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1 Introduction

In this paper, we consider the following n-th order linear-weakly singular Fredholm and Volterra
integro-differential equations at the form

y(n)(t) +
n−1∑
m=0

βm(t)y
(m)(t) = f(t) +

∫ b

a

y(p)(s)

|t− s|α
ds, a ≤ t ≤ b, 0 < α < 1 (1.1)

with initial conditions

y(a) = µ0, y′(a) = µ1, . . . , y(n−1)(a) = µn−1, (1.2)
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and

y(n)(t) +
n−1∑
m=0

βm(t)y
(m)(t) = f(t) +

∫ t

a

y(p)(s)

|t− s|α
ds, a ≤ t ≤ b, 0 < α < 1 (1.3)

with initial conditions

y(a) = µ0, y′(a) = µ1, . . . , y(n−1)(a) = µn−1, (1.4)

where µi(i = 0,1, . . . , n− 1) are real constants; n and p are nonnegative integers and 0 ≤ p ≤ n.

The given functions f(t) and βk(t) (k = 0, 1, . . . , n − 1) in (1.1)–(1.4) are assumed to be at
least continuous on their domain a ≤ t ≤ b.

Moreover, suppose the unknown solution y(t), and its derivative y(n)(t) and the right-hand-side
f(t) are in L2([a, b]).

Finding exact solutions of linear or nonlinear integro-differential equations is usually difficult
to solve analytically since many physical problems are modeled by integral and integro-differential
equations, the numerical solutions of such equations have been thoroughly studied by many au-
thors. The system (1.1)–(1.4) has been studied by different methods including the spline colloca-
tion method [2], piecewise polynomials [5], Haar wavelets [12], the homotopy perturbation method
HPM [9], the wavelet-Galerkin method [14], Taylor polynomials [15], the Tau method [7], the sinc-
collocation method [21], the combined Laplace transform-Adomian decomposition method [19],
and the Adomian’s asymptotic decomposition method [1] to determine exact and approximate solu-
tions. In recent years there has been an increasing interest in Taylor’s series solution of integral and
integro-differential equations.

Taylor’s expansion approach is a powerful technique used to find the approximate solution
to differential, integral and integro-differential equation. Yalcinbas [20], Maleknejad and Mah-
moudi [15], Maleknejad and Arzhang [16], Darania and Ebadian [6], Eke and Jackreece [8] de-
velop interest in Taylor’s series solution of integral and integro-differential systems. These methods
transform the system equation into a matrix equation which corresponds to a system of nonlinear
equations.

In the present work, we develop the Taylor-series expansion method to approximate for solving
weakly singular Volterra and Fredholm integro-differential equations.

The proposed method is a direct method in which we remove the singularity by using Taylor’s
approximation and rewrite the weakly-singular integro-differential Fredholm and Volterra equation
as either a linear differential equation that can be solved using the analytical method or the known
numerical methods.

2 Description of the method

In this section, we discuss two cases:
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2.1 Case 1: Linear Volterra integro-differential equations of n-th order

In this case, our study focuses on a class of linear Volterra integro-differential equations of the
following form

y(n)(t) +

n−1∑
m=0

βm(t)y
(m)(t) = f(t) +

∫ t

a

y(p)(s)

|t− s|α
ds, a ≤ t ≤ b, 0 < α < 1 (2.1)

with initial conditions

y(a) = µ0, y′(a) = µ1, . . . , y(n−1)(a) = µn−1. (2.2)

We use the following Taylor’s approximation of degree n of y(p)(s) about s = t as follows

y(p)(s) ≈ y(p)(t) +
(s− t)

1!
y(p+1)(t) +

(s− t)2

2!
y(p+2)(t) + · · ·+ (s− t)n−p

(n− p)!
y(n)(t) (2.3)

= y(p)(t)− (t− s)
1!

y(p+1)(t) +
(t− s)2

2!
y(p+2)(t) + · · ·+ (−1)n−p (t− s)

n−p

(n− p)!
y(n)(t)

=

n−p∑
m=0

(−1)m (t− s)m

m!
y(p+m)(t). (2.4)

Substituting the approximate relation (2.4) into the right hand side of (2.1) we obtain

y(n)(t) +
n−1∑
m=0

βm(t)y
(m)(t) = f(t) +

∫ t

a

n−p∑
m=0

1

m!

(−1)m

(t− s)α−m
y(p+m)(t) ds, (2.5)

and hence

y(n)(t) +
n−1∑
m=0

βm(t)y
(m)(t) = f(t) +

n−p∑
m=0

(−1)m

m!
y(p+m)(t)

∫ t

a

1

(t− s)α−m
ds. (2.6)

Lemma 2.1 (Cf. [1]) Suppose that m ∈ N∗ such that 0 < α−m < 1. Then

(1) The improper integral
∫ t
a

1
(t−s)α−m ds is convergent;

(2) t 7→
∫ t
a

1
(t−s)α−m ds ∈ L2([a, b]).

Proof. 1) Since (t− s)m−α = 1
(t−s)α−m is absolute continuous on [a, t], and∫ t

a

1

(t− s)α−m
ds = lim

x→t

∫ x

a

1

(t− s)α−m
ds. (2.7)

then by using formula of integration by parts, one has∫ t

a

1

(t− s)α−m
ds = lim

x→t

∫ x

a

1

(t− s)α−m
ds

=
−1

m− α+ 1
lim
x→t

[
(t− s)m−α+1

]x
a
+

1

m− α+ 1
lim
x→t

∫ x

a
(t− s)m−α+1 ds

=
(t− a)m−α+1

m− α+ 1︸ ︷︷ ︸
I

+
1

m− α+ 1

∫ t

a
(t− s)m−α+1 ds︸ ︷︷ ︸
II

. (2.8)
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The continuity of I implies L2([a, b]). On the other hand,

1

m− α+ 1

∫ t

a
(t− s)m−α+1 ds ≤ 1

m− α+ 1

√∫ t

a
(t− s)2(m−α+1) ds < +∞. (2.9)

Thus, II exists. As a result, the improper integral
∫ t
a

1
(t−s)α−m ds is convergent.

Consequently,

t 7→
∫ t

a

1

(t− s)α−m
ds ∈ L2([a, b]). (2.10)

�

Theorem 2.2 Consider the linear integro-differential equation (2.1) with initial conditions (2.2).
Then, under the same assumptions as in Lemma 2.1, the problem (2.1)–(2.2) has a unique solution,
such that y(t) is an exact solution of linear differential equation of order n of the form

y(n)(t) +
n−1∑
m=p

Qm(t)y
(m)(t) +

p−1∑
m=0

pm(t)y
(m)(t) = g(t). (2.11)

Indeed, if we substitute equation (2.4) into equation (2.1), we get

y(n)(t) +
n−1∑
m=0

βm(t)y
(m)(t) = f(t) +

n−p∑
m=0

(−1)m

m!
y(p+m)(t)

∫ t

a

1

(t− s)α−m
ds

= f(t) +

n−p−1∑
m=0

(−1)m

m!
y(p+m)(t)

∫ t

a

1

(t− s)α−m
ds

+
(−1)n−p

(n− p)!
y(n)(t)

∫ t

a

1

(t− s)α−n+p
ds, (2.12)

and hence

y(n)(t) +
n−1∑
m=p

βm(t)y
(m)(t) +

p−1∑
m=0

βm(t)y
(m)(t)

= f(t) +

n−p∑
m=0

(−1)m

m!
y(p+m)(t)

∫ t

a

1

(t− s)α−m
ds

= f(t) +

n−1∑
m=p

(−1)(m−p)

(m− p)!
y(m)(t)

∫ t

a

1

(t− s)α−m+p
ds

+
(−1)n−p

(n− p)!
y(n)(t)

∫ t

a

1

(t− s)α−n+p
ds, (2.13)

or equivalently(
1− (−1)n−p

(n− p)!

∫ t

a

1

(t− s)α−n+p
ds

)
y(n)(t)

+
n−1∑
m=p

(
βm(t)−

n−1∑
m=p

(−1)(m−p)

(m− p)!

∫ t

a

1

(t− s)α−m+p
ds

)
y(m)(t) +

p−1∑
m=0

βm(t)y
(m)(t)

= f(t). (2.14)
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The final form is

p(t)y(n)(t) +
n−1∑
m=p

qm(t)y
(m)(t) +

p−1∑
m=0

βm(t)y
(m)(t) = f(t), (2.15)

where

p(t) = 1− (−1)n−p

(n− p)!

∫ t

a

1

(t− s)α−n+p
ds, (2.16)

and

qm(t) = βm(t)−
n−1∑
m=p

(−1)(m−p)

(m− p)!

∫ t

a

1

(t− s)α−m+p
ds. (2.17)

Therefore, equation (2.1) can be approximated by the following n-th order linear differential equa-
tion of the form

y(n)(t) +
n−1∑
m=p

Qm(t)y
(m)(t) +

p−1∑
m=0

pm(t)y
(m)(t) = g(t), (2.18)

where g(t) = f(t)
p(t) and

Qm(t) =
qm(t)

p(t)
, pm(t) =

βm(t)

p(t)
(2.19)

with initial conditions

y(a) = µ0, y′(a) = µ1, . . . , y(n−1)(a) = µn−1. (2.20)

2.2 Case 2: Linear Fredholm integro-differential equations of n-th order

In this case, our study focuses on a class of linear Fredholm integro-differential equations of the
following form

y(n)(t) +

n−1∑
m=0

βm(t)y
(m)(t) = f(t) +

∫ b

a

y(p)(s)

|t− s|α
ds, a ≤ t ≤ b, 0 < α < 1, (2.21)

with initial conditions

y(a) = µ0, y′(a) = µ1, . . . , y(n−1)(a) = µn−1. (2.22)

We use the following Taylor’s approximation of degree n+ 1 of y(p)(s) about s = t:

y(p)(s)

≈ y(p)(t) +
(s− t)

1!
y(p+1)(t) +

(s− t)2

2!
y(p+2)(t) + · · ·+ (s− t)n−p+1

(n− p+ 1)!
y(n+1)(t)

= y(p)(t)− (t− s)
1!

y(p+1)(t) +
(t− s)2

2!
y(p+2)(t) + · · ·+ (−1)n−p+1 (t− s)n−p+1

(n− p+ 1)!
y(n+1)(t)

=

n−p+1∑
m=0

(−1)m (t− s)m

m!
y(p+m)(t). (2.23)
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Substituting the approximate relation (2.23) into the right hand side of (2.21) yields

y(n)(t) +
n−1∑
m=0

βm(t)y
(m)(t) = f(t) +

n−p+1∑
m=0

(−1)m

m!
y(p+m)(t)

∫ b

a
(t− s)m |t− s|−α ds. (2.24)

Lemma 2.3 (Generalized Abel integral equation [3]) Consider the equation

f(t) = β

∫ t

0

g(t)

(t− s)µ
ds+ γ

∫ 1

t

g(t)

(s− t)µ
ds, 0 < µ < 1, (2.25)

where β and γ are constants.
The solution of the equation (2.25), integrable in the interval [0, 1] is derived as

g(t) = −tγ+µ−1 sin
2(πγ)

π2
d

dt

∫ 1

t

ds

(s− t)γ

∫ s

0

t−γh(t)

(s− t)1−γ
dt+

C

t2−γ−µ(1− t)γ
, λ < 0, (2.26)

g(t) = −tµ−1(1−t)γ sin
2(πγ)

π2
d

dt

∫ t

0

ds

(t− s)γ

∫ 1

s

(1− t)−γh(t)
(t− s)1−γ

dt+
C

tγ+1−µ(1− t)1−γ
, λ > 0,

(2.27)
where C is an arbitrary constant. The value of λ is defined by the equation

|λ| = π cot(πγ), (2.28)

for 0 < γ < 1
2 , along with

λ = − aπ

b sin(πµ)
+π cot(πµ), (2.29)

and

h(t) =
t1−µ

b

d

dt

∫ t

0

f(y)

(t− y)1−µ
dy. (2.30)

The relation (2.26) (respectively (2.27)) serves as a new formula (cf. [2]), representing the solution
of the generalized Abel integral equation (2.25).

Theorem 2.4 Consider linear integro-differential equation (2.21) with initial conditions (2.22).
Then, under the same assumptions as in Lemma 2.3, the problem (2.21)–(2.22) has a unique so-
lution, such that y(t) is an exact solution of linear differential equation of order n+ 1 of the form

y(n+1)(t) +

n−1∑
m=p

Qm(t)y
(m)(t) +

p−1∑
m=0

pm(t)y
(m)(t) = g(t). (2.31)

Indeed, if we substitute equation (2.23) into equation (2.21), we get

y(n)(t) +
n−1∑
m=0

βm(t)y
(m)(t) = f(t) +

n−p+1∑
m=0

(−1)m

m!
y(p+m)(t)

∫ b

a
(t− s)m |t− s|−α ds, (2.32)

and therefore, using the decomposition (2.25), we obtain(
1− (−1)n−p+1

(n− p+ 1)!

[∫ t

a
(t− s)n−p−α+1 ds+ (−1)n−p+1

∫ b

t
(s− t)n−p−α+1 ds

])
y(n+1)(t)

+

p−1∑
m=0

βm(t)y
(m)(t) +

n−1∑
m=p

βm(t)y
(m)(t) (2.33)

= f(t) +

n∑
m=p

(−1)(p+m)

(p+m)!
y(m)(t)

[∫ t

a
(t− s)p+m−α ds+ (−1)p+m

∫ b

t
(s− t)p+m−α ds

]
,
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and hence(
1− (−1)n−p+1

(n− p+ 1)!

[∫ t

a
(t− s)n−p−α+1 ds+ (−1)n−p+1

∫ b

t
(s− t)n−p−α+1 ds

])
y(n+1)(t)

+
n∑

m=p

(
βm(t)−

(−1)(p+m)

(p+m)!

[∫ t

a
(t− s)p+m−α ds+ (−1)p+m

∫ b

t
(s− t)p+m−α ds

])
y(m)(t)

+

p−1∑
m=0

βm(t)y
(m)(t)

= f(t), (2.34)

or equivalently

p(t)y(n+1)(t) +

n∑
m=p

qm(t)y
(m)(t) +

p−1∑
m=0

βm(t)y
(m)(t) = f(t), (2.35)

where

p(t) = 1− (−1)n−p+1

(n− p+ 1)!

[∫ t

a
(t− s)n−p−α+1 ds+ (−1)n−p+1

∫ b

t
(s− t)n−p−α+1 ds

]
and

qm(t) = βm(t)−
(−1)(p+m)

(p+m)!

[∫ t

a
(t− s)p+m−α ds+ (−1)p+m

∫ b

t
(s− t)p+m−α ds

]
. (2.36)

Therefore, equation (2.21) can be approximated by the following n-th order linear differential
equation of the form

y(n+1)(t) +
n∑

m=p

Qm(t)y
(m)(t) +

p−1∑
m=0

pm(t)y
(m)(t) = g(t), (2.37)

where g(t) = f(t)
p(t) and

Qm(t) =
qm(t)

p(t)
, pm(t) =

βm(t)

p(t)
(2.38)

with initial conditions

y(a) = µ0, y′(a) = µ1, . . . , y(n−1)(a) = µn−1, (2.39)

where the initial condition y(n)(a) is obtained directly from the equation (2.37).

3 Examples

We illustrate the procedure of solving equations (1.1)–(1.2) and (1.3)–(1.4), which determines the
solution of linear weakly-singular Volterra and Fredholm integro-differential equations, by the fol-
lowing examples.
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Example 3.1 Consider the second order integro-differential equation:

t y′′(t)− (t+ 1) y = f(t) +

∫ t

0

1

|t− s|
1
2

y(s) ds, 0 ≤ t ≤ 1 (3.1)

and
f(t) = (−2

√
t− 2

3 t
3
2 ) et, (3.2)

with the initial conditions y(0) = 1 and y′(0) = 1.

Here the function f is selected such that y(t) = et is the exact solution of problem (3.1).
Then, after substituting equation (2.4) into equation (3.1) with p = 0 and n = 2, we obtain(

1− 2
3 t

3
2

)
y′′ +

(
t− 2

√
t
)
y′ − (t+ 1) y = (−2

√
t− 2

3
t
3
2 ) et, (3.3)

which is a linear differential equation of order 2 with the initial conditions y(0) = 1 and y′(0) = 1.

The exact solution of this equation is y(t) = et.

Example 3.2 Consider the third order integro-differential equation:

y(3)(t) = f(t) +

∫ t

0

1

|t− s|
1
3

y(s) ds, 0 ≤ t ≤ 1 (3.4)

and
f(t) = 6− 243

440 t
11
3 , (3.5)

with the initial conditions y(0) = 0, y′(0) = 0 and y′′(0) = 0.
Here the function f is chosen such that y(t) = t3 is the exact solution of problem (3.4).
Then, after substituting equation (2.4) into equation (3.4) with p = 0 and n = 3, we obtain(

1 + 1
22 t

11
3

)
y(3)(t)− 3

16 t
8
3 y′′(t)− 3

5 t
5
3 y′(t)− 3

2 t
2
3 y(t) = f(t), (3.6)

which is a linear differential equation of order 3 with the initial conditions y(0) = y′(0) = y′′(0)
= 0. The exact solution of this equation is y(t) = t3.

Example 3.3 Consider the first order linear integro-differential equation:

y′(t) = f(t) +

∫ 1

0

1

|t− s|
1
2

y(s) ds, 0 ≤ t ≤ 1 (3.7)

with the initial condition y(0) = 0, and

f(t) = 2t− 16

15
t2
√
t− 2

15

√
1− t

(
8t2 + 4t+ 3

)
. (3.8)

Here the function f is chosen such that y(t) = t2 is the exact solution of problem (3.7).

Then, after substituting equation (3.7) into equation (2.34) with p = 0 and n = 1, we obtain

1

5

[
t2
√
t+ (1− t)2

√
1− t

]
y′′+

[
1 +

2

3
t
√
t− 2

3
(1− t)

√
1− t

]
y′+2

[√
t+
√
1− t

]
y = f(t),

(3.9)
which is a linear differential equation of order 2 with initial conditions y(0) = y′(0) = 0.

The exact solution of this equation is y(t) = t2.
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Example 3.4 Consider the second order linear integro-differential equation:

y′′(t) + (t+ 1)y′(t) = f(t) +

∫ 1

0

ts

|t− s|
1
3

y(s) ds, 0 ≤ t ≤ 1 (3.10)

with initial conditions y(0) = 1, y′(0) = 0, and

f(t) = 2t2 +2t+2− t ( 9
440 t

5
3 (27 t2 +44) + 3

440(1− t)
2
3 (81 t3 +54 t2 +177 t+128)). (3.11)

Here the function f is chosen such that y(t) = t2 + 1 is the exact solution of problem (3.10).

Then, after substituting equation (3.10) into equation (2.34) with p = 0 and n = 2, we obtain

− t
6
y(3)(t) +

[
1− 1

2
t

(
9

88
t
11
3 +

3

88
(1− t)

8
3 (3 t+ 8)

)]
y′′(t)

+

[
t+ 1− 3

40
t
(
−3t

8
3 + (1− t)

5
3 (3 t+ 5)

)]
y′(t)

+

[
− 3

10
t
(
3 t

5
3 + (1− t)

2
3 (3t+ 2)

)]
y(t) = f(t), (3.12)

which is a linear differential equation of order 3 with initial conditions y(0) = 1, y′(0) = 0,
y′′(0) = 2. The exact solution of this equation is y(t) = t2 + 1.

4 Conclusion

We have reduced the solution of a class of linear weakly-singular Volterra and Fredholm integro-
differential equations to the one of ordinary differential equations by removing the singularity using
an appropriate Taylor’s approximation. We have demonstrated that the solution of these ordinary
differential equations, is exactly the solution of the original weakly-singular Volterra and Fredholm
integro-differential equations proposed.

We have considered several distinct examples to illustrate our new approach and have verified
our solutions.
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