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Abstract. In this paper, we study the existence of positive bounded solutions for the following
nonlinear integral equation with product perturbation:

x(t) = g(t, x(t)) [α(t)x(t− β) +
∫ t

−∞
a(t, t− s) f(s, x(s)) ds+ h(t, x(t))] , t ∈ R .

In addition, a concrete example is given to illustrate our existence theorem.
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1 Introduction

In [6], Cooke and Kaplan initiated the study on the following delay integral equation

x(t) =

∫ t

t−τ
f(s, x(s)) ds , (1.1)

which is a model for the spread of some infectious diseases. Afterwards, Fink and Gatica [10]
considered the existence of positive almost periodic solution to equation (1.1). Since the work
of Fink and Gatica, there has been of great interest for many mathematicians to investigate the
existence of positive almost periodic type solutions to equation (1.1) (see, e.g., [1, 2, 3, 4, 5, 8, 9,
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11, 13, 16, 14, 15] and references therein). Especially, in [1], Ait Dads and Ezzinbi studied the
existence of positive almost periodic solutions for the following neutral integral equation,

x(t) = γ x(t− τ) + (1− γ)
∫ t

t−τ
f(s, x(s)) ds . (1.2)

Ait Dads and Ezzinbi [2] considered the infinite delay integral equation

x(t) =

∫ t

−∞
a(t− s) f(s, x(s)) ds (1.3)

and Ait Dads et al. [4] studied the more general infinite delay integral equation

x(t) =

∫ t

−∞
a(t, t− s) f(s, x(s)) ds . (1.4)

In [8], N’Guérékata et al. studied the following integral equation

x(t) = α(t)x(t− β) +
∫ t

−∞
a(t, t− s) f(s, x(s)) ds+ h(t, x(t)) , (1.5)

which unifies (1.1)-(1.4). Very recently, N’Guérékata and the authors of this paper [14] investi-
gated the existence and uniqueness of bounded and continuous solutions to the following nonlinear
quadratic integral equation

x(t) = g(t, x(t))

∫ t

−∞
a(t, t− s) f(s, x(s)) ds , t ∈ R . (1.6)

Stimulated by the above work, this paper aims to do some further research on this direction, i.e.,
we will study the following nonlinear integral equation with product perturbation and neutral term:

x(t) = g(t, x(t)) [α(t)x(t− β) +
∫ t

−∞
a(t, t− s) f(s, x(s)) ds+ h(t, x(t))] , t ∈ R , (1.7)

where g , α , β , a , f , h satisfy some conditions in Section 3. It is needed to note that due to the
neutral term, we can not follow the organization of the proof in [14]. This leads a weaker main
result to some extent than expected extension. In addition, for convenience, we only discuss the
existence of positive bounded and continuous solutions for equation (1.7) here. We believe that our
approach used in this paper can be applied to study the existence of almost periodic type solutions
to equation (1.7).

Also, we note that equation (1.7) and its variants are called quadratic functional integral equation
in some recent literature and has attracted great interest for many authors (cf. [12] and references
therein).

2 Preliminaries

Let E and F be two metric spaces. We denote by C(E,F ) the space of all continuous functions
defined onE with values in F , byBC(E,F ) the space of continuous and bounded functions defined
on E with values in F , by R the set of real numbers, by R+ the set of positive real numbers, and
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by R+ the set of nonnegative real numbers. In the particular case where E = R and F = R+, for
every x , y ∈ BC(R,R+), we denote the distance between x and y by

‖x− y‖ = sup
t∈R
|x(t)− y(t)| .

We denote by L1(R+) the space of all Lebesgue measurable function on R+ with norm

‖x‖L1(R+) =

∫ +∞

0
|x(t)| dt .

Next, we need to recall some basic notations about cone (for more details, cf. [7]). Let X be a
real Banach space, and θ be the zero element in X . A closed convex set K in X is called a cone if
the following conditions are satisfied:

(1) if x ∈ K, then λx ∈ K for any λ ≥ 0 ,

(2) if x ∈ K and −x ∈ K, then x = θ .

A cone K induces a partial ordering ≤ in X by

x ≤ y ⇔ y − x ∈ K .

For any given u , v ∈ K with u ≤ v,

[u, v] := {x ∈ X : u ≤ x ≤ v} .

A cone K is called normal if there exists a constant k > 0 such that

θ ≤ x ≤ y ⇒ ‖x‖ ≤ k‖y‖ ,

where ‖ · ‖ is the norm on X . We denote by K◦ the interior of K. A cone K is called a solid cone
if K◦ 6= ∅.

Lemma 2.1 [4] Suppose that the function t 7→ a(t, ·) is in BC(R, L1(R+)) and f ∈ BC(R,R).
Then F ∈ BC(R,R), where

F (t) =

∫ t

−∞
a(t, t− s) f(s) ds , t ∈ R .

The following corollary can be deduced from [8, Theorem 3.1]:

Corollary 2.2 Let K be a normal solid cone in a real Banach space X , D : K → K be a linear
operator, and A , B be two operators from K◦ ×K◦ to K◦ with

A(x, z) = B(x, z) +D(x) , x , z ∈ K◦ .

Assume that the following conditions hold:

(C1) for each x , z ∈ K◦, B(·, z) is increasing in K◦ and B(x, ·) is decreasing in K◦;
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(C2) there exists a function ϕ : (0, 1) → (0,+∞) such that for each x , z ∈ K◦ and t ∈
(0, 1), ϕ(t) > t and

B(t x, z) ≥ ϕ(t)B(x, z) ;

(C3) there exist x0 , y0 ∈ K◦ with x0 ≤ y0 such that A(x0, x0) ≥ x0 and A(y0, y0) ≤ y0;

(C4) there exists a constant L > 0 such that for all x , z1 , z2 ∈ K◦ with z1 ≥ z2,

B(x, z1)−B(x, z2) ≥ −L(z1 − z2) .

Then A has a unique fixed point x∗ ∈ [x0, y0], i.e., A(x∗, x∗) = x∗. In addition, x∗ is the unique
fixed point of A in K◦.

3 Main results

In this section, we will study the following nonlinear integral equation

x(t) = g(t, x(t)) [α(t)x(t− β) +
∫ t

−∞
a(t, t− s) f(s, x(s)) ds+ h(t, x(t))] , t ∈ R . (3.1)

Now we give the list of assumptions which are used in this section.

(H1) f ∈ BC(R×R+,R+) satisfy that for each s ∈ R, f(s, ·) is increasing in R+. Moreover, we
denote by Mf = sup{|f(s, x)| : s ∈ R , x ∈ R+}.

(H2) There exists η ∈ (0, 1) such that

f(s, λ x) ≥ λη f(s, x)

for all s ∈ R , λ ∈ (0, 1) and x ≥ 0. In addition, there exists Lf > 0 such that

|f(s, x1)− f(s, x2)| ≤ Lf |x1 − x2|

for all s ∈ R and x1 , x2 ∈ R+.

(H3) a is a function from R × R+ to R+, and the function t 7→ a(t, ·) is in BC(R, L1(R+)).
Moreover, we denote by D = sup

t∈R

∫ +∞
0 |a(t, s)| ds.

(H4) g ∈ BC(R×R+,R+) satisfy that for each t ∈ R, g(t, ·) is increasing in R+. In addition, we
denote by Mg = sup{|g(t, x)| : t ∈ R, x ∈ R+}.

(H5) There exists Lg > 0 such that

|g(t, x1)− g(t, x2)| ≤ Lg|x1 − x2|

for all t ∈ R and x1 , x2 ∈ R+.

(H6) h ∈ BC(R × R+,R+) satisfy that for all t ∈ R, h(t, ·) is decreasing in R+. Moreover, we
denote by Mh = sup{|h(t, x)| : t ∈ R , x ∈ R+}.
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(H7) There exists Lh > 0 such that

h(t, z1)− h(t, z2) ≥ −Lh(z1 − z2)

for all t ∈ R and z1 ≥ z2 ≥ 0.

(H8) The function α is in BC(R,R+), and we denote by Mα = sup{|α(t)| : t ∈ R}. In addition,
MgMα < 1.

(H9) There exists a constant c > 0 such that

inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s) f(s, c) ds ≥ c.

Let
K = {x ∈ BC(R,R+) : x(t) ≥ 0 , ∀t ∈ R} .

Then
K◦ = {x ∈ BC(R,R+) : there exists ξ > 0 such that x(t) ≥ ξ , ∀t ∈ R} .

It is easy to verify that K is a normal solid cone in BC(R,R+).

Now, for every y ∈ BC(R,R+), we define an operator Ay on K◦ ×K◦ by

Ay(x, z)(t) = By(x, z)(t) +Dy(x)(t) , (3.2)

where

By(x, z)(t) = g(t, y(t)) [

∫ t

−∞
a(t, t− s) f(s, x(s)) ds+ h(t, z(t))]

and
Dy(x)(t) = g(t, y(t))α(t)x(t− β) ,

for all x , z ∈ K◦ and t ∈ R.

In order to establish the main result of this paper, we need the following lemma.

Lemma 3.1 Suppose that the assumptions (H1)-(H9) hold. Then, for every y ∈ BC(R,R+), the
operator Ay has a unique fixed point x∗y in K◦, i.e., Ay(x∗y, x

∗
y) = x∗y.

Proof. For convenience, we assume that Mf > 0 , Mg > 0 , Mh > 0 and Mα > 0. Fix y ∈
BC(R,R+). Next, we divide the proof into five steps.

Step 1. Dy : K → K is a linear operator, and Ay , By are two operators from K◦ ×K◦ to K◦.

By the assumptions, it is not difficult to check that Dy is a linear operator and from K to K.
Also, for every fixed x , z ∈ K◦, one can check that By(x, z) ∈ BC(R,R+). Moreover, there
exists ξ > 0 such that x(t) ≥ ξ for all t ∈ R. By using (H9), there exists a constant c > 0 such that

inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s) f(s, c) ds ≥ c .
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If ξ ≥ c, then we have

By(x, z)(t) = g(t, y(t)) [

∫ t

−∞
a(t, t− s) f(s, x(s)) ds+ h(t, z(t))]

≥ g(t, 0)
∫ t

−∞
a(t, t− s) f(s, ξ) ds

≥ g(t, 0)
∫ t

−∞
a(t, t− s) f(s, c) ds

≥ c > 0

for all t ∈ R. If 0 < ξ < c, we also have

By(x, z)(t) = g(t, y(t)) [

∫ t

−∞
a(t, t− s) f(s, x(s)) ds+ h(t, z(t))]

≥ g(t, 0)
∫ t

−∞
a(t, t− s) f(s, ξ) ds

= g(t, 0)

∫ t

−∞
a(t, t− s) f(s, ξ

c
· c) ds

≥ (
ξ

c
)η g(t, 0)

∫ t

−∞
a(t, t− s) f(s, c) ds

≥ ξ

c
· c

= ξ > 0

for all t ∈ R. Thus, By(x, z) ∈ K◦. Similarly, one can show thatAy(x, z) ∈ K◦ for all x , z ∈ K◦.

Step 2. For every x , z ∈ K◦, By(·, z) is increasing in K◦ and By(x, ·) is decreasing in K◦.

For all t ∈ R , z ∈ K◦ and x1 , x2 ∈ K◦ with x1 ≤ x2, we have

By(x2, z)(t)−By(x1, z)(t) = g(t, y(t)) [

∫ t

−∞
a(t, t− s) f(s, x2(s)) ds+ h(t, z(t))]

− g(t, y(t)) [
∫ t

−∞
a(t, t− s) f(s, x1(s)) ds+ h(t, z(t))]

= g(t, y(t))

∫ t

−∞
a(t, t− s) [f(s, x2(s))− f(s, x1(s))] ds

≥ 0 ,

which means that By(x2, z) ≥ By(x1, z) and By(·, z) is increasing in K◦. The fact that By(x, ·) is
decreasing in K◦ can be analogously proved.

Step 3. There exists a function ϕ : (0, 1) → (0,+∞) such that for every x , z ∈ K◦ and
λ ∈ (0, 1), ϕ(λ) > λ and By(λx, z) ≥ ϕ(λ)By(x, z).
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In fact, by using (H2), for all t ∈ R , λ ∈ (0, 1) and x , z ∈ K◦, we have

By(λx, z)(t) = g(t, y(t)) [

∫ t

−∞
a(t, t− s) f(s, λ x(s)) ds+ h(t, z(t))]

≥ g(t, y(t)) [λη
∫ t

−∞
a(t, t− s) f(s, x(s)) ds+ λη h(t, z(t))]

= λη g(t, y(t)) [

∫ t

−∞
a(t, t− s) f(s, x(s)) ds+ h(t, z(t))]

= λη By(x, z)(t)

= ϕ(λ)By(x, z)(t) ,

where ϕ(λ) := λη. Obviously, ϕ(λ) > λ for every λ ∈ (0, 1).

Step 4. There exist x0 , y0 ∈ K◦ with x0 ≤ y0 such that Ay(x0, x0) ≥ x0 and Ay(y0, y0) ≤ y0.

Let x0(t) ≡ c and y0(t) ≡ d for all t ∈ R, where

d = max

{
c ,

Mg(Mf D +Mh)

1−MgMα

}
.

It is easy to know that x0 ≤ y0. By (3.2), we have

Ay(y0, y0)(t) = g(t, y(t)) [α(t) y0(t− β) +
∫ t

−∞
a(t, t− s) f(s, y0(s)) ds+ h(t, y0(t))]

= g(t, y(t)) [α(t) d+

∫ t

−∞
a(t, t− s) f(s, d) ds+ h(t, d)]

≤Mg [Mα d+Mf D +Mh]

≤ d = y0(t)

for all t ∈ R. Therefore, we obtain Ay(y0, y0) ≤ y0. We also have

Ay(x0, x0)(t) = g(t, y(t)) [α(t)x0(t− β) +
∫ t

−∞
a(t, t− s) f(s, x0(s)) ds+ h(t, x0(t))]

= g(t, y(t)) [α(t) c+

∫ t

−∞
a(t, t− s) f(s, c) ds+ h(t, c)]

≥ g(t, 0)
∫ t

−∞
a(t, t− s) f(s, c) ds

≥ c = x0(t)

for all t ∈ R. Thus, we know that Ay(x0, x0) ≥ x0.
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Step 5. There exists a constant L = LhMg > 0 such that

By(x, z1)(t)−By(x, z2)(t) = g(t, y(t)) [

∫ t

−∞
a(t, t− s) f(s, x(s)) ds+ h(t, z1(t))]

− g(t, y(t)) [
∫ t

−∞
a(t, t− s) f(s, x(s)) ds+ h(t, z2(t))]

= g(t, y(t)) [h(t, z1(t))− h(t, z2(t))]

≥ −Lh g(t, y(t))(z1(t)− z2(t))

≥ −LhMg(z1(t)− z2(t))

= −L(z1(t)− z2(t))

for all t ∈ R , x ∈ K◦ and z1 , z2 ∈ K◦ with z1 ≥ z2.

Now, all conditions of Corollary 2.2 are verified. Thus, Ay has a unique fixed point x∗y ∈
[x0, y0], i.e., Ay(x∗y, x

∗
y) = x∗y. In addition, x∗y is the unique fixed point of Ay in K◦. �

Theorem 3.2 Under the assumptions (H1)-(H9), equation (3.1) has a unique solution in
BC(R,R+) provided that

0 <
Lg(Mα d+Mf D +Mh)

1−Mg(Mα + Lf D + Lh)
< 1 .

Proof. Define an operator A on BC(R,R+) by

A(y)(t) = x∗y(t) = Ay(x
∗
y, x
∗
y)(t)

= g(t, y(t)) [α(t)x∗y(t− β) +
∫ t

−∞
a(t, t− s) f(s, x∗y(s)) ds+ h(t, x∗y(t))] (3.3)

for all t ∈ R and y ∈ BC(R,R+), where Ay and x∗y are the same as in Lemma 3.1.
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For all t ∈ R and y1 , y2 ∈ BC(R,R+), we have

|A(y1)(t)−A(y2)(t)|

=

∣∣∣∣g(t, y1(t)) [α(t)x∗y1(t− β) + ∫ t

−∞
a(t, t− s) f(s, x∗y1(s)) ds+ h(t, x∗y1(t))]

− g(t, y2(t)) [α(t)x
∗
y2(t− β) +

∫ t

−∞
a(t, t− s) f(s, x∗y2(s)) ds+ h(t, x∗y2(t))]

∣∣∣∣
≤
∣∣∣∣g(t, y1(t)) [α(t)x∗y1(t− β) + ∫ t

−∞
a(t, t− s) f(s, x∗y1(s)) ds+ h(t, x∗y1(t))]

− g(t, y1(t)) [α(t)x
∗
y2(t− β) +

∫ t

−∞
a(t, t− s) f(s, x∗y2(s)) ds+ h(t, x∗y2(t))]

∣∣∣∣
+

∣∣∣∣g(t, y1(t)) [α(t)x∗y2(t− β) + ∫ t

−∞
a(t, t− s) f(s, x∗y2(s)) ds+ h(t, x∗y2(t))]

− g(t, y2(t)) [α(t)x
∗
y2(t− β) +

∫ t

−∞
a(t, t− s) f(s, x∗y2(s)) ds+ h(t, x∗y2(t))]

∣∣∣∣
≤ |MgMα[x

∗
y1(t− β)− x

∗
y2(t− β)]|+ |Mg

∫ t

−∞
a(t, t− s) [f(s, x∗y1(s))− f(s, x

∗
y2(s))] ds|

+ |Mg[h(t, x
∗
y1(t))− h(t, x

∗
y2(t))]|+ |(Mα d+Mf D +Mh) [g(t, y1(t))− g(t, y2(t))]|

≤MgMα|x∗y1(t− β)− x
∗
y2(t− β)|+Mg Lf

∫ t

−∞
|a(t, t− s)||x∗y1(s)− x

∗
y2(s)| ds

+Mg Lh|x∗y1(t)− x
∗
y2(t)|+ Lg(Mα d+Mf D +Mh)|y1(t)− y2(t)|

≤MgMα|x∗y1(t− β)− x
∗
y2(t− β)|+Mg Lf‖x∗y1 − x

∗
y2‖
∫ t

−∞
|a(t, t− s)| ds

+Mg Lh|x∗y1(t)− x
∗
y2(t)|+ Lg(Mα d+Mf D +Mh)|y1(t)− y2(t)| .

In view of equation (3.3), we know that

|A(y1)(t)−A(y2)(t)| = |x∗y1(t)− x
∗
y2(t)| .

Thus, it follows that

|A(y1)(t)−A(y2)(t)|

≤MgMα|A(y1)(t− β)−A(y2)(t− β)|+Mg Lf‖x∗y1 − x
∗
y2‖
∫ t

−∞
|a(t, t− s)|ds

+Mg Lh|A(y1)(t)−A(y2)(t)|+ Lg(Mα d+Mf D +Mh)|y1(t)− y2(t)|

and we know that

‖A(y1)−A(y2)‖ ≤MgMα‖A(y1)−A(y2)‖+Mg Lf D‖A(y1)−A(y2)‖
+Mg Lh‖A(y1)−A(y2)‖+ Lg(Mα d+Mf D +Mh)‖y1 − y2‖ .

Therefore, we have

‖A(y1)−A(y2)‖ ≤
Lg(Mα d+Mf D +Mh)

1−Mg(Mα + Lf D + Lh)
‖y1 − y2‖ ,

where 0 <
Lg(Mα d+Mf D+Mh)
1−Mg(Mα+Lf D+Lh)

< 1. Noting that A is from BC(R,R+) to BC(R,R+), using the
well-known Banach contraction theorem, we know thatA has a unique fixed point y ∈ BC(R,R+),
i.e., A(y) = y. This yields that equation (3.1) has a unique solution in BC(R,R+). �
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4 An example

In this section, we present an example to illustrate how the conditions of Theorem 3.2 can be satis-
fied.

Example 4.1 Let α(t) = π
10 , β = 1,

g(t, x) =
(sin t+ 2) [(x+ 1)

1
2 + 2]

9π[(x+ 1)
1
2 + 3]

and

h(t, x) =
sin2 t

1 + x

for all t ∈ R and x ∈ R+. Let

f(s, x) =
(sin s+ 2) [(x+ 1)

1
3 + 1]

(x+ 1)
1
3 + 2

for all s ∈ R and x ∈ R+, and

a(t, s) =
1

1 + s2

for all t ∈ R and s ∈ R+.

Next, we verify all the assumptions of Theorem 3.2. It is easy to know that f ∈ C(R×R+,R+).
There exists Mf = 3 > 0 such that

0 < f(s, x) =
(sin s+ 2) [(x+ 1)

1
3 + 1]

(x+ 1)
1
3 + 2

≤ (sin s+ 2) [(x+ 1)
1
3 + 2]

(x+ 1)
1
3 + 2

= sin s+ 2

≤ 3 =Mf

for all s ∈ R and x ∈ R+. Therefore, f ∈ BC(R× R+,R+). In addition, taking 0 ≤ x1 ≤ x2, we
have

f(s, x1)− f(s, x2) =
(sin s+ 2) [(x1 + 1)

1
3 + 1]

(x1 + 1)
1
3 + 2

− (sin s+ 2) [(x2 + 1)
1
3 + 1]

(x2 + 1)
1
3 + 2

= (sin s+ 2)

[
(x1 + 1)

1
3 − (x2 + 1)

1
3

[(x1 + 1)
1
3 + 2][(x2 + 1)

1
3 + 2]

]
≤ 0

for all s ∈ R. Thus, f(s, ·) is increasing in R+ for all s ∈ R. We conclude that (H1) holds.
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There exists η = 1
3 ∈ (0, 1) such that

f(s, λ x) =
(sin s+ 2) [(λx+ 1)

1
3 + 1]

(λx+ 1)
1
3 + 2

≥ (sin s+ 2) [(λx+ λ)
1
3 + λ

1
3 ]

(x+ 1)
1
3 + 2

= λ
1
3
(sin s+ 2) [(x+ 1)

1
3 + 1]

(x+ 1)
1
3 + 2

= λ
1
3 f(s, x)

= λη f(s, x)

for all x ≥ 0 , λ ∈ (0, 1) and s ∈ R. Moreover, there exists Lf = 1 > 0 such that

|f(s, x1)− f(s, x2)| =

∣∣∣∣∣(sin s+ 2) [(x1 + 1)
1
3 + 1]

(x1 + 1)
1
3 + 2

− (sin s+ 2) [(x2 + 1)
1
3 + 1]

(x2 + 1)
1
3 + 2

∣∣∣∣∣
=

∣∣∣∣∣(sin s+ 2)

[
(x1 + 1)

1
3 − (x2 + 1)

1
3

[(x1 + 1)
1
3 + 2][(x2 + 1)

1
3 + 2]

]∣∣∣∣∣
≤ 3

∣∣(x1 + 1)
1
3 − (x2 + 1)

1
3

∣∣
≤ 3 · |x1 − x2|

3

= |x1 − x2|

for all s ∈ R and x1 , x2 ∈ R+. Thus, (H2) holds.

For all t ∈ R, we have ∫ +∞

0

1

1 + s2
ds =

π

2
< +∞ .

Thus, a(t, ·) ∈ L1(R+). It is easy to know that the function t 7→ a(t, ·) is in BC(R, L1(R+)).
Moreover, we know that D = sup

t∈R

∫ +∞
0

1
1+s2

ds = π
2 . Thus, (H3) holds.

Obviously, g ∈ C(R× R+,R+). There exists Mg =
1
3π > 0 such that

0 < g(t, x) =
(sin t+ 2) [(x+ 1)

1
2 + 2]

9π[(x+ 1)
1
2 + 3]

≤ (sin t+ 2) [(x+ 1)
1
2 + 3]

9π[(x+ 1)
1
2 + 3]

=
sin t+ 2

9π

≤ 3

9π
=

1

3π
=Mg
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for all t ∈ R and x ∈ R+. Thus, g ∈ BC(R×R+,R+). In addition, let 0 ≤ x1 ≤ x2, we know that

g(t, x1)− g(t, x2) =
(sin t+ 2) [(x1 + 1)

1
2 + 2]

9π[(x1 + 1)
1
2 + 3]

− (sin t+ 2) [(x2 + 1)
1
2 + 2]

9π[(x2 + 1)
1
2 + 3]

=
sin t+ 2

9π

[
(x1 + 1)

1
2 − (x2 + 1)

1
2

[(x1 + 1)
1
2 + 3][(x2 + 1)

1
2 + 3]

]
≤ 0

for all t ∈ R. Therefore, g(t, ·) is increasing in R+ for all t ∈ R. So (H4) holds.

There exists Lg = 1
3π > 0 such that

|g(t, x1)− g(t, x2)| =

∣∣∣∣∣(sin t+ 2) [(x1 + 1)
1
2 + 2]

9π[(x1 + 1)
1
2 + 3]

− (sin t+ 2) [(x2 + 1)
1
2 + 2]

9π[(x2 + 1)
1
2 + 3]

∣∣∣∣∣
≤ 1

3π

∣∣∣∣∣(x1 + 1)
1
2 + 2

(x1 + 1)
1
2 + 3

− (x2 + 1)
1
2 + 2

(x2 + 1)
1
2 + 3

∣∣∣∣∣
≤ 1

3π
|(x1 + 1)

1
2 − (x2 + 1)

1
2 |

≤ 1

3π
|x1 − x2|

for all t ∈ R and x1 , x2 ∈ R+. Thus, (H5) holds.

There exists Mh = 1 > 0 such that

0 ≤ h(t, x) = sin2 t

1 + x
≤ 1

for all t ∈ R and x ∈ R+. we know that h ∈ C(R× R+,R+). Therefore, h ∈ BC(R× R+,R+).
Moreover, let 0 ≤ x1 ≤ x2, we have

h(t, x1)− h(t, x2) =
sin2 t

1 + x1
− sin2 t

1 + x2

= sin2 t

[
x2 − x1

(1 + x1) + (1 + x2)

]
≥ 0

for all t ∈ R. Thus, h(t, ·) is decreasing in R+ for all t ∈ R. Thus (H6) holds.

There exists Lh = 1 > 0 such that

h(t, z1)− h(t, z2) =
sin2 t

1 + z1
− sin2 t

1 + z2

= sin2 t

[
z2 − z1

(1 + z1)(1 + z2)

]
= − sin2 t

[
z1 − z2

(1 + z1)(1 + z2)

]
≥ −(z1 − z2)

for all t ∈ R and z1 ≥ z2 ≥ 0, i.e., (H7) holds.
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It is easy to know that α ∈ BC(R,R+) and Mα = π
10 > 0. In addition, MgMα = 1

3π ·
π
10 =

1
30 < 1. Thus, (H8) holds.

There exists a constant c = 1
48 ≈ 0.020833 such that

inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s) f(s, c) ds

= inf
t∈R

(
sin t+ 2

12π

)∫ t

−∞

(
1

1 + (t− s)2

)(
(sin s+ 2)((c+ 1)

1
3 + 1)

(c+ 1)
1
3 + 2

)
ds

= inf
t∈R

(
sin t+ 2

12π

)(
(c+ 1)

1
3 + 1

(c+ 1)
1
3 + 2

)∫ +∞

0

sin(t− s) + 2

1 + s2
ds

≥ 1

12π

(
(c+ 1)

1
3 + 1

(c+ 1)
1
3 + 2

)∫ +∞

0

1

1 + s2
ds

=
(c+ 1)

1
3 + 1

24(c+ 1)
1
3 + 48

≈ 0.027810 > c ,

which means that (H9) holds.

In addition, we have

d = max{c,
Mg(Mf D +Mh)

1−MgMα
} ≈ max{0.020833, 0.627003} = 0.627003

and

0 <
Lg(Mα d+Mf D +Mh)

1−Mg(Mα + Lf D + Lh)
≈ 0.903598 < 1 .

Thus, Theorem 3.2 yields that the following integral equation

x(t) =
(sin t+ 2) [(x(t) + 1)

1
2 + 2]

9π[(x(t) + 1)
1
2 + 3]

×

[
π

10
x(t− 1) +

∫ t

−∞

1

1 + (t− s)2
(sin s+ 2) [(x(s) + 1)

1
3 + 1]

(x(s) + 1)
1
3 + 2

ds+
sin2 t

1 + x(t)

]
has a unique solution in BC(R,R+).
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