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Abstract. We point out that when a quadratic type Liénard equation is suitably interpreted shows
branching due to the double valuedness of the governing Hamiltonian. Under certain approximation
of the guiding coupling constant we derive its quantum counterpart that is guided by a momentum-
dependent mass function.
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1 Introduction

Branched dynamical systems have been a focus of attention of late [1, 2, 3, 4, 5, 6, 7, 8, 9] after
an inquiry carried out by Shapere and Wilczek [1] in this direction. A couple of notable papers
following this work include the one of Curtright and Zachos [2] who looked at a classical system as
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given by a pair of convex, smoothly tied functions of the velocity variable v possessing a quantum
counterpart that exhibits a double-valued Hamiltonian resembling a supersymmetric system in the
momentum space, and that of Bagchi et al. [3, 4] who explored a couple of nonlinear models gov-
erned by a set of Hamiltonians of Liénard type [10] in which the velocity variable appears linearly
that yield to branching.

In this communication we aim to carry out our investigation further for the Mathews and Lak-
shmanan’s model of a nonlinear oscillator describing quasi-harmonic oscillations which admits of a
Lagrangian interpretation [11]. Note that the ensuing differential equation yields to simple harmonic
bound state solutions.

Our plan is as follows:

In the following section we give a brief review of branched Hamiltonians that arise in the context
of the Liénard class of linear differential equation having a Lagrangian interpretation; subsequently
we propose a new branching model for a modified Liénard equation consisting of a quadratic ve-
locity term and which too admits of a Lagrangian. Identifying a small coupling parameter and
expanding the Hamiltonian in terms of it shows that a momentum-dependent effective mass quan-
tum system can be realized. Finally a summary of our scheme is given.

2 Branched Hamiltonians for the linear Liénard equation: A brief
review

An attempt to track down branched Hamiltonians in the context of nonlinear differential equations
was first done for the linear class of Liénard type of models [3, 4]. To review briefly the approach
let us note that Liénard equation when the velocity variable appears linearly is typically given by
the form

ẍ+ g(x)ẋ+ h(x) = 0 (2.1)

where g(x) and h(x) are arbitrary continuously differentiable functions depending on the spatial
coordinate x and an overdot stands for a derivative with respect to the time variable.

We concentrate on the model of Mathews and Lakshmanan [10] which looks at the particular
case wherein g(x) = k x and h(x) = λx + k2

9 x
3 (these are odd functions of x) and which yields

the equation of motion

ẍ+ k x ẋ+
k2

9
x3 + λx = 0 , k , λ > 0 , (2.2)

representing a cubic oscillator subject to a damped nonlinear force as indicated by the product term
k x ẋ. This equation is appealing in that it can be seen to follow from a Lagrangian as provided by
the precise form

L =
27λ3

2 k2
(k ẋ+

k2 x2

3
+ 3λ)−1 +

3λ ẋ

2 k
− 9λ2

2 k2
. (2.3)

After some straightforward manipulations the corresponding Hamiltonian H can also be written
down

H(x , p) =
9λ2

2 k2

[
2− 2

(
1− 2 k p

3λ

)1/2

+
k2 x2

9λ
− 2 k p

3λ
− 2 k3 x2 p

27λ2

]
. (2.4)
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One can see that H is of non-standard type: the coordinate and momentum are mixed so that the
Hamiltonian cannot be written as the sum of individual kinetic and potential energy terms.

The Lagrangian (2.3), however, is not unique in producing the Hamiltonian H(x , p) as was
pointed out in [3]. Towards this end Bagchi et al. [3] considered an entirely different form

L(x , v) = C(v + f(x))
2m+1
2m−1 − δ , where C =

1− 2m

1 + 2m
δ

2
1−2m , (2.5)

where v is the velocity variable, f(x) is an arbitrary smooth function, m is a non-negative integer
and δ is some suitable constant quantity. The motivation for such a form came from the model
of Curtright and Zachos [2] who were interested in seeking some concrete example of branched
Hamiltonians. The present one of (2.5) differs from it in the presence of additional distinguishing
features in the form of an inverse exponent in the first term and the inclusion of a general function
term f(x). Since L inevitably leads to multiple values for p, the resulting system possesses a
branched structure

H±(x , p) = (−p)f(x)− 2 δ

2m+ 1
(±
√
−p)2m+1 + δ . (2.6)

Quite interestingly, for the specific case of m = 0, H± reduce to

H± = (−p)f(x)∓ 2 δ
√
−p+ δ . (2.7)

When one defines f(x) and δ as

f(x) =
λ

2
x2 +

9λ2

2 k2
, δ =

9λ2

2 k2
, (2.8)

then with the trivial shift p→ 2 k
3λp− 1, we get

H± =
9λ2

2 k2

[
2∓ 2

(
1− 2 k p

3λ

)1/2

+
k2 x2

9λ
− 2 k p

3λ
− 2 k3 x2 p

27λ2

]
. (2.9)

Evidently, the positive branch corresponds to the form of H(x , p) in (2.3) while both H± reveal the
presence of a linear harmonic potential in the limit k → 0. The pair Hamiltonians above speak of
branching in the momentum space as p deviates from the value 3λ

2 k .

3 A new branching model: Branched Hamiltonians for the quadratic
Liénard equation

We now turn to the case of the quadratic Liénard equation. In this regard we consider the following
Lagrangian

L =
1

2

(
1

1 + λx2

)
(ẋ2 − αx2) , λ , α > 0 . (3.1)

Note that such a Lagrangian was also proposed by Mathews and Lakshmanan [11] as another viable
example of a nonlinear oscillator. It is noteworthy that the above quadratic system is best with a
number of interesting integrability properties. For a discussion of these we refer to [12].
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Employing Lagrange’s equation of motion we readily derive the the differential equation

(1 + λx2)ẍ− (λx)ẋ2 + αx = 0 , λ > 0 . (3.2)

The presence of a quadratic velocity term is to be noted. Remarkably, the above equation admits of
simple harmonic bound state solutions of the from

x = A sin(ω t+ φ) (3.3)

with the frequency and amplitude restricted through

ω2 =
α

1 + λA2
. (3.4)

In other words, the present scheme of the nonlinear oscillator with periodic solutions that qualify as
having a simple harmonic form. The nonlinear equation is an interesting example of a system with
so-called nonlinear quasi-harmonic oscillations. It has been proved recently [12] that this problem
can be generalized to the two-dimensional case, and even to the n-dimensional case.

The above Lagrangian gives respectively for the momentum p and the accompanying Hamilton-
ian H the forms

p =
ẋ

(1 + λx2)
, (3.5)

H =
p2

2
(1 + λx2) +

αx2

2(1 + λx2)
. (3.6)

With this background the model we propose to study an extended scheme having the Lagrangian

L =
η

2(1 + λx2)
[(v − ζ)r − αx2 + ζ2] , (3.7)

where the parameters r , η , λ , α and ζ are all real. The nonlinear equation of motion (3.2) is
obtainable in the special case when η = 1 , r = 2, and ζ = 0.

On the other hand, if we want to make a connection with the Hamiltonian of Curtright and

Zachos [2], the following choice of parameters η = 6
(
1
4

) 2
3 , r = 1

3 , and ζ = 1 proves relevant.
First of all, these give for the Lagrangian the form

L =
3

4
2
3 (1 + λx2)

[(v − 1)
1
3 − αx2 + 1] , (3.8)

which allows the momentum to be determined by the relation

p =
∂L

∂v
=

(v − 1)−
2
3

4
2
3 (1 + λx2)

. (3.9)

Secondly, we can solve for the velocity to get

v±(p) = 1∓ p−
3
2

4(1 + λx2)
3
2

, (3.10)

which at once reveals a branching character. Observe that the velocity function depends on the
spatial coordinate.
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One thus arrives at a pair of branched Hamiltonian

H± = p± p−
1
2

2(1 + λx2)
3
2

+
3(αx2 − 1)

4
2
3 (1 + λx2)

, (3.11)

which coincide with the ones deduced in [2].

It is instructive to look at the behavior of the system for small values of the spatial coordinate x.
A simple binomial expansion gives

H± = p± 1

2
p−

1
2 (1 + λx2)−

3
2 +

3

4
2
3

(αx2 − 1)(1 + λx2)−1 , (3.12)

which for small values of λ yields

H± = −
[
±3

4
λ p−

1
2 − 3

4
2
3

(α+ λ)

]
x2 + p± 1

2
√
p
− 3

4
2
3

+O(x4) . (3.13)

Taking the Fourier transform to the momentum space and shifting the expression by the last constant
term, we get a quantum form of the Hamiltonian

H± = − 1

2m(p)

d2

dp2
+ p± 1

2
√
p

(3.14)

with a momentum-dependent mass function

2m(p) =

[
±3

4
λ p−

1
2 − 3

4
2
3

(α+ λ)

]−1
. (3.15)

The mass function is guided by the choice of the underlying parameters α and λ. To look into the
qualitative effects of the above quantum Hamiltonian one can take resort to a perturbative treatment
in a similar manner as carried out in [4].

4 Summary

To summarize, we looked at a model of nonlinear oscillator describing quasi-harmonic oscillations
and showed the Hamiltonian suited for it has a non-conventional double-valued structure due to the
presence of a velocity-dependent potential. For small values of the coupling parameter we found
that a quantum mechanical interpretation can be given to them suitable for a momentum dependent
effective mass system.
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