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Abstract. Many phenomena in mathematical physics and in the theory of dynamical populations
are described by difference equations. The aim of this work is to present a new approach to study
the qualitative properties of solutions for some algebraic difference equations. The technique used
in the paper is based on convergence of series associated with the forcing term. We also consider
the problem of the existence of almost periodic solutions using the compactly characterization of
family associated with the forcing term. For illustration, we provide some applications. Our results
generalize the main results from our previous work [5].
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1 Introduction

Difference equations have many applications in population dynamics. They can be used to describe
the evolution of many phenomena over the course of time.
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In recent years the theory of almost periodic functions has been extensively developed in
connection with problems of differential equations, stability theory, dynamical systems.

The theory of almost periodic functions was introduced by H. Bohr in 1923. The problem of
the existence of almost periodic solutions has been extensively studied in the literature. The theory
of almost periodic functions, as a generalization of periodic ones and their Fourier series, has been
developed by the effort of many mathematicians (see, for example, [1, 2, 7]), and already extends
over a period of over one century. Indeed, the year 1893 is marked by the publication of Poincaré’s
treatise Nouvelles Méthodes de la mécanique Celeste as well as the paper of P. Bohl.

In this work, we consider the problem of the existence of periodic and almost periodic solutions
of linear difference systems using elementary methods. The main goal of the second part of this
work is to conduct the qualitative and quantitative study of the following special difference equation:

x(t+ 1)− x(t) = f(t). (1.1)

The work is motivated by some quantitative and qualitative results for the difference equation
considered in Ait Dads et al. [4, 5], Lancaster [9], Banasiak [6] and Francinou et al. [8].

The paper is organized as follows. Section 2 concerns the existence of almost periodic solutions
of the difference equation (1.1). In Section 3, we consider the compactly characterization of almost
periodic solutions. The second part of Section 3 deals with the characterization of the almost
periodicity of solutions in relation to their Fourier coefficients for the equation (1.1). In Section 4,
we consider the problem of qualitative solution when the second member is pseudo almost periodic
(for more details on this collection of functions we refer the reader to [3]). The last section considers
the qualitative properties of the solution in connection with the forcing term for the more general
difference equation (5.1). To illustrate the work, some examples and counterexamples are given.

2 Almost periodic solutions for special difference equations

2.1 Preliminary results

The translation of f by s is the function Rsf(t) := f(t + s) defined for all t ∈ R. A subset F of
C(R,E) (Cb(R,E)) is said to be translation stable if RsF = {Rsf : f ∈ F} ⊂ F for all s ∈ R. For
a function f : R→ Cm, we define T (f, ε) by

T (f, ε) = {τ ∈ R : |f(t+ τ)− f(t)| < ε for all t ∈ R}.

The following definition is well-known.

Definition 1 A function f ∈ Cb(R,E) is called almost periodic, if for each ε > 0 there exists a
relatively dense set p(ε) in R such that ‖Rτf(t)− f(t)‖ < ε for all t ∈ R and τ ∈ p(ε). By
AP (R,E) we denote the set of all such functions.

In the sequel, we consider only complex-valued functions, so we will assume E = C. For f ∈
AP (R,C) and λ ∈ R, by cλ(f) we denote the mean value of the function defined by t 7→ f(t)e−iλt.
Moreover, we set F = {f ∈ AP (R,C) : cλ(f) = 0 for all λ ∈ 2πZ}.
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2.2 Almost periodic case

Proposition 1 If f ∈ F , then the sequence 1
n+1

∑n
k=0 f(t+ k) is uniformly convergent to 0 on R.

Proof. Let λ ∈ R \ 2πZ. Note that 1
n+1

∑n
k=0 e

iλ(t+k) converges uniformly to 0 on R as∣∣∣∣∣ 1

n+ 1

n∑
k=0

eiλ(t+k)

∣∣∣∣∣ =
∣∣∣∣∣ eiλtn+ 1

· 1− e
i(n+1)λ

1− eiλ

∣∣∣∣∣ ≤ 2

(n+ 1)|1− eiλ|
.

By linearity, we deduce that for P (t) =
∑d

k=1 cke
iλkt with λk ∈ R \ 2πZ, the sequence

1
n+1

∑n
k=0 P (t+ k) converges uniformly to 0 on R.

Let f ∈ F and ε > 0. Then, there exists P (t) =
∑d

k=1 cke
iλkt, where λk ∈ R \ 2πZ, such that

||f − P ||∞ ≤ ε. So,∣∣∣∣∣ 1

n+ 1

n∑
k=0

f(t+ k)

∣∣∣∣∣ ≤ 1

n+ 1

n∑
k=0

||f − P ||∞ +

∣∣∣∣∣ 1

n+ 1

n∑
k=0

P (t+ k)

∣∣∣∣∣
≤ ε+

∣∣∣∣∣ 1

n+ 1

n∑
k=0

P (t+ k)

∣∣∣∣∣.
Thus, 1

n+1

∑n
k=0 f(t+ k) converges uniformly to 0 on R. �

Let f ∈ AP (R,C). We know that if the equation (1.1) admits a solution x ∈ AP (R,C), then
f ∈ F (see [5, Proposition 2.13]). For the reverse, one has the following proposition.

Proposition 2 Let f ∈ F and sn(t) =
∑n

k=0 f(t+k). Then, the equation (1.1) has a solution x ∈ F
if and only if the sequence 1

N+1

∑N
n=0 sn(t) converges uniformly on R. Under these conditions, the

equation (1.1) has a unique solution in F which is given by

x(t) = − lim
N→+∞

1

N + 1

N∑
n=0

sn(t).

Proof. (⇒) Let x be a solution in F for the equation (1.1). Then,

x(t+ n+ 1)− x(t) = sn(t).

It follows that
1

N + 1

N∑
n=0

sn(t) =

[
1

N + 1

N∑
n=0

x(t+ 1 + n)

]
− x(t).

Since x ∈ F , the sequence 1
N+1

∑N
n=0 x(t + 1 + n) converges uniformly to 0. There-

fore, 1
N+1

∑N
n=0 sn(t) converges uniformly to −x. Thus, x is unique and x(t) =

− limN→+∞
1

N+1

∑N
n=0 sn(t).

(⇐) For f ∈ F , set τf(t) = f(t+ 1). Then, cλ(τf) = eiλcλ(f) and τf ∈ F . Since F is a vector
subspace of AP (R,C), we infer that sn =

∑n
k=0 τ

kf ∈ F . It follows that 1
N+1

∑N
n=0 sn ∈ F .

Since F is closed in ‖.‖∞, we have x = − limN→+∞
1

N+1

∑N
n=0 sn ∈ F .
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One has

sn(t+ 1) =
n∑
k=0

f(t+ 1 + k) =
n+1∑
k=1

f(t+ k) = sn+1(t)− f(t).

Then,

− 1

N + 1

N∑
n=0

sn(t+ 1) = f(t)− 1

N + 1

N∑
n=0

sn+1(t) = f(t)− 1

N + 1

N+1∑
n=1

sn(t)

= f(t)− N + 2

N + 1

[
1

N + 2

N+1∑
n=0

sn(t)

]
+

1

N + 1
s0(t).

When N goes to +∞, x(t+ 1) = f(t) + x(t), and thus x is a solution of the equation (1.1). �

Notation 1 By P1 denote the space of continuous functions from R to C which are 1-periodic.

Proposition 3 Let f ∈ AP (R,C). Then, the sequence 1
n+1

∑n
k=0 f(t + k) converges uniformly

on R. Furthermore, the limit L ∈ P1, f − L ∈ F and AP (R,C) = P1 ⊕ F .

Proof. Let λ ∈ R \ 2πZ. Note that 1
n+1

∑n
k=0 e

iλ(t+k) converges uniformly to 0 on R as∣∣∣∣∣ 1

n+ 1

n∑
k=0

eiλ(t+k)

∣∣∣∣∣ =
∣∣∣∣∣ eiλtn+ 1

· 1− e
i(n+1)λ

1− eiλ

∣∣∣∣∣ ≤ 2

(n+ 1)|1− eiλ|
.

If λ ∈ 2πZ, then we simply have 1
n+1

∑n
k=0 e

iλ(t+k) = eiλt for every t ∈ R. By linearity, we
deduce that for P (t) =

∑d
k=1 cke

iλkt, where λk ∈ R, the sequence 1
n+1

∑n
k=0 P (t+ k) converges

uniformly on R. Let f ∈ AP (R,C) and ε > 0. Then, there exists P (t) =
∑d

k=1 cke
iλkt with

λk ∈ R such that ||f − P ||∞ ≤ ε. Since 1
n+1

∑n
k=0 P (t+ k) converges uniformly on R, it satisfies

the Cauchy uniform criterion, namely there is n0 ∈ N such that for all n,m ≥ n0 and any t ∈ R we
have ∣∣∣∣∣ 1

n+ 1

n∑
k=0

P (t+ k)− 1

m+ 1

m∑
k=0

P (t+ k)

∣∣∣∣∣ ≤ ε.
Then, ∣∣∣∣∣ 1

n+ 1

n∑
k=0

f(t+ k)− 1

m+ 1

m∑
k=0

f(t+ k)

∣∣∣∣∣
≤ 2||f − P ||∞ +

∣∣∣∣∣ 1

n+ 1

n∑
k=0

P (t+ k)− 1

m+ 1

m∑
k=0

P (t+ k)

∣∣∣∣∣ ≤ 3ε.

So, 1
n+1

∑n
k=0 f(t + k) satisfies the Cauchy uniform criterion and, since (AP (R,C), ||.||∞) is

complete, this means that 1
n+1

∑n
k=0 f(t+ k) converges uniformly on R.

Let

L(t) = lim
n→+∞

1

n+ 1

n∑
k=0

f(t+ k).
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Note that L is continuous, as the uniform limit of continuous mappings. Moreover, it is 1-periodic,
since

L(t+ 1) = lim
n→+∞

1

n+ 1

n∑
k=0

f(t+ 1 + k)

= lim
n→+∞

1

n+ 1

n+1∑
k=1

f(t+ k)

= lim
n→+∞

1

n+ 1

n+1∑
k=0

f(t+ k) = L(t).

Let λ ∈ 2πZ. Observe that cλ(τf) = eiλcλ(f) = cλ(f). Then, cλ(τkf) = cλ(f), and so

cλ

(
1

n+ 1

n∑
k=0

τkf

)
= cλ(f).

By the continuity of f 7→ cλ(f) with respect to the norm ‖.‖∞ we deduce that when n goes to +∞
we have cλ(L) = cλ(f) for all λ ∈ 2πZ. And we get f −L ∈ F . So, one has AP (R,C) = P1 + F .
Let f ∈ F ∩ P1; in particular, f ∈ P1. Then, cλ(f) = 0 for every λ ∈ R \ 2πZ. But f ∈ F , and so
cλ(f) = 0 for every λ ∈ 2πZ. Thus, cλ(f) = 0 for any λ ∈ R, from which it follows that f = 0.
Consequently, AP (R,C) = P1 ⊕ F . �

Proposition 4 Let f ∈ F and sn(t) =
∑n

k=0 f(t + k). Then, the equation (1.1) has a solution
x ∈ AP (R,C) if and only if 1

N+1

∑N
n=0 sn(t) converges uniformly on R. Under these conditions

the equation (1.1) has a unique solution in F which is given by:

x(t) = − lim
N→+∞

1

N + 1

N∑
n=0

sn(t).

Proof. Let τ : AP (R,C)→ AP (R,C), f 7→ τf . From Proposition 2 we have

(τ − id)(F ) =

{
f ∈ F :

1

N + 1

N∑
n=0

sn converges uniformly on R

}
,

where sn =
∑n

k=0 τ
kf . On the other hand, one has ker(τ − id) = P1, and from Proposition 3 one

has AP (R,C) = P1 ⊕ F . Then, (τ − id)(AP (R,C)) = (τ − id)(F ). It follows that (1.1) has a
solution inAP (R,C) if and only if 1

N+1

∑N
n=0 sn converges uniformly on R, and from Proposition 2

we deduce that

x(t) = − lim
N→+∞

1

N + 1

N∑
n=0

sn(t)

is the unique solution in F . �

Remark 1 Looking at the proof of Proposition 2, we see that if f ∈ AP (R,C) and 1
N+1

∑N
n=0 sn

converges uniformly on R, then

x = − lim
N→+∞

1

N + 1

N∑
n=0

sn

is a solution of the equation (1.1) in AP (R,C), it follows that f ∈ F .
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Conclusion 1

(τ − id)(AP (R,C))

=

{
f ∈ AP (R,C) : 1

N + 1

N∑
n=0

sn converges uniformly on R

}

=

{
f ∈ AP (R,C) : 1

n+ 1

n∑
k=0

(n+ 1− k)τkf converges uniformly on R

}
.

3 Characterization of almost periodic solutions

Now, we give the compactly characterization of the existence of almost periodic solutions.

Lemma 1 Let g : R → C be continuous. Then, g is uniformly continuous on R if and only if the
family t 7→ g(t+ n), n ∈ Z, is uniformly equicontinuous on [0, 1].

Proof. (⇒) Let ε > 0. Then, there exists α > 0 such that for all t, s ∈ R satisfying the condition
|t− s| ≤ α we have |g(t)− g(s)| ≤ ε.

Now, let t, s ∈ [0, 1] be such that |t− s| ≤ α. Then, for any n ∈ Z we have |t+ n− (s+ n)| =
|t− s| ≤ α. Hence, |g(t+ n)− g(s+ n)| ≤ ε, which implies that the family t 7→ g(t+ n), n ∈ Z,
is uniformly equicontinuous on [0, 1].

(⇐) Let ε > 0. Then, there exists α ∈ (0, 1) so that for all u, v ∈ [0, 1] satisfying the condition
|u− v| ≤ α we have supn∈Z |g(u+ n)− g(v + n)| ≤ ε.

Now, let t, s ∈ R be such that |t− s| ≤ α. By the symmetry of the distance, we can assume that
t ≤ s. Let n = E(t). Then, t ∈ [n, n+1], and consequently s ∈ [n, t+α] ⊂ [n, t+1] ⊂ [n, n+2].
Let us consider two cases.

Case 1: s ∈ [n, n + 1]. Then, there exist u, v ∈ [0, 1] such that t = n + u, s = n + v. Since
|u− v| = |t− s| ≤ α, we have |g(u+ n)− g(v + n)| ≤ ε, meaning that |g(t)− g(s)| ≤ ε.

Case 2: s ∈ [n + 1, n + 2]. Then, t and n + 1 are in [n, n + 1] and |n + 1 − t| ≤ |t − s| ≤ α.
Applying the reasoning from Case 1 we have |g(t)− g(n+ 1)| ≤ ε. Similarly, n+ 1 and s are in
[n+ 1, n+ 2] and |n+ 1− s| ≤ |t− s| ≤ α, and so by the above argument |g(n+ 1)− g(s)| ≤ ε.
This gives |g(t)− g(s)| ≤ 2ε. �

In the sequel, for f ∈ AP (R,C) and t ∈ R we set Fn(t) =
∑n

k=0 f(t+ k).

Lemma 2 If the family (Fn)n≥0 is uniformly equicontinuous on [0, 1], then it is uniformly equicon-
tinuous on R; moreover, so is the family

t 7→
n∑
k=1

f(t− k), n ≥ 1.

Proof. For p ∈ N∗ we have Fn(r + p) =
∑n+p

k=p f(r + k), and so

Fn(r + p) = Fn+p(r)− Fp−1(r). (3.1)
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Let ε > 0. Then, there exists α ∈ (0, 1) such that for all s, t ∈ [0, 1] satisfying the condition
|t − s| ≤ α we have supn∈N |Fn(t)− Fn(s)| ≤ ε. Let s, t ∈ R+ be such that |t − s| ≤ α. By
the symmetry of the distance, we can assume that t ≤ s. Let p = E(t). Then, t ∈ [p, p + 1], and
therefore s ∈ [p, t+ α] ⊂ [p, t+ 1] ⊂ [p, p+ 2]. Now, let us consider two cases.

Case 1: s ∈ [p, p + 1]. Then, there exist u, v ∈ [0, 1] such that t = p + u, s = p + v. Since
|u − v| = |t − s| ≤ α, for every n ∈ N we have |Fn(u) − Fn(v)| ≤ ε. Then, by (3.1) one has
|Fn(t)− Fn(s)| = |Fn(p+ u)− Fn(p+ v)| ≤ 2ε.

Case 2: s ∈ [p+1, p+2]. We have then that t and p+1 belong to [p, p+1] and |p+1−t| ≤ |t−s| ≤ α.
Using the first case, one has |Fn(t) − Fn(p + 1)| ≤ 2ε. Similarly, p + 1 and s are in the interval
[p+1, p+2] and |p+1−s| ≤ |t−s| ≤ α, and so using the first case we have |Fn(p+1)−Fn(s)| ≤ 2ε.
Thus, |Fn(t)− Fn(s)| ≤ 4ε.

We conclude that in both cases for s, t ∈ R+, if |t− s| ≤ α, then |Fn(t)−Fn(s)| ≤ 4ε for every
n ∈ N. So, for |h| ≤ α, one has supt∈[α,∞) |Fn(t)−Fn(t+h)| ≤ 4ε. But the map gn which to each
t assigns the value |Fn(t) − Fn(t + h)| is almost periodic, and so gn(R) ⊂ gn([α,∞)) ⊂ [0, 4ε].
Hence, for every t ∈ R, every |h| ≤ α and every n ∈ N we have |Fn(t)− Fn(t+ h)| ≤ 4ε. Further,
for n ≥ 1 one gets∣∣∣∣∣

n∑
k=1

f(t− k)−
n∑
k=1

f(t+ h− k)

∣∣∣∣∣ = |Fn−1(t− n)− Fn−1(t− n+ h)| ≤ 4ε.

Therefore, the family t 7→
∑n

k=1 f(t− k), n ≥ 1, is uniformly equicontinuous on R. �

Proposition 5 Let f ∈ AP (R,C). Then, the equation (1.1) has a solution x in AP (R,C) if and
only if the set {Fn : n ∈ N} is a relatively compact subset of C([0, 1]) endowed with the norm of the
uniform convergence.

Proof. (⇒) Let x ∈ AP (R,C) be a solution of the equation (1.1). In particular, x is bounded, and
therefore by [5, Proposition 2.5] there exists c > 0 such that |Fn(t)| ≤ c for all t ∈ R and all n ∈ N.
On the other hand, one has Fn(t) = x(t + n + 1) − x(t). And as x ∈ AP (R,C), x is uniformly
continuous on R. So, from Lemma 1 the family t 7→ x(t+ n), n ∈ Z, is uniformly equicontinuous
on [0, 1]. Therefore, the family (Fn)n≥0 is equicontinuous on [0, 1]. Thus, by the Ascoli–Arzéla
theorem, we infer that {Fn : n ∈ N} is a relatively compact subset of C([0, 1]) for the sup norm.

(⇐) Assume that {Fn : n ∈ N} is a relatively compact subset of C([0, 1]). In particular, it is
bounded, that is, there exists c > 0 such that ||Fn||∞ ≤ c for all n ∈ N. So, for every t ∈ [0, 1] and
every n ∈ N we have |

∑n
k=0 f(t+ k)| ≤ c.

Let us prove that for every t ∈ R and every n ∈ N we have |
∑n

k=0 f(t+ k)| ≤ 2c. Let t ∈ R+

and p = E(t) ∈ N. Then, there exists u ∈ [0, 1) such that t = p+ u. So,

n∑
k=0

f(t+ k) =

n+p∑
k=p

f(u+ k) =

n+p∑
k=0

f(u+ k)−
p−1∑
k=0

f(u+ k),

and thus |
∑n

k=0 f(t+ k)| ≤ 2c for all t ∈ R+. The map gn which to each t assigns |
∑n

k=0 f(t+ k)|
is almost periodic, so gn(R) ⊂ gn(R+) ⊂ [0, 2c]. This implies that for every t ∈ R and every n ∈ N
we have |

∑n
k=0 f(t+ k)| ≤ 2c. Therefore, the equation (1.1) has a solution x which is bounded
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on R. From [5, Proposition 2.7] it suffices to prove now that x is uniformly continuous on R. By
Lemma 1 it is enough to prove that the family t 7→ x(t+ n), n ∈ Z, is uniformly equicontinuous on
[0, 1], which amounts to prove that the families t 7→ x(t+ n), n ∈ N, and t 7→ x(t− n), n ≥ 1, are
uniformly equicontinuous on [0, 1].

One has x(t+n+1) = Fn(t)+x(t), but as [0, 1] is compact, x is uniformly continuous on [0, 1].
Moreover, (Fn)n≥0 is uniformly equicontinuous on [0, 1]. Hence, so is the family t 7→ x(t + n),
n ∈ N. On the other hand, for n ≥ 1 we have x(t)− x(t− n) =

∑n
k=1 f(t− k), and so it suffices

to apply Lemma 2. �

3.1 Characterization of AP solutions by Fourier coefficients

3.1.1 A generalization of Bessel’s inequality and application

Let g belong to B = Cb(R,C), that is, the space of bounded and continuous functions from R to
C, and let λ ∈ R. When the function r 7→ 1

2r

∫ r
−r e

−iλxg(x) dx has a finite limit as r → +∞, we
denote it by cλ(g), i.e., cλ(g) = limr→+∞

1
2r

∫ r
−r e

−iλxg(x) dx. We have the following result.

Proposition 6 Let g ∈ B and let I = {λ ∈ R : cλ(g) exists}. If I 6= ∅, then the family (cλ(g))λ∈I
is square summable and

∑
λ∈I
|cλ(g)|2 ≤ lim sup

r→+∞

1

2r

∫ r

−r
|g(t)|2 dt.

Proof. Note the fact that g ∈ B implies that 1
2r

∫ r
−r |g(t)|

2 dt ≤ ||g||2∞. Therefore,
lim supr→+∞

1
2r

∫ r
−r |g(t)|

2 dt exists and is finite. Let eλ : R → C be the function defined by
eλ(t) = eiλt. Let J be a finite subset of I and let P =

∑
λ∈J cλ(g)eλ. Then,

|P |2 =
∑
λ,µ∈J

cλ(g)eλcµ(g)eµ =
∑
λ,µ∈J

cλ(g)cµ(g)eλ−µ.

Hence, c0(|P |2) =
∑

λ∈J |cλ(g)|2. On the other hand, one has Pg =
∑

λ∈J cλ(g)eλg, and so
c0(Pg) =

∑
λ∈J |cλ(g)|2. Since |g − P |2 = |g|2 + |P |2 − 2Re(Pg) ≥ 0, we deduce that

2Re(Pg)− |P |2 ≤ |g|2, and thus

2Re

(
1

2r

∫ r

−r
Pg(t) dt

)
− 1

2r

∫ r

−r
|P (t)|2 dt ≤ 1

2r

∫ r

−r
|g(t)|2 dt.

Let L = lim supr→+∞
1
2r

∫ r
−r |g(t)|

2 dt. Then, 2Re(c0(Pg))− c0(|P |2) ≤ L, namely

2
∑
λ∈J
|cλ(g)|2 −

∑
λ∈J
|cλ(g)|2 ≤ L,

from which it follows that
∑

λ∈J |cλ(g)|2 ≤ L. Consequently, (cλ(g))λ∈I is square summable and∑
λ∈I |cλ(g)|2 ≤ L. �
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3.1.2 Application

As an application of the above inequality, we have the following proposition.

Proposition 7 Let f ∈ AP (R,C). If the equation (1.1) admits a solution in B, then the family( cλ(f)
eiλ−1

)
λ∈R\2πZ is square summable.

Proof. Let x a solution in B of the equation (1.1) and let λ ∈ R \ 2πZ. We get

1

2r

∫ r

−r
e−iλxx(t+ 1) dt− 1

2r

∫ r

−r
e−iλtx(t) dt =

1

2r

∫ r

−r
e−iλtf(t)dt

and ∫ r

−r
e−iλtx(t+ 1) dt =

∫ 1+r

1−r
e−iλ(t−1)x(t) dt

= eiλ
(∫ r

−r
e−iλtx(t) dt+

∫ −r
1−r

e−iλtx(t) dt+

∫ 1+r

r
e−iλtx(t) dt

)
.

Then,

(eiλ − 1)
1

2r

∫ r

−r
e−iλtx(t) dt+ εr =

1

2r

∫ r

−r
e−iλtf(t) dt

with

εr =
1

2r
eiλ
[∫ −r

1−r
e−iλtx(t) dt+

∫ 1+r

r
e−iλtx(t) dt

]
.

Since |εr| ≤ 1
r ||x||∞, εr tends to 0 when r tends to +∞. Thus, cλ(x) exists and cλ(x) =

cλ(f)
eiλ−1 .

Now, it remains to apply Proposition 6. �

Example 1 The equation

x(t+ 1)− x(t) =
∞∑
n=2

e2iπn!et

n(lnn)2

does not have a solution in B. In fact, we have

|ei2πen! − 1| = 2| sin(πen!)| = 2

∣∣∣∣sin(π ∞∑
k=n+1

n!

k!

)∣∣∣∣,
because

π
n∑
k=0

n!

k!
∈ πZ and

∞∑
k=n+1

1

k!
∼

n→+∞

1

(n+ 1)!
.

Then,

|ei2πen! − 1| ∼
n→+∞

2π

n
.

This, in turn, implies that ∣∣∣∣ c2πen!(f)ei2πen! − 1

∣∣∣∣2 ∼
n→+∞

1

4π2(lnn)4
,

and the family
(

1
π2(lnn)4

)
n≥2 is not summable. Consequently, the equation has no solution in B.
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An example of an equation (1.1) which has a solution in B, but not in AP (R,C) is shown in the
following proposition.

Proposition 8 Let x : R→ C be the function defined in the following way: for any k ∈ Z and ` ∈ N
we set x(k + 1

` ) = sin(2kπ` ); moreover, on each interval [k + 1
`+1 , k +

1
` ] we define x to be affine.

We also set f(t) = x(t+ 1)− x(t). Then, f ∈ AP (R,C) and x ∈ B \AP (R,C).

Proof. Let ` ∈ N∗ and set sk,` = sin(2kπ` ). For t ∈ [k + 1
`+1 , k +

1
` ] we have

x(t) = `(`+ 1)(k + 1
` − t)sk+1,` + `(`+ 1)(t− k − 1

`+1)sk,`.

It follows that

|x(t)| ≤ max(|sk+1,`|, |sk,`|) ≤
2(|k|+ 1)π

`
.

Then, for
t ∈ (k, k + 1

` ] =
⋃
j≥`

[k + 1
j+1 , k +

1
j ]

there exists j ≥ ` such that

|x(t)| ≤ 2(|k|+ 1)π

j
≤ 2(|k|+ 1)π

`
.

Hence, for every t ∈ (k, k + 1
` ] we have

|x(t)| ≤ 2(|k|+ 1)π

`
.

Therefore, limt→k+ x(t) = 0. Moreover, for every k ∈ Z one has x(k + 1) = sin(2kπ) = 0, which
proves that x is continuous on R. Notice that for t ∈ [k + 1

`+1 , k + 1
` ] one has |x(t)| ≤ 1, from

which it follows that x is bounded on R. One also has x(k + 1
4k )− x(k) = 1. So, x is not uniformly

continuous on R. This implies that x /∈ AP (R,C).

Since x(t+1)− x(t) = f(t), f is affine on [k+ 1
`+1 , k+

1
` ] and f(k+ 1

` ) = sk+1,` − sk,`. For
n ≥ 2, we define fn on R as follows: for every k ∈ Z, fn coincides with f on [k + 1

n , k + 1], fn
is affine on [k, k + 1

n ] and fn(k) = 0. So, we have fn(k + 1) = f(k + 1) = 0. Then, fn is also
continuous on R.

Let us prove that fn is periodic. In fact, let t ∈ R. Then, there exists k ∈ Z such that t ∈ (k, k+1].
If t ∈ [k, k + 1

n ], then
fn(t) = n[sk+1,n − sk,n](t− k),

and as
t+ n! ∈ [k + n!, k + n! + 1

n ],

we have

fn(t+ n!) = n

[
sin

(
2(k + n! + 1)π

n

)
− sin

(
2(k + n!)π

n

)]
(t+ n!− (k + n!)) = fn(t).

If t ∈ [k + 1
n , k + 1], then there exists ` ≤ n− 1 such that t ∈ [k + 1

`+1 , k +
1
` ], and so

fn(t) = f(t) = `(`+ 1)[(k − t+ 1
` )f(k +

1
`+1) + (t− k − 1

`+1)f(k +
1
` )].
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Since ` ≤ n− 1, n! is a common multiple of ` and `+ 1. By the periodicity of the sine function, we
deduce that

f(k + n! + 1
` ) = f(k + 1

` )

and
f(k + n! + 1

`+1) = f(k + 1
`+1).

Then,

fn(t+ n!) = `(`+ 1)[(k + n!− (t+ n!) + 1
` )f(k + n! + 1

`+1)

+ (t+ n!− (k + n!)− 1
`+1)f(k + n! + 1

` )]

= `(`+ 1)[(k − t+ 1
` )f(k +

1
`+1) + (t− k − 1

`+1)f(k +
1
` )] = fn(t).

So, fn is periodic.

To end the proof, it suffices to prove that fn converges uniformly to f. In fact, if t ∈ [k, k + 1
n ],

then
fn(t) = n[sk+1,n − sk,n](t− k).

Hence,

|fn(t)| ≤ |sk+1,n − sk,n| ≤
2π

n
,

and we have
|f(t)| ≤ sup

`≥n
|f(k + 1

` )| ≤ sup
`≥n
|sk+1,` − sk,`| ≤ sup

`≥n

2π

`
≤ 2π

n
.

Then,

|fn(t)− f(t)| ≤
4π

n

As fn coincides with f on [k + 1
n , k + 1], then for every t ∈ R we have

|fn(t)− f(t)| ≤
4π

n
,

from which it follows that fn converges uniformly to f on R. �

4 Ergodic case

Assume that f ∈ PAP0(R,C). We look for the necessary and sufficient conditions on f ensuring
that the equation (1.1) admits a solution in PAP0(R,C).

Definition 2 Let fn ∈ C(R,C). We say that the sequence (fn)n≥0 is weakly convergent if there
exists f ∈ C(R,C) such that limn→+∞

∫ b
a |fn(t)− f(t)|dt = 0 for each [a, b] ⊂ R. The function

f is called the weak limit of (fn)n≥0.

Remark 2 The weak limit f of the sequence (fn)n≥0 is unique. Indeed, let f and g be two weak
limits of (fn)n≥0 and let a ∈ R. Then, for every x ≥ a we have∫ x

a
|f(t)− g(t)|dt ≤

∫ x

a
|fn(t)− f(t)| dt+

∫ x

a
|g(t)− fn(t)| dt→ 0

as n→ +∞, and so
∫ x
a |f(t)− g(t)|dt = 0. By derivation, we deduce that f = g.
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Remark 3 If fn converges weakly to f , then for each [a, b] ⊂ R we have

lim
n→+∞

∫ b

a
fn(t) dt =

∫ b

a
f(t) dt.

The linearity of weak limits follows from the following estimate∫ b

a
|(λfn + µgn)(t)− (λf + µg)(t)| dt ≤ |λ|

∫ b

a
|fn(t)− f(t)| dt+ |µ|

∫ b

a
|gn(t)− g(t)| dt.

If λn is a complex sequence which converges to λ and fn converges weakly to f , then λnfn converges
weakly to λf . In fact,∫ b

a
|λnfn(t)− λf(t)| dt ≤ |λn|

∫ b

a
|fn(t)− f(t)|dt+ |λn − λ|

∫ b

a
|f(t)|dt→ 0 as n→ +∞.

Note also that fn converges weakly to f if and only if
∫ a+1
a |fn(t)− f(t)| dt→ 0 as n→ +∞ for

every a ∈ R.

Proposition 9

(i) Let S belong to PAP0(R,C). Then, the sequence 1
n

∑n
k=1 S(x+ k) converges weakly to 0.

(ii) Let fn, f be continuous on R. Assume that fn converges simply to f and that for each
[a, b] ⊂ R there exists c > 0 such that for every n ∈ N and every x ∈ [a, b] we have
|fn(x)| ≤ c. Then, fn converges weakly to f .

Proof. Part (i) follows from the estimate

lim
n→+∞

∫ a+1

a

∣∣∣∣∣ 1n
n∑
k=1

S(s+ k)

∣∣∣∣∣ ds ≤ lim
n→+∞

1

n

∫ a+1+n

a+1
|S(s)| ds = 0.

Now, we will prove part (ii). For every t ∈ [a, b] and every n ∈ N we have |fn(t)| ≤ c. Then,
for n near +∞, one has |f(t)| ≤ c. Hence, |fn(t)− f(t)| ≤ 2c. So, from the Lebesgue dominated
convergence theorem, we get

∫ b
a |fn(t)− f(t)|dt→ 0 as n→ +∞. �

Proposition 10 Let f ∈ PAP0(R,C) and let us put fn(t) = −
∑n

k=0 f(t+ k). Then, the equation
(1.1) has a solution in PAP0(R,C) if and only if there exists L ∈ PAP0(R,C) such that the
sequence 1

N

∑N
n=1 fn(t) converges weakly to L. Under these conditions L is the unique solution of

(1.1) in PAP0(R,C).

Proof. (⇒) Let x be a solution in PAP0(R,C). Then,

x(t+ n+ 1)− x(t) =
n∑
k=0

f(t+ k) = −fn(t),

from which it follows that

1

N

N∑
n=1

fn(t) = x(t)− 1

N

N∑
n=1

x(t+ 1 + n).
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Thanks to Proposition 9 the sequence 1
N

∑N
n=1 x(t + 1 + n) converges weakly to 0. Hence,

1
N

∑N
n=1 fn converges weakly to x ∈ PAP0(R,C), and so we have the uniqueness of the solution

of (1.1) in PAP0(R,C).

(⇐) Let us put vN = 1
N

∑N
n=1 fn and suppose that it converges weakly to L ∈ PAP0(R,C).

One has

fn(t+ 1) = −
n∑
k=0

f(t+ 1 + k) = −
n+1∑
k=1

f(t+ k) = f(t) + fn+1(t),

and so

vN (t+ 1) =
1

N

N∑
n=1

(f(t) + fn+1(t)) = f(t) +
1

N

N+1∑
n=2

fn(t)

= f(t) +
N + 1

N
· 1

N + 1

(
N∑
n=1

fn(t)− f1(t)

)

= f(t) +
N + 1

N
vN+1(t)−

f1(t)

N
.

By Remark 3 and by taking the weak limit, one has

L(t+ 1) = f(t) + L(t).

Thus, L is a solution of (1.1) in PAP0(R,C). �

Corollary 1 Let f ∈ PAP0(R,C) and let us set fn(t) = −
∑n

k=0 f(t+ k). Assume that f satisfies
one of the following conditions:

(C1) 1
N

∑N
n=1 fn converges uniformly on R, or

(C2) 1
N

∑N
n=1 fn converges simply on R to L ∈ PAP0(R,C) and for each [a, b] ⊂ R there exists

c > 0 such that for every n ∈ N and every t ∈ [a, b] we have |fn(t)| ≤ c.

Then, the equation (1.1) has a unique solution in PAP0(R,C).

Proof. Put vN = 1
N

∑N
n=1 fn. Let us assume (C1). The function f is bounded on R, and so vN

is also bounded on R for every N ≥ 1. Since (vN )N≥1 converges uniformly on R and vN ∈
PAP0(R,C), its limit L belongs to PAP0(R,C) and there exists c > 0 such that for every t ∈ R
and every N ≥ 1 we have |vN (t)| ≤ c. Hence, from Proposition 9 the sequence vN converges
weakly to L.

Now, let us assume that f satisfies (C2). Then, for every t ∈ [a, b] and every N ≥ 1 we have

|vN (t)| ≤
1

N

N∑
n=1

|fn(t)| ≤
1

N

N∑
n=1

c = c.

Hence, from Proposition 9 one deduces that vN converges weakly to L ∈ PAP0(R,C).

So, in both cases to end the proof, it suffices to apply Proposition 10. �
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4.1 Pseudo almost periodic case

Corollary 2 For f ∈ PAP (R,C) the equation (1.1) has a solution x ∈ PAP (R,C) if and only if
the two equations:

x(t+ 1)− x(t) = fap(t) (4.1)

and
x(t+ 1)− x(t) = fe(t) (4.2)

have solutions in AP (R,C) and PAP0(R,C), respectively. In this case the solutions of (1.1) are of
the form x = xap + xe, where xap is a solution of (4.1) and xe is a solution of (4.2).

Proof. The proof is a direct consequence of the fact that PAP (R,C) = AP (R,C)⊕ PAP0(R,C)
and the fact that the spaces AP (R,C) and PAP0(R,C) are stable under the translation operator τ
defined by the formula τf(t) = f(t+ 1). �

5 More general case of equation

In this section, we study the existence of solutions of a more general equation than (1.1); namely, we
are interested in equations of the following form

x(t+ a)− bx(t) = f(t), (5.1)

where (a, b) ∈ R∗ × C∗ and f ∈ B.

Proposition 11 Assume that |b| = 1 and f ∈ AP (R,C). Moreover, let vn(t) =
∑n

k=0
f(t+ka)
bk+1 and

Fa,b =
{
x ∈ AP (R,C) : c 2kπ+arg(b)

a

(x) = 0 for every k ∈ Z
}
.

Then, the equation (5.1) has a solution in AP (R,C) if and only if the Césaro mean of the sequence
vn converges uniformly on R. In this case the equation (5.1) has a unique solution in Fa,b given by

x(t) = − lim
N→+∞

1

N + 1

N∑
n=0

vn(t).

Proof. By the change of variables y(t) = x(at) and ϕ(t) = f(at), the equation (5.1) can be
rewritten in the form y(t+ 1)− by(t) = ϕ(t). There exists θ ∈ R such that b = eiθ. Then, we have
y(t+ 1)− eiθy(t) = ϕ(t). So,

y(t+ 1)

e(t+1)iθ
− y(t)

eitθ
=

ϕ(t)

e(t+1)iθ
,

which is an equation of the form z(t+1)−z(t) = g(t), where z(t) = y(t)
eitθ

and g(t) = ϕ(t)

e(t+1)iθ . Then,
thanks to Proposition 4, this equation has a solution in AP (R,C) if and only if the Césaro mean of
the sequence sn(t) =

∑n
k=0 g(t+ k) converges uniformly on R, and in this case we have a unique

solution in F given by z(t) = − limN→+∞
1

N+1

∑N
n=0 sn(t). Consequently, y(t) = eitθz(t). After
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what x(t) = y( ta) = eit
θ
a z( ta) is also almost periodic as a product of almost periodic functions. We

have

x(t) = eit
θ
a z( ta) = −e

it
θ
a lim
N→+∞

1

N + 1

N∑
n=0

sn(
t
a)

with

sn(
t
a) =

n∑
k=0

g( ta + k) =
n∑
k=0

ϕ( ta + k)

e(
t
a+k+1)iθ

=
n∑
k=0

f(t+ ka)

e(
t
a+k+1)iθ

.

Then,

x(t) = − lim
N→+∞

1

N + 1

N∑
n=0

vn(t),

where

vn(t) =

n∑
k=0

f(t+ ka)

e(k+1)iθ
=

n∑
k=0

f(t+ ka)

bk+1
.

On the other hand,

cλ(x) = lim
r→+∞

1

2r

∫ r

−r
e−iλtx(t) dt

= lim
r→+∞

1

2r

∫ r

−r
e−iλteit

θ
a z( ta) dt

= lim
r→+∞

1

2r

∫ r

−r
e−i(λ−

θ
a
)tz( ta) dt

= lim
r→+∞

1

2(r/a)

∫ r/a

−r/a
e−i(aλ−θ)tz(t) dt

= caλ−θ(z).

Hence, cλ(z) = cλ+θ
a

(x); in particular, c2kπ(z) = c2kπ+θ
a

(x). So, z ∈ F if and only if c2kπ+θ
a

(x) =

0 for every k ∈ Z. Consequently, one has x ∈ Fa,b. �

Proposition 12 If |b| 6= 1, then the equation (5.1) has an unique solution in B defined by

x(t) =


−
∞∑
k=0

1

bk+1
f(t+ ka), if |b| > 1,

∞∑
k=0

bkf(t− ka− a), if |b| < 1.

Moreover, if f ∈ PAP (R,C), then so is x.

Proof. One has x(at+ t)− bx(at) = f(at). If we put y(t) = x(at) and ϕ(t) = f(at), the equation
becomes y(t+ 1)− by(t) = ϕ(t). Let us consider two cases.

Case 1: |b| > 1. We start with showing the uniqueness of solutions. One has

1

bn+1
y(t+ n+ 1)− 1

bn
y(t+ n) =

1

bn+1
ϕ(t+ n).
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Then,
1

bn
y(t+ n)− y(t) =

n−1∑
k=0

1

bk+1
ϕ(t+ k).

And as y is bounded, then when n goes to +∞, we obtain y(t) = −
∑∞

k=0
1

bk+1ϕ(t + k). This
proves the uniqueness of the bounded solution.

Now, let us move to the existence part. Let us put y(t) = −
∑∞

k=0
1

bk+1ϕ(t + k). Since ϕ is
bounded and

∣∣1
b

∣∣ < 1, the series
∑∞

k=0
1

bk+1ϕ(t+ k) converges normally, and thus uniformly on R.
So, y is defined and continuous on R. Moreover, one has

y(t+ 1) = −
∞∑
k=0

1

bk+1
ϕ(t+ 1 + k)

= −
∞∑
k=1

1

bk
ϕ(t+ k)

= ϕ(t)−
∞∑
k=0

1

bk
ϕ(t+ k)

= ϕ(t) + by(t),

from where y(t+ 1)− by(t) = ϕ(t). The boundedness of y follows from the following estimate

|y(t)| ≤
∞∑
k=0

1

|b|k+1
||ϕ||∞ =

|b||ϕ||∞
1− 1

|b|
.

If f ∈ PAP (R,C), then ϕ ∈ PAP (R,C) and since the series defining y converges uniformly,
y is a uniform limit in PAP (R,C), which implies that y ∈ PAP (R,C).

Since y(t) = x(at) and ϕ(t) = f(at), we have

x(t) = y( ta) = −
∞∑
k=0

1

bk+1
ϕ( ta + k),

meaning that

x(t) = −
∞∑
k=0

1

bk+1
f(t+ ka).

Case 2: |b| < 1. One has y(t + 1) − by(t) = ϕ(t). Then, y(t) − 1
by(t + 1) = −1

b ϕ(t). Putting
u(t) = y(−t) and ψ(t) = −1

b ϕ(−t− 1), yields

u(t+ 1)− 1

b
u(t) = y(−t− 1)− 1

b
y(−t) = −1

b
ϕ(−t− 1) = ψ(t)

with |1b | > 1. Then, by Case 1, we have a unique bounded solution which is pseudo almost periodic
if f is pseudo almost periodic and which is given by

u(t) = −
∞∑
k=0

bk+1ψ(t+ k) =

∞∑
k=0

bkϕ(−t− k − 1),
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meaning that

y(t) =
∞∑
k=0

bkϕ(t− k − 1).

Then,

x(t) = y( ta) =

∞∑
k=0

bkϕ( ta − k − 1),

from where

x(t) =
∞∑
k=0

bkf(t− ka− a).

This ends the proof. �
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