

A

Γ(α− β)

∫ t

0
(t− s)α−β−1x(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1g(s) ds,

(3.5)

where g ∈ C(J,Rn) is such that

g(t) = f
(
t, x(t),cDβ

0+
x(t), g(t) +AcDβ

0+
x(t)

)
.

For every x ∈ C1(J,Rn) and t ∈ J , we have

(Nx)′(t) = x∗0 −
(α− β)Atα−β−1

Γ(α− β + 1)
x0 +

A

Γ(α− β − 1)

∫ t

0
(t− s)α−β−2x(s) ds

+
1

Γ(α− 1)

∫ t

0
(t− s)α−2g(s) ds,

(3.6)

and it is clear that (Nx)′ ∈ C(J,Rn) due to (H1). Consequently, N is well-defined.

Clearly, the fixed points of the operator N are solutions of the dynamical system (1.1)–(1.2).

Similar to the observation we made in the first part of the proof of Lemma 4, we observe that for
each t ∈ J ,

1

Γ(α− β − 1)

∫ t

0
(t− s)α−β−2 ds ≤ 1

Γ(α− β)

∫ T

0
(T − s)α−β−1 ds

and
1

Γ(α− 1)

∫ t

0
(t− s)α−β−1 ds ≤ 1

Γ(α)

∫ T

0
(T − s)α−1 ds.

Let x, y ∈ C1(J,Rn). Then, for each t ∈ J , we have

|(Nx)(t)− (Ny)(t)| ≤ ‖A‖
Γ(α− β)

∫ T

0
(T − s)α−β−1|x(s)− y(s)|ds

+
1

Γ(α)

∫ T

0
(T − s)α−1|g(s)− h(s)|ds

for h ∈ C(J,Rn) such that

h(t) = f
(
t, y(t),cDβ

0+
y(t), h(t) +AcDβ

0+
y(t)

)
.

From (H2) for each t ∈ J we have
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|g(t)− h(t)| ≤ L1|x(t)− y(t)|+ L2

∣∣cDβ
0+
x(t)−c Dβ

0+
y(t)

∣∣
+ L3

∣∣g(t) +AcDβ
0+
x(t)− h(t)−AcDβ

0+
y(t)

∣∣
≤ L1|x(t)− y(t)|+ L2|g(t)− h(t)|+ L2

∣∣cDβ
0+
x(t)−c Dβ

0+
y(t)

∣∣
+ L3‖A‖

∣∣cDβ
0+
x(t)−c Dβ

0+
y(t)

∣∣
≤ L1|x(t)− y(t)|+ L3|g(t)− h(t)|+ (L3‖A‖+ L2)

∣∣cDβ
0+

(x(t)− y(t))
∣∣.

Thus,

|g(t)− h(t)| ≤ L1

1− L3
|x(t)− y(t)|+ L3‖A‖+ L2

1− L3

∣∣cDβ
0+

(x(t)− y(t))
∣∣

≤ L1

1− L3
‖x− y‖∞ +

L3‖A‖+ L2

1− L3

∥∥cDβ
0+

(x− y)
∥∥
∞.

Then, by using Lemma 4, we have

|g(t)− h(t)| ≤ L1

1− L3
‖x− y‖1 +

T 1−β(L3‖A‖+ L2)

Γ(2− β)(1− L3)
‖x− y‖1

=
L1Γ(2− β) + T 1−β (L3‖A‖+ L2)

Γ(2− β)(1− L3)
‖x− y‖1.

(3.7)

Therefore, for each t ∈ J ,

|(Nx)(t)− (Ny)(t)|

≤
[
TαL1Γ(2− β) + T 1−β+α (L3‖A‖+ L2)

Γ(α+ 1)Γ(2− β)(1− L3)
+
‖A‖Tα−β

Γ(α− β + 1)

]
‖x− y‖1 = R1‖x− y‖1.

On the other hand, for each t ∈ J ,

|(Nx)′(t)− (Ny)′(t)| ≤ ‖A‖
Γ(α− β − 1)

∫ T

0
(T − s)α−β−2|x(s)− y(s)| ds

+
1

Γ(α− 1)

∫ T

0
(T − s)α−2|g(s)− h(s)|ds.

Using (3.7), we get

|(Nx)′(t)− (Ny)′(t)|

≤
[
Tα−1L1Γ(2− β) + Tα−β (L3‖A‖+ L2)

Γ(α)Γ(2− β)(1− L3)
+
‖A‖Tα−β−1

Γ(α− β)

]
‖x− y‖1 = R2‖x− y‖1.

Thus,
‖N(x)−N(y)‖1 ≤ max{R1, R2}‖x− y‖1.

By (3.4), the operator N is a contraction. Hence, by Banach’s contraction principle, N has a unique
fixed point which is the unique solution of the dynamical systems (1.1)–(1.2). �

Our second result is based on Schaefer’s fixed point theorem. Set

R =
‖A‖Tα−β−1(T + α− β)

Γ(α− β + 1)
+
Tα−1(T + α)

Γ(α+ 1)

(
L1

1− L3
+

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)

)
.
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Theorem 4 Assume that (H1) and (H2) hold. If R < 1, then the dynamical system (1.1)–(1.2) has
at least one solution.

Proof. Let N be the operator defined in (3.5). We shall use Schaefer’s fixed point theorem to prove
that N has a fixed point. The proof will be given in several steps.

Step 1: N is continuous. Let {xn} be a sequence such that xn → x in C1(J,Rn). Then, for each
t ∈ J ,

|(Nx)(t)− (Nxn)(t)| ≤ ‖A‖
Γ(α− β)

∫ T

0
(T − s)α−β−1|x(s)− xn(s)|ds

+
1

Γ(α)

∫ T

0
(T − s)α−1|g(s)− gn(s)|ds,

where gn ∈ C(J,Rn) is such that

gn(t) = f
(
t, xn(t),cDβ

0+
xn(t), gn(t) +AcDβ

0+
xn(t)

)
.

From (H2) for each t ∈ J we have

|g(t)− gn(t)| ≤ L1|x(t)− xn(t)|+ L3

∣∣g(t) +AcDβ
0+
x(t)− gn(t)−AcDβ

0+
xn(t)

∣∣
+ L2

∣∣cDβ
0+
x(t)−c Dβ

0+
xn(t)

∣∣
≤ L1|x(t)− xn(t)|+ L2|g(t)− gn(t)|

+ L3‖A‖
∣∣cDβ

0+
x(t)−c Dβ

0+
xn(t)

∣∣+ L2

∣∣cDβ
0+
x(t)−c Dβ

0+
xn(t)

∣∣
≤ L1|x(t)− xn(t)|+ L3|g(t)− gn(t)|

+ (L3‖A‖+ L2)
∣∣cDβ

0+
(x(t)− xn(t))

∣∣.
Thus,

|g(t)− gn(t)| ≤ L1

1− L3
|x(t)− xn(t)|+ L3‖A‖+ L2

1− L3

∣∣cDβ
0+

(x(t)− xn(t))
∣∣

≤ L1

1− L3
‖x− xn‖∞ +

L3‖A‖+ L2

1− L3

∥∥cDβ
0+

(x− xn)
∥∥
∞.

Then, by using Lemma 4, we have

|g(t)− gn(t)| ≤ L1

1− L3
‖x− xn‖1 +

T 1−β(L3‖A‖+ L2)

Γ(2− β)(1− L3)
‖x− xn‖1

=
L1Γ(2− β) + T 1−β (L3‖A‖+ L2)

Γ(2− β)(1− L3)
‖x− xn‖1.

(3.8)

Therefore, for each t ∈ J we get

|(Nx)(t)− (Nxn)(t)|

≤
[
TαL1Γ(2− β) + T 1−β+α (L3‖A‖+ L2)

Γ(α+ 1)Γ(2− β)(1− L3)
+
‖A‖Tα−β

Γ(α− β + 1)

]
‖x− xn‖1 = R1‖x− xn‖1.
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On the other hand, for each t ∈ J we have

|(Nx)′(t)− (Nxn)′(t)| ≤ ‖A‖
Γ(α− β − 1)

∫ T

0
(T − s)α−β−2|x(s)− xn(s)| ds

+
1

Γ(α− 1)

∫ T

0
(T − s)α−2|g(s)− gn(s)| ds.

Using (3.8), we get

|(Nx)′(t)− (Nxn)′(t)|

≤
[
Tα−1L1Γ(2− β) + Tα−β (L3‖A‖+ L2)

Γ(α)Γ(2− β)(1− L3)
+
‖A‖Tα−β−1

Γ(α− β)

]
‖x− xn‖1 = R2‖x− xn‖1.

Thus, ‖Nx−Nxn‖1 → 0 as n→∞, which implies that the operator N is continuous.

Step 2: N maps bounded sets into bounded sets in C1(J,Rn). Indeed, it is enough to show that
for any η∗ > 0 there exists a positive constant ` such that for each x ∈ Bη∗ = {x ∈ C1(J,Rn) :
||x||1 ≤ η∗} we have ‖N(x)‖1 ≤ `. We have for each t ∈ J ,

|g(t)| =
∣∣f(t, x(t),cDβ

0+
x(t), g(t) +AcDβ

0+
x(t)

)
− f(t, 0, 0, 0) + f(t, 0, 0, 0)

∣∣
≤ L1|x(t)|+ L3

∣∣g(t) +AcDβ
0+
x(t)

∣∣+ L2

∣∣cDβ
0+
x(t)

∣∣+ |f(t, 0, 0, 0)|

≤ L1‖x‖∞ + L3|g(t)|+ (L3‖A‖+ L2)
∥∥Dβ

0+
x
∥∥
∞ + f∗,

where f∗ = supt∈J |f(t, 0, 0, 0)|. Thus,

|g(t)| ≤ L1

1− L3
‖x‖∞ +

L3‖A‖+ L2

1− L3
‖Dβ

0+
x‖∞ +

f∗

1− L3
.

Then, by using Lemma 4, we have

|g(t)| ≤ L1

1− L3
‖x‖∞ +

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)
‖x′‖∞ +

f∗

1− L3

≤ L1

1− L3
‖x‖1 +

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)
‖x‖1 +

f∗

1− L3

≤ L1

1− L3
η∗ +

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)
η∗ +

f∗

1− L3
:= M1.

(3.9)

Thus, (3.5) implies

|(Nx)(t)| ≤ |x0|+ T |x∗0|+
‖A‖Tα−β

Γ(α− β + 1)
|x0|+

‖A‖Tα−β

Γ(α− β + 1)
η∗ +

Tα

Γ(α+ 1)
M1 := `1.

On the other hand, for each t ∈ J we have

|(Nx)′(t)| ≤ |x∗0|+
(α− β)‖A‖Tα−β−1

Γ(α− β + 1)
|x0|+

‖A‖Tα−β−1

Γ(α− β)
η∗ +

Tα−1

Γ(α)
M1 := `2.

Thus, ‖Nx‖1 ≤ max{`1, `2} := `.
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Step 3: N maps bounded sets into equicontinuous sets of C1(J,Rn). Let t1, t2 ∈ J , t1 < t2, Bη∗
be a bounded set of C1(J,Rn) as in Step 2, and let x ∈ Bη∗ . Then,

|(Nx)(t2)− (Nx)(t1)| ≤ |x∗0|(t2 − t1) +
‖A‖|x0|

Γ(α− β + 1)
(tα−β2 − tα−β1 )

+
‖A‖η∗

Γ(α− β)

∫ t2

t1

(t2 − s)α−β−1 ds

+
‖A‖η∗

Γ(α− β)

∫ t1

0

[
(t2 − s)α−β−1 − (t1 − s)α−β−1

]
ds

+
M1

Γ(α)

[∫ t2

t1

(t2 − s)α−1 ds

+

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
ds

]
≤ |x∗0|(t2 − t1) +

‖A‖|x0|
Γ(α− β + 1)

(tα−β2 − tα−β1 )

+
‖A‖η∗

Γ(α− β + 1)
(tα−β2 − tα−β1 ) +

M1

Γ(α+ 1)
(tα2 − tα1 ).

As t1 → t2, the right-hand side of the above inequality tends to zero. Now, from (3.6) we have

|(Nx)′(t2)− (Nx)′(t1)| ≤
(α− β)‖A‖|x0|
Γ(α− β + 1)

(tα−β−12 − tα−β−11 )

+
‖A‖η∗

Γ(α− β − 1)

∫ t2

t1

(t2 − s)α−β−2 ds

+
‖A‖η∗

Γ(α− β − 1)

∫ t1

0

[
(t2 − s)α−β−2 − (t1 − s)α−β−2

]
ds

+
M1

Γ(α− 1)

[∫ t2

t1

(t2 − s)α−2 ds

+

∫ t1

0

[
(t2 − s)α−2 − (t1 − s)α−2

]
ds

]
≤ (α− β)‖A‖|x0|

Γ(α− β + 1)
(tα−β−12 − tα−β−11 )

+
‖A‖η∗

Γ(α− β)
(tα−β−12 − tα−β−11 ) +

M1

Γ(α)
(tα−12 − tα−11 ).

As t1 → t2, the right-hand side of the above inequality tends to zero. As a consequence of Steps 1 to 3
together with the Ascoli–Arzelà theorem, we can conclude that N : C1(J,Rn) → C1(J,Rn) is
completely continuous.

Step 4: A priori bounds. Now, it remains to show that the set

E = {x ∈ C1(J,Rn) : x = λN(x) for some 0 < λ < 1}

is bounded. Let x ∈ E. Then, x = λN(x) for some 0 < λ < 1. Thus, for each t ∈ J we have
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x(t) = x0 + λtx∗0 −
λAtα−β

Γ(α− β + 1)
x0 +

λA

Γ(α− β)

∫ t

0
(t− s)α−β−1x(s) ds

+
λ

Γ(α)

∫ t

0
(t− s)α−1g(s) ds.

From (H2) for each t ∈ J we have

|g(t)| =
∣∣f(t, x(t),cDβ

0+
x(t), g(t) +AcDβ

0+
x(t)

)
− f(t, 0, 0, 0) + f(t, 0, 0, 0)

∣∣
≤ L1|x(t)|+ L3

∣∣g(t) +AcDβ
0+
x(t)

∣∣+ L2

∣∣cDβ
0+
x(t)

∣∣+ |f(t, 0, 0, 0)|

≤ L1‖x‖∞ + L3|g(t)|+ (L3‖A‖+ L2)
∥∥Dβ

0+
x
∥∥
∞ + f∗.

Thus,

|g(t)| ≤ L1

1− L3
‖x‖∞ +

L3‖A‖+ L2

1− L3
‖Dβ

0+
x‖∞ +

f∗

1− L3
.

Then, by using Lemma 4, we have

|g(t)| ≤ L1

1− L3
‖x‖∞ +

(L3‖A‖+ L2)T
1−β

(1− L2)Γ(2− β)
‖x′‖∞ +

f∗

1− L3

≤
[

L1

1− L3
+

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)

]
‖x‖1 +

f∗

1− L3
.

Thus, for each t ∈ J we have

|x(t)| ≤ |x0|+ T |x∗0|+
‖A‖Tα−β

Γ(α− β + 1)
|x0|+

‖A‖Tα−β

Γ(α− β + 1)
‖x‖1

+
Tα

Γ(α+ 1)

[
L1

1− L3
+

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)

]
‖x‖1 +

f∗Tα

(1− L3)Γ(α+ 1)

≤
[
‖A‖Tα−β

Γ(α− β + 1)
+

Tα

Γ(α+ 1)

(
L1

1− L3
+

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)

)]
‖x‖1

+ |x0|+ T |x∗0|+
‖A‖Tα−β

Γ(α− β + 1)
|x0|+

f∗Tα

(1− L3)Γ(α+ 1)
.

This implies that

‖x‖∞ ≤
[
‖A‖Tα−β−1(T + α− β)

Γ(α− β + 1)

+
Tα−1(T + α)

Γ(α+ 1)

(
L1

1− L3
+

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)

)]
‖x‖1

+ |x0|+ (T + 1)|x∗0|

+
‖A‖Tα−β−1(T + α− β)

Γ(α− β + 1)
|x0|+

f∗Tα−1(T + α)

(1− L3)Γ(α+ 1)
.

(3.10)

On the other hand, for each t ∈ J we have
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|x′(t)| ≤ |x∗0|+
(α− β)‖A‖Tα−β−1

Γ(α− β + 1)
|x0|+

‖A‖Tα−β−1

Γ(α− β)
‖x‖1

+
Tα−1

Γ(α)

[
L1

1− L3
+

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)

]
‖x‖1 +

f∗Tα−1

(1− L3)Γ(α)

≤
[
‖A‖Tα−β−1

Γ(α− β)
+
Tα−1

Γ(α)

(
L1

1− L3
+

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)

)]
‖x‖1

+ |x∗0|+
(α− β)‖A‖Tα−β−1

Γ(α− β + 1)
|x0|+

f∗Tα−1

(1− L3)Γ(α)
,

which implies that

‖x′‖∞ ≤
[
‖A‖Tα−β−1(T + α− β)

Γ(α− β + 1)

+
Tα−1(T + α)

Γ(α+ 1)

(
L1

1− L3
+

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)

)]
‖x‖1

+ |x0|+ (T + 1)|x∗0|

+
‖A‖Tα−β−1(T + α− β)

Γ(α− β + 1)
|x0|+

f∗Tα−1(T + α)

(1− L3)Γ(α+ 1)
.

(3.11)

Now, from (3.10) and (3.11) we get

‖x‖1 ≤
[
‖A‖Tα−β−1(T + α− β)

Γ(α− β + 1)

+
Tα−1(T + α)

Γ(α+ 1)

(
L1

1− L2
+

(L3‖A‖+ L2)T
1−β

(1− L3)Γ(2− β)

)]
‖x‖1

+ |x0|+ (T + 1)|x∗0|+
‖A‖Tα−β−1(T + α− β)

Γ(α− β + 1)
|x0|+

f∗Tα−1(T + α)

(1− L3)Γ(α+ 1)

= R‖x‖1 + |x0|+ (T + 1)|x∗0|

+
‖A‖Tα−β−1(T + α− β)

Γ(α− β + 1)
|x0|+

f∗Tα−1(T + α)

(1− L3)Γ(α+ 1)
.

Since R < 1, we obtain

‖x‖1 ≤
|x0|+ (T + 1)|x∗0|

1−R
+
‖A‖Tα−β−1(T + α− β)

(1−R)Γ(α− β + 1)
|x0|

+
f∗Tα−1(T + α)

(1−R)(1− L3)Γ(α+ 1)

=: ψ.

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point theorem, we deduce
that N has a fixed point which is a solution of the dynamical system (1.1)–(1.2). �



FRACTIONAL DYNAMICAL SYSTEMS 93

4 An example

Consider the following fractional dynamical system

cDα
0+x(t)−AcDβ

0+
x(t) = f

(
t, x(t),cDβ

0+
x(t),cDα

0+x(t)
)
, t ∈ [0, 1], (4.1)

x(0) = (1, 0), x′(0) = (0, 1), (4.2)

where f : [0, 1]× R2 × R2 × R2 → R2 is such that f = (f1, f2) with

fi(t, u, v, w) =
cit

2

1 + ‖u‖+ ‖v‖+ ‖w‖
, i = 1, 2,

0 < ci < 1, u, v, w ∈ R2, ‖(x1, x2)‖ = max{|x1|, |x2|}, A =

(
2 1
0 2

)
, β = 1

4 and α = 3
2 .

It is clear that the hypotheses (H1) and (H2) are satisfied. Indeed, the function f is jointly
continuous, and for any u, v, w, ū, v̄, w̄ ∈ R2 and t ∈ [0, 1], we get

‖f(t, u, v, w)− f(t, ū, v̄, w̄)‖ ≤ L1‖u− ū‖+ L2‖v − v̄‖+ L3‖w − w̄‖

with L1 = L2 = L3 = max{c1, c2}. Simple computations show that the condition max{R1, R2} <
1 is satisfied for suitable choices of the constants c1 and c2. Then, all conditions of Theorem 3 are
satisfied. It follows that the problem (4.1)–(4.2) has a unique solution defined on [0, 1].
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