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1 Introduction

In this article, we study the existence and uniqueness of mild solution for the following initial value
problem

Dαx(t) = Ax(t) + f(t, x(t)) , t ∈ J ,
x(0) = x0 . (1.1)
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Next, we establish the sufficient condition for the approximate controllability of the following ab-
stract fractional evolution equation

Dαx(t) = Ax(t) + f(t, x(t)) +Bu(t) , t ∈ J ,
x(0) = x0 , (1.2)

where Dα is the deformable fractional derivative of order α ∈ (0, 1) which is introduced by Zulfe-
qarr et. al. [1]. A : D(A) ⊂ X → X is an infinitesimal generator of a C0-semigroup T (t)(t > 0)
on a suitable space X , x0 ∈ X , and J = [0, b], b > 0 is a constant. u ∈ L2(J, U), U is a Hilbert
space, B : U → X is a bounded linear operator. f : J × X → X is a given function satisfying
certain assumptions.

The rest of the paper is organized as follows. In section 2, we will give some basic definitions,
notations and theorems. Section 3 is further subdivided into two subsections. In first part, we will
obtain the expression for mild solutions for the system (1.1) and discuss the sufficient conditions for
the existence and uniqueness of mild solution. In second part, we will study the existence of mild
solutions for the system (1.2), then we show that the control system (1.2) is approximately control-
lable on J provided that the corresponding linear system is approximately controllable. Finally, in
section 4, we will present some examples to illustrate our results.

2 Preliminaries

In this section we will introduce some basic definitions, notations, preliminaries theorems.

Definition 2.1 ([1]) For a function f : (a, b) → R, the deformable fractional derivative of order
α ∈ [0, 1] is defined as

Dαf(t) = lim
ε→0

(1 + εβ) f(t+ εα)− f(t)

ε
,

where α+ β = 1.

Remark 2.2 If α = 0 , D0f(t) = f(t), and if α = 1 , Df(t) = f ′(t).

Definition 2.3 ([1]) The α-fractional integral of a continuous function defined on [a, b] is defined
by

Iαa f(t) =
1

α
e
−β
α
t

∫ t

a
e
β
α
sf(s) ds , where α+ β = 1 , α ∈ (0, 1] .

Theorem 2.4 ([1]) A differentiable function f at a point t ∈ (a, b) is always α-differentiable at
that point for any α. Moreover, in this case we have

Dαf(t) = βf(t) + αDf(t) ,

where Df = d
dt f .

Theorem 2.5 ([1]) Let f be defined in (a, b). For any α, f is α-differentiable if and only if it is
differentiable.



EXISTENCE AND UNIQUENESS OF MILD SOLUTION 87

Theorem 2.6 ([1]) The operators Dα and Iα possess the following properties:

(i) Dα(af + bg) = aDαf + bDαg. (Linearity)

(ii) Dα1 Dα2 = Dα2 Dα1 . (Commutativity)

(iii) Dαk = β k, when k is a constant.

(iv) Dα(f ·g) = (Dαf)·g + α f ·Dg.

(v) Iαa (bf + cg) = b Iαa f + c Iαa g. (Linearity)

(vi) Iα1
a Iα2

a = Iα2
a Iα1

a . (Commutativity)

Theorem 2.7 (Inverse Property) ([1]) Let f be a continuous function defined on [a, b], then Iαa f
is α-differentiable in (a, b). In fact, we have

Dα(Iαa f(t)) = f(t).

Conversely, suppose g is a continuous anti-α-derivative of f over (a, b), that is g = Dαf , then

Iαa (Dαf(t)) = Iαa (g(t)) = f(t)− e
β
α
(a−t)f(a) .

Theorem 2.8 (Schauder fixed point theorem) ([4]) If Ω is a closed bounded and convex subset
of a Banach space X , and F : Ω→ Ω is completely continuous, then F has a fixed point in Ω.

3 Main Results

In this section, first we will discuss the existence and uniqueness of mild solution for the system
(1.1), then we state and prove conditions for the approximate controllability for system (1.2).

3.1 Existence and uniqueness of mild solution

Let X be a Banach space with norm ‖ · ‖, and C(J,X) be the Banach space of all contin-
uous functions from J into X endowed with supremum norm ‖x‖ = sup

t∈J
‖x(t)‖. Denote

M = supt∈J ‖T (t)‖L(X), where L(X) stands for the Banach space of all linear and bounded
operators on X , note that M > 1.

Lemma 3.1 Let A be an infinitesimal generator of a C0-semigroup T (t) (t > 0) on X . Then for
x ∈ D(A),

DαT (t)x = (β I + αA)T (t)x .

Proof. By [2], we know that for x ∈ D(A) we have T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax .
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Now using Theorem 2.4, we get

DαT (t)x = β T (t)x+ α
d

dt
T (t)x

= β T (t)x+ αAT (t)x

= (β I + αA)T (t)x .

�

Let A be a linear operator from D(A) ⊂ X into X and x0 ∈ X . Consider the following linear
deformable fractional abstract Cauchy problem

Dαx(t) = Ax(t) , t ∈ J ,
x(0) = x0 . (3.1)

Definition 3.2 A function x is called a solution to the problem (3.1), if the following hold:

(i) x ∈ C(J,X) and x(t) ∈ D(A) for all t ∈ J .

(ii) Dαx exists and is continuous on J .

(iii) x satisfies (3.1).

Theorem 3.3 Let A be an infinitesimal generator of a C0-semigroup T (t)(t > 0). If x0 ∈ D(A),
then e

−β
α
t T ( tα)x0 is a solution to the problem (3.1).

Proof. Let x(t) = e
−β
α
t T ( tα)x0. Since x0 ∈ D(A), x(t) is differentiable. Now using Lemma 3.1,

Theorem 2.4, and Theorem 2.6, we get

Dαx(t) =

[
(Dαe

−β
α
t)T (

t

α
) + α e

−β
α
t d

dt
T (

t

α
)

]
x0

=

[
(β e

−β
α
t + α (

−β
α

) e
−β
α
t)T (

t

α
) + e

−β
α
tAT (

t

α
)

]
x0

= Ae
−β
α
t T (

t

α
)x0

= Ax(t) .

�

Now we consider the inhomogeneous initial value problem

Dαx(t) = Ax(t) + f(t) , t ∈ J ,
x(0) = x0 , (3.2)

where A is an infinitesimal generator of a C0-semigroup, x0 ∈ X, and f : J → X is a suitable
function.
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Theorem 3.4 Let x be a solution of the problem (3.2) and f ∈ L1(J,X), then x satisfies

x(t) = e
−β
α
t T (

t

α
)x0 +

1

α
e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

) f(s) ds.

Proof. Since x is a solution of the problem (3.2), we have

Dαx(t) = Ax(t) + f(t). (3.3)

Also by Theorem (2.4) we know

Dαx(t) = β x(t) + αx′(t). (3.4)

From (3.3) and (3.4), we can easily conclude that

x′(t) =
1

α
[(A− βI)x(t) + f(t)] . (3.5)

Let h(s) = T ( t−sα )x(s), 0 6 s 6 t, since x(s) ∈ D(A), therefore h is differentiable and hence
α-differentiable by Theorem (2.4). Now using Theorem (2.6), Lemma (3.1), and (3.5), we get

Dαh(s) =

(
DαT (

t− s
α

)

)
x(s) + αT (

t− s
α

)x′(s)

=

[
β T (

t− s
α

) + α
d

dt
T (
t− s
α

)

]
x(s) + T (

t− s
α

)[(A− β I)x(s) + f(s)]

=

[
β T (

t− s
α

)−AT (
t− s
α

)

]
x(s) +AT (

t− s
α

)x(s)− β T (
t− s
α

)x(s) + T (
t− s
α

) f(s)

= T (
t− s
α

) f(s) . (3.6)

By Theorem (2.7), we obtain

Iα(Dαh(t)) = h(t)− e
−β
α
t h(0)

= x(t)− e
−β
α
t T ( tα)x0 . (3.7)

Since f ∈ L1(J,X), then T ( t−sα ) fs) is integrable. Integrating (3.6), we have

Iα(Dαh(t)) =
1

α
e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

) f(s) ds . (3.8)

From (3.7) and (3.8), we obtain

x(t) = e
−β
α
t T (

t

α
)x0 +

1

α
e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

) f(s) ds .

�

Theorem 3.5 Let A be the infinitesimal generator of a C0-semigroup and f ∈ C(J,X). If f(s) ∈
D(A) for 0 < s < t and Af(s) ∈ L1(J,X) then for every x0 ∈ D(A) the function x : J → X
defined by

x(t) = e
−β
α
t T (

t

α
)x0 +

1

α
e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

) f(s) ds (3.9)

is a solution to the initial value problem (3.2).
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Proof. Let u(t) = e
−β
α
t T ( tα)x0 and v(t) = 1

α e
−β
α
t
∫ t
0 e

β
α
s T ( t−sα ) f(s) ds, therefore x(t) given

in (3.9) can be rewritten as x(t) = u(t) + v(t). Since x0 ∈ D(A), u(t) is differentiable and by
Theorem (3.3), we know Dαu(t) = Au(t). From the assumptions, it is easy to conclude that v(t)
is differentiable, and

v′(t) =
1

α
(
−β
α

) e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

) f(s) ds+
1

α
e
−β
α
t d

dt

∫ t

0
e
β
α
s T (

t− s
α

) f(s) ds

=
−β
α2

e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

) f(s) ds+
1

α
e
−β
α
t

[ ∫ t

0
e
β
α
s ∂

∂t
T (
t− s
α

) f(s) ds+ e
β
α
t f(t)

]
=
−β
α2

e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

) f(s) ds+
1

α
e
−β
α
t

[ ∫ t

0
e
β
α
s 1

α
AT (

t− s
α

) f(s) ds+ e
β
α
t f(t)

]
=
−β
α2

e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

) f(s) ds+
1

α2
Ae

−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

) f(s) ds+
1

α
f(t)

=
1

α

(
− β v(t) +Av(t) + f(t)

)
. (3.10)

Now by Theorem (2.4) and (3.10), we get

Dαv(t) = β v(t) + α v′(t)

= β v(t) +

(
− β v(t) +Av(t) + f(t)

)
= Av(t) + f(t) . (3.11)

Hence

Dαx(t) = Dαu(t) +Dαv(t)

= Au(t) +Av(t) + f(t)

= Ax(t) + f(t) , (3.12)

also x(0) = u(0) + v(0) = x0. Thus x(t) given by (3.9) is the solution of inhomogeneous initial
value problem (3.2). �

Now we will study the semilinear initial value problem (1.1).

Definition 3.6 A continuous solution x of the following integral equation

x(t) = e
−β
α
t T (

t

α
)x0 +

1

α
e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

) f(s, x(s)) ds, (3.13)

is called a mild solution of the problem (1.1).

We need the following basic assumptions to prove the existence and uniqueness of mild solution to
the problem (1.1).

(HA) A is an infinitesimal generator of a C0-semigroup of bounded linear operators T (t)(t > 0)
on X .
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(Hf) f : J ×X → X is continuous and there exists a constant L > 0 such that

‖f(t, x)− f(t, y)‖ 6 L‖x− y‖, ∀x , y ∈ X .

Theorem 3.7 Let the hypotheses (HA) and (Hf) be satisfied, then for every x0 ∈ X the system
(1.1) has a unique mild solution x ∈ C(J,X) provided that ML

β < 1.

Proof. For a given x0 ∈ X , we define a map F : C(J,X)→ C(J,X) by

(Fx)(t) = e
−β
α
t T (

t

α
)x0 +

1

α
e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

) f(s, x(s)) ds, t ∈ J .

Now we show that F is a contraction. Let x, y ∈ C(J,X), it follows readily from the definition of
F that

‖(Fx)(t)− (Fy)(t)‖ 6 1

α
e
−β
α
t

∫ t

0
e
β
α
s ‖T (

t− s
α

)‖ ‖f(s, x(s))− f(s, y(s))‖ ds

6
ML

α
e
−β
α
t

(∫ t

0
e
β
α
s ds

)
‖x− y‖

=
ML

β
e
−β
α
t

[
e
β
α
t − 1

]
‖x− y‖

=
ML

β

[
1− e

−β
α
t

]
‖x− y‖

6
ML

β
‖x− y‖.

Hence F is a contraction map, and therefore by Banach contraction principle F has a unique fixed
point x ∈ C(J,X) which is the mild solution of system (1.1). �

3.2 Approximate controllability

Throughout this section we assume thatX is a Hilbert space. In this section, we formulate and prove
conditions for the approximate controllability of semilinear fractional control differential system
(1.2). To do this, we first prove the existence of a fixed point of the operator Fλ defined below by
using Schauder fixed point theorem. Next, we show that under certain assumptions the approximate
controllability of (1.2) is implied by the approximate controllability of the corresponding linear
system.

Definition 3.8 A function x ∈ C(J,X) is said to be a mild solution of (1.2) if for any u ∈ L2(J,X),
the following integral equation is satisfied

x(t) = e
−β
α
t T (

t

α
)x0 +

1

α
e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

)[f(s, x(s)) +Bu(s)] ds, t ∈ J .

Let xb(x0, u) be the state value of (1.2) at terminal time b corresponding to the control u and
the initial value x0. We introduce the set R(b, x0) = {xb(x0, u) : u ∈ L2(J, U)}, which is called
the reachable set of the system (1.2) at terminal time b, its closure in X is denoted byR(b, x0).
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Definition 3.9 ([4]) The system (1.2) is said to be approximately controllable on J , if R(b, x0) =
X, that is, given any ε > 0, it is possible to steer from the point x0 to within a distance ε from all
points in the state space X at time b.

Consider the following linear fractional differential system corresponding to (1.2)

Dαx(t) = Ax(t) +Bu(t), t ∈ J ,
x(0) = x0 . (3.14)

Definition 3.10 (a) A controllability map for the system (3.14) on J is a bounded linear map Bb :
L2(J, U)→ X which is defined as

Bbu :=
1

α
e
−β
α
b

∫ b

0
e
β
α
s T (

b− s
α

)Bu(s) ds . (3.15)

(b) The system (3.14) is called approximately controllable on J , if

ranBb = X .

(c) The controllability gramian of (3.14) on J is defined by

Γb0 := Bb(Bb)∗ . (3.16)

Lemma 3.11 The controllability map and controllability gramian satisfy the following:

(a) (Bb)∗x(s) = B∗T ∗( b−sα )x , for s ∈ J, x ∈ X .

(b) Γb0 ∈ L(X), is symmetric, and has the representation

Γb0 =
1

α
e
−β
α
b

∫ b

0
e
β
α
s T (

b− s
α

)BB∗ T ∗(
b− s
α

) ds, (3.17)

and Γb0 > 0, where B∗ and T ∗(t) denote the adjoint of B and T (t) respectively.

Proof. (a) : The way of proof is based on [3] (Lemma 4.1.4, page 144). For x ∈ X and u ∈
L2(J, U),

〈u, (Bb)∗x〉 = 〈Bbu, x〉

= 〈 1
α
e
−β
α
b

∫ b

0
e
β
α
s T (

b− s
α

)Bu(s) ds, x〉

=
1

α
e
−β
α
b

∫ b

0
〈e

β
α
s T (

b− s
α

)Bu(s), x〉ds

=
1

α
e
−β
α
b

∫ b

0
e
β
α
s 〈u(s), B∗ T ∗(

b− s
α

)x〉 ds ,

and this proves (a).

(b) : From (3.16), it is easy to see Γb0 is symmetric, and Γb0 > 0. Equation (3.17) follows easily
from (3.15), (3.16) and (a). �
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Theorem 3.12 ([3]) The system (3.14) is approximately controllable on J if and only if any one of
the following conditions hold:

(i) Γb0 is a positive operator, that is 〈Γb0x, x〉 > 0 for all 0 6= x ∈ X .

(ii) ker(Bb)∗ = {0}.

(iii) B∗ T ∗( b−tα )x = 0 on J =⇒ x = 0.

Theorem 3.13 ([4]) Let Z be a separable reflexive Banach space and let Z∗ stand for its dual
space. Assume that Γ : Z∗ → Z is a symmetric map, then the following are equivalent:

(i) Γ : Z∗ → Z is positive.

(ii) For all z ∈ Z, λ(λI + ΓJ)−1(z) strongly converges to zero as λ → 0+. Here J is the duality
map from Z → Z∗.

Lemma 3.14 The linear fractional control system (3.14) is approximately controllable on J if and
only if λR(λ,Γb0)→ 0 as λ→ 0+ in strong operator topology, where R(λ,Γb0) = (λI + Γb0)

−1.

Proof. The lemma is straightforward consequence of Theorem 3.12 and Theorem 3.13. �

To investigate the approximate controllability of (1.2), we impose the following assumptions:

(H1) A is an infinitesimal generator of a C0-semigroup of bounded linear operators T (t) (t > 0)
on X , and T (t) (t > 0) is compact.

(H2) For each t ∈ J , the function f(t, ·) : X → X is continuous, and for all x ∈ X , the function
f(·, x) : J → X is Lebesgue measurable.

(H3) There exists a constant α1 ∈ (0, α) and a function φ ∈ L
1
α1 (J,R+) such that

‖f(t, x)‖ 6 φ(t) , ∀x ∈ X ; t ∈ J .

(H4) The linear control system (3.14) is approximately controllable on J .

For convenience we use the following notations:

Ωr = {x ∈ C(J,X) : ‖x‖ 6 r}, for each finite constant r > 0,

MB = ‖B‖, Mφ = ‖φ‖
L

1
α1 (J,R+)

, q =
1

1− α1
, N =

1

α

(
α

q β

) 1
q

Mφ.

For an arbitrary function x ∈ C(J,X), considering the form of a mild solution as defined in
Definition 3.8, as well as the controllability gramian and resolvent operator, we choose the feedback
control function associated with the nonlinear system (1.2) as follows:

u(t) = uλ(t, x) = B∗ T ∗(
b− t
α

)R(λ,Γb0) p(x), (3.18)
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where

p(x) = xb − e
−β
α
b T (

b

α
)x0 −

1

α
e
−β
α
b

∫ b

0
e
β
α
s T (

b− s
α

) f(s, x(s)) ds. (3.19)

For any λ > 0, we define the operator Fλ : C(J,X)→ C(J,X) as follows:

(Fλx)(t) = e
−β
α
t T (

t

α
)x0 +

1

α
e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

)[f(s, x(s)) +Buλ(s, x)] ds . (3.20)

Lemma 3.15 If the assumptions (H1)− (H3) hold, then for any t ∈ J we have

(i) 1
α e

−β
α
t
∫ t
0 e

β
α
s ‖T ( t−sα ) f(s, x(s))‖ ds 6 MN .

(ii) ‖uλ(t, x)‖ 6 MMB
λ

[
‖xb‖+M(‖x0‖+N)

]
.

Proof. (i): By using Hölder inequality and (H3), we have

1

α
e
−β
α
t

∫ t

0
e
β
α
s ‖T (

t− s
α

) f(s, x(s))‖ds 6
M

α
e
−β
α
t

∫ t

0
e
β
α
sφ(s) ds

6
M

α
e
−β
α
t

(∫ t

0
e
qβs
α ds

) 1
q

‖φ‖
L

1
α1 (J,R+)

6
1

α

(
α

qβ

) 1
q

e
−β
α
t ([e

qβ T
α − 1])

1
q MMφ

6
1

α

(
α

qβ

) 1
q

e
−β
α
t e

β
α
tMMφ

6
1

α

(
α

qβ

) 1
q

MMφ = M N .

(ii): Using (3.18), (3.19), and (i), we obtain

‖uλ(t, x)‖ 6 ‖B∗T ∗(b− t
α

)R(λ,Γb0)p(x)‖

6
MMB

λ
‖p(x)‖

6
MMB

λ

[
‖xb‖+M‖x0‖+

1

α
e
−β
α
b

∫ b

0
e
β
α
s ‖T (

b− s
α

) f(s, x(s))‖ds

]
6
MMB

λ

[
‖xb‖+M(‖x0‖+N)

]
.

�

Theorem 3.16 If the assumptions (H1)-(H3) hold, then the fractional semilinear control system
(1.2) has a mild solution.
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Proof. To prove the fractional semilinear control system (1.2) has a mild solution, we need to prove
Fλ has a fixed point. For convenience we divide the proof into the following steps:

Step I: For any λ > 0, there exists a constant R = R(λ) > 0, such that Fλ(ΩR) ⊂ ΩR. For
any positive constant r and x ∈ Ωr, if t ∈ J , then by using Lemma 3.15, we have

‖(Fλx)(t)‖ 6 e
−β
α
t‖T (

t

α
)x0‖+

1

α
e
−β
α
t

∫ t

0
e
β
α
s ‖T (

t− s
α

) [f(s, x(s)) +Buλ(s, x)]‖ds

6M‖x0‖+
1

α
e
−β
α
t

∫ t

0
e
β
α
s ‖T (

t− s
α

) f(s, x(s))‖ ds

+
1

α
e
−β
α
t

∫ t

0
e
β
α
s ‖T (

t− s
α

)Buλ(s, x)‖ ds

6M‖x0‖+MN +
1

β
MMBe

−β
α
t[e

β
α
t − 1]‖uλ‖

6M(‖x0‖+N) +
M2(MB)2

λβ

[
‖xb‖+M(‖x0‖+N)

]
.

This implies that for large enough R > 0, Fλ(ΩR) ⊂ ΩR holds.

Step II: For any t ∈ J , the set {(Fλx)(t) : x ∈ ΩR} is relatively compact in X . In the case
t = 0, clearly {(Fλx)(0) : x ∈ ΩR} = {x0} is compact in X . Let 0 < t 6 b be fixed and let ε be a
real number satisfying 0 < ε < t. For x ∈ ΩR, we define

(F ελx)(t) = e
−β
α
t T (

t

α
)x0 +

1

α
e
−β
α
t

∫ t−ε

0
e
β
α
s T (

t− s
α

) [f(s, x(s)) +Buλ(s, x)] ds

= e
−β
α
t T (

t

α
)x0 +

1

α
e
−β
α
t T (

ε

α
)

∫ t−ε

0
e
β
α
s T (

t− s− ε
α

) [f(s, x(s)) +Buλ(s, x)] ds

= e
−β
α
t T (

t

α
)x0 +

1

α
e
−β
α
t T (

ε

α
) y(t, ε),

since T (t) is compact for t > 0 and y(t, ε) is bounded on ΩR, we obtain that the set {(F ελx)(t) :
x ∈ ΩR} is relatively compact in X . On the other hand

‖(Fλx)(t)− (F ελx)(t)‖ = ‖ 1α e
−β
α
t
∫ t
t−ε e

β
α
s T ( t−sα ) [f(s, x(s)) +Buλ(s, x)] ds‖
6 I1 + I2, (3.21)

where

I1 = ‖ 1

α
e
−β
α
t

∫ t

t−ε
e
β
α
s T (

t− s
α

) f(s, x(s)) ds‖,

I2 = ‖ 1

α
e
−β
α
t

∫ t

t−ε
e
β
α
s T (

t− s
α

)Buλ(s, x) ds‖.

Now, proceeding in the same way as Lemma 3.15 yields

I1 6MN [e
βq
α
t − e

βq
α
(t−ε)]

1
q , (3.22)

I2 6
M2(MB)2

λβ

[
‖xb‖+M(‖x0‖+N)

]
[e
β
α
t − e

β
α
(t−ε)] . (3.23)
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Therefore, by (3.21), (3.22) and (3.23), we conclude that

‖(Fλx)(t)− (F ελx)(t)‖ → 0 as ε→ 0 .

This implies that the set {(Fλx)(t) : x ∈ ΩR}, t ∈ (0, b] is relatively compact in X .

Step III: The family of functions {Fλx : x ∈ ΩR} is bounded and equicontinuous on J .
Boundedness is obvious. For any x ∈ ΩR, and 0 6 t1 < t2 6 b, we have

‖(Fλx)(t2)− (Fλx)(t1)‖ 6
∥∥∥∥e−βα t1 [T (

t2
α

)− T (
t1
α

)]x0

∥∥∥∥
+

∥∥∥∥ 1

α
e
−β
α
t2

∫ t2

t1

e
β
α
s T (

t2 − s
α

) f(s, x(s)) ds

∥∥∥∥
+

∥∥∥∥ 1

α
e
−β
α
t2

∫ t2

t1

e
β
α
s T (

t2 − s
α

)Buλ(s, x) ds

∥∥∥∥
+

∥∥∥∥ 1

α
e
−β
α
t1

∫ t1

0
e
β
α
s [T (

t2 − s
α

)− T (
t1 − s
α

)] f(s, x(s)) ds

∥∥∥∥
+

∥∥∥∥ 1

α
e
−β
α
t1

∫ t1

0
e
β
α
s [T (

t2 − s
α

)− T (
t1 − s
α

)]Buλ(s, x) ds

∥∥∥∥
= J1 + J2 + J3 + J4 + J5 .

Now, using Lemma 3.15 we get

J1 6

∥∥∥∥T (
t2
α

)− T (
t1
α

)

∥∥∥∥‖x0‖,
J2 6

MMφ

α

(
α

βq

) 1
q

[e
βq
α
t2 − e

βq
α
t1 ]

1
q ,

J3 6
M2(MB)2

λβ

[
‖xb‖+M(‖x0‖+N)

]
[e
β
α
t2 − e

β
α
t1 ].

For t1 = 0, it is easy to see that J4 = 0. For t1 > 0 and ε > 0 small enough, we obtain

J4 6

∥∥∥∥ 1

α
e
−β
α
t1

∫ t1−ε

0
e
β
α
s [T (

t2 − s
α

)− T (
t1 − s
α

)] f(s, x(s)) ds

∥∥∥∥
+

∥∥∥∥ 1

α
e
−β
α
t1

∫ t1

t1−ε
e
β
α
s [T (

t2 − s
α

)− T (
t1 − s
α

)] f(s, x(s)) ds

∥∥∥∥
6

1

α
e
−β
α
t1

∫ t1−ε

0
e
β
α
sφ(s) ds sup

s∈[0,t1−ε]

∥∥∥∥T (
t2 − s
α

)− T (
t1 − s
α

)

∥∥∥∥
+

2M

α
e
−β
α
t1

∫ t1

t1−ε
e
β
α
sφ(s) ds

6 N e
−β
α
ε sup
s∈[0,t1−ε]

∥∥∥∥T (
t2 − s
α

)− T (
t1 − s
α

)

∥∥∥∥+ 2M N [e
βq
α
t1 − e

βq
α
(t1−ε)]

1
q .

Similarly

J5 6
MB

β
[e
−β
α
ε − e

−β
α
t1 ]‖uλ‖ sup

s∈[0,t1−ε]

∥∥∥∥T (
t2 − s
α

)− T (
t1 − s
α

)

∥∥∥∥
+

2MMB

β
[e
β
α
t1 − e

β
α
(t1−ε)]‖uλ‖ .
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Using (H1), it is clear that Ji → 0 (i = 1, 2, 3, 4, 5) as t2 → t1, ε→ 0. As a result, ‖(Fλx)(t2)−
(Fλx)(t1)‖ → 0 independently of x ∈ ΩR as t2 → t1, which means that Fλ : ΩR → ΩR is
equicontinuous.

Thus, combining Step II and Step III, we conclude that Fλ is compact on ΩR by Arzela-Ascoli
theorem.

Step IV: Fλ is continuous in ΩR. Let {xn} be a sequence in ΩR such that limn→∞ xn = x in
ΩR. By the continuity of nonlinear term f with respect to the second variable, for each s ∈ J , we
have

lim
n→∞

f(s, xn(s)) = f(s, x(s)) . (3.24)

So, we can conclude that

sup
s∈J
‖f(s, xn(s))− f(s, x(s))‖ → 0 as n→∞ . (3.25)

From (3.19) and (3.25), we obtain

‖p(xn)− p(x)‖ =

∥∥∥∥ 1

α
e
−β
α
b

∫ b

0
e
β
α
s T (

b− s
α

) [f(s, xn(s))− f(s, x(s))] ds

∥∥∥∥
6

M

α
e
−β
α
b

(∫ b

0
e
β
α
s ds

)
sup
s∈J
‖f(s, xn(s))− f(s, x(s))‖

6
M

β
[1− e

−β
α
b] sup
s∈J
‖f(s, xn(s))− f(s, x(s))‖

6
M

β
sup
s∈J
‖f(s, xn(s))− f(s, x(s))‖

→ 0 as n→∞ , (3.26)

therefore, (3.18) and (3.26) imply

‖uλ(s, xn)− uλ(s, x)‖ → 0 as n→∞ , (3.27)

and (3.25), (3.27) yield

‖(Fλxn)(t)− (Fλx)(t)‖ 6
M

α
e
−β
α
t

∫ t

0
e
β
α
s ‖f(s, xn(s))− f(s, x(s))‖ds

+
MMB

α
e
−β
α
t

∫ t

0
e
β
α
s ‖uλ(s, xn(s))− uλ(s, x(s))‖ ds

6
M

β
sup
s∈J
‖f(s, xn(s))− f(s, x(s))‖

+
MMB

β
sup
s∈J
‖uλ(s, xn(s))− uλ(s, x(s))‖

→ 0 as n→∞ , (3.28)

which means that Fλ is continuous in ΩR.

Hence by Theorem 2.8, Fλ has a fixed point, which is a mild solution of (1.2). �

Theorem 3.17 Assume that the hypotheses (H1)-(H4) hold. Moreover, assume that the function
f is uniformly bounded by a positive constant K, then the semilinear fractional system (1.2) is
approximately controllable on J .
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Proof. Let xλ be a fixed point of Fλ in ΩR. Any fixed point of Fλ is a mild solution of the problem
(1.2) under the control

uλ(t, xλ) = B∗ T ∗(
b− t
α

)R(λ,Γb0) p(xλ) ,

where

p(xλ) = xb − e
−β
α
b T (

b

α
)x0 −

1

α
e
−β
α
b

∫ b

0
e
β
α
s T (

b− s
α

) f(s, xλ(s)) ds ,

and satisfies the following equality

xλ(b) = e
−β
α
b T (

b

α
)x0 +

1

α
e
−β
α
b

∫ b

0
e
β
α
s T (

b− s
α

) [f(s, xλ(s)) +Buλ(s, xλ)] ds

= xb − p(xλ) +

(
1

α
e
−β
α
b

∫ b

0
e
β
α
s T (

b− s
α

)BB∗ T ∗(
b− s
α

) ds

)
R(λ,Γb0) p(xλ)

= xb − p(xλ) + Γb0R(λ,Γb0) p(xλ)

= xb − λR(λ,Γb0) p(xλ) . (3.29)

By the assumption that f is uniformly bounded, we have∫ b

0
‖f(s, xλ(s))‖2 ds 6 K2 b .

Hence the sequence f(·, xλ(·)) is bounded in L2(J,X). Then there exists a subsequence of
{f(·, xλ(·)) : λ > 0}, still denoted by it, converges weakly to some f(·) ∈ L2(J,X). Define

ω = xb − e
−β
α
b T (

b

α
)x0 −

1

α
e
−β
α
b

∫ b

0
e
β
α
s T (

b− s
α

) f(s) ds .

It follows that

‖p(xλ)− ω‖ =

∥∥∥∥ 1

α
e
−β
α
b

∫ b

0
e
β
α
s T (

b− s
α

)[f(s, xλ(s))− f(s)] ds

∥∥∥∥
6 sup

t∈J

∥∥∥∥ 1

α
e
−β
α
t

∫ t

0
e
β
α
s T (

t− s
α

)[f(s, xλ(s))− f(s)] ds

∥∥∥∥ .
As in the proof of Theorem 3.16 using Arzela-Ascoli theorem one can show that the operator

L2(J,X)→ C(J,X) ; `(·) 7→ 1

α
e
−β
α

(·)
∫ ·
0
e
β
α
s T (
· − s
α

) `(s) ds

is compact, consequently
‖p(xλ)− ω‖ → 0 as λ→ 0+. (3.30)

Then, from (3.29), (3.30), and Lemma 3.14, we obtain

‖xλ(b)− xb‖ 6 ‖λR(λ,Γb0) p(xλ)‖
6 ‖λR(λ,Γb0)ω‖+ ‖λR(λ,Γb0)‖ ‖p(xλ)− ω‖
6 ‖λR(λ,Γb0)ω‖+ ‖p(xλ)− ω‖ → 0 as λ→ 0+ .

This proves the approximate controllability of (1.2). �
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4 Examples

Example 1: Consider the following deformable fractional partial differential equation,
D

1
2x(t, z) = ∂2

∂z2
x(t, z) + 1

4 sin t |x(t,z)|1+|x(t,z)| , z ∈ (0, 1), t ∈ (0, 1) ;

x(t, 0) = x(t, 1) = 0 , t ∈ [0, 1] ;

x(0, z) = x0(z) , z ∈ [0, 1] ,

(4.1)

where X = L2[0, 1], x0(z) ∈ X . Define Ax = x′′, with

D(A) = {x ∈ X : x, x′ are absolutely continuous and x′′ ∈ X, x(0) = x(1) = 0} .

Then

Ax =
∞∑
n=1

−n2 〈x, en〉 en , x ∈ D(A) , (4.2)

where en(z) =
√

2
π sin(nz), 0 6 z 6 1, n = 1, 2, . . . . It is well known that A generates a

C0-semigroup T (t) (t > 0), on X and is given by

T (t)x =

∞∑
n=1

e−n
2t 〈x, en〉 en , x ∈ X , (4.3)

with ‖T (t)‖ 6 1, for any t > 0. Put x(t) = x(t, ·), that is, x(t)(z) = x(t, z), t, z ∈ [0, 1], and

f(t, x(t)) =
1

4
sin t

|x(t, ·)|
1 + |x(t, ·)|

.

Then the system (4.1) can be rewritten into the abstract form of (1.1).

‖f(t, x)− f(t, y)‖ 6 1

4

‖x− y‖
(1 + ‖x‖)(1 + ‖y‖)

6
1

4
‖x− y‖.

Therefore L = 1
4 , also we have α = β = 1

2 and M = 1. So ML
β = 1

2 < 1. Hence all the required
assumptions for Theorem 3.7 are satisfied, and the system (4.1) has a unique mild solution.

Example (2): Consider the following control system governed by a deformable fractional partial
differential equation

D
1
2x(t, z) = ∂2

∂z2
x(t, z) + u(t, z) + 1

8
e−t

1+et
|x(t,z)|

1+|x(t,z)| , z ∈ (0, 1), t ∈ (0, b] ;

x(t, 0) = x(t, 1) = 0 , t ∈ [0, b] ;

x(0, z) = x0(z) , z ∈ [0, 1] ,

(4.4)

where X = U = L2[0, 1], x0(z) ∈ X, J = [0, b]. Define Ax = x′′ with

D(A) = {x ∈ X : x, x′ are absolutely continuous and x′′ ∈ X, x(0) = x(1) = 0} .

A generates a compact semigroup T (t) (t > 0) given by expression (4.3), clearly assumption (H1)
holds.
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Put x(t) = x(t, ·), that is, x(t)(z) = x(t, z), t ∈ J, z ∈ [0, 1] and u(t) = u(t, ·) is continuous.
Let the bounded linear operator B : U → X be defined as Bu(t) = u(t, ·), then the system (4.4)
can be rewritten into the abstract form of (1.2). It is easy to verify that the assumptions (H2) and
(H3) hold with φ(t) = e−t

1+et and K = 1
8 .

By Theorem 3.12, the linear system corresponding to (4.4) is approximately controllable on J
if and only if

B∗ T ∗(
b− t
α

)x = 0, t ∈ J =⇒ x = 0 . (4.5)

Using (4.3), we observe that

B∗ T ∗(
b− t
α

)x =
∞∑
n=1

e−n
2( b−t

α
) 〈x, en〉 en, x ∈ X, t ∈ J .

Therefore the condition (4.5) holds, and hence the assumption (H4) holds. Thus by Theorem 3.17
the system (4.4) is approximately controllable on J .
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