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Abstract. We prove the existence and uniqueness of solutions for the following class of semilinear
evolution equations with impulses and delays:

z′ = −Az + F (t, zt), z ∈ Z, t ∈ (0, τ ], t 6= tk,

z(s) = φ(s), s ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(z(tk)), k = 1, 2, 3, . . . , p,

where 0 < t1 < t2 < t3 < · · · < tp < τ , Z is a Banach space, zt is defined as a function from
[−r, 0] to Z by zt(s) = z(t+ s), −r ≤ s ≤ 0, and Jk : Zα → Zα, F : [0, τ ]× C(−r, 0;Zα)→ Z.
In the above problem, A : D(A) ⊂ Z → Z is a sectorial operator in Z with −A being the generator
of a strongly continuous compact semigroup {T (t)}t≥0, and Zα = D(Aα). The novelty of this work
is that our class of evolution equations contains nonlinear terms that involve spatial derivatives. Our
framework includes several important partial differential equations such as the Burgers equation with
impulses and delays.
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1 Introduction

In the context of semilinear evolution equations in function spaces, difficulties arise when the
nonlinear term consists of a composition operator, usually called Nemytskii’s operator, which almost
never maps a function space into itself unless the generator is affine. For example, the composition
of two functions of L2(Ω) does not necessarily belong to L2(Ω).

This work was motivated primarily by the Burgers equation, which involves a nonlinear term with
spatial derivatives. This greatly complicates the problem when one tries to study the approximate
controllability of this equation on a fixed interval [0, τ ], because for each control we need to have a
corresponding solution defined on the same fixed time interval. To address this problem we must
use the fact that the Laplacian operator generates an analytic semigroup which is compact, and use
the fractional power spaces to formulate the problem as an abstract evolution equation in a suitable
Hilbert space. The fundamental problem is that the composition operator associated to the nonlinear
term is well-defined only from adequate fractional power spaces to the L2(Ω) space. We spent a
lot of time looking for good results that can be applied to the Burgers equations with impulses and
delays, but we did not find any. In fact, the presented examples do not involve nonlinear terms
with spatial derivatives. Therefore, the novelty of this work lies in the fact that we allow nonlinear
terms involving spatial derivative and we use fractional power spaces and the Karakostas fixed point
theorem [7]. Moreover, our technique can be applied to other equations like the Navier–Stokes
equation.

In this regards we study the existence and uniqueness of solutions for the following semilinear
evolution equation with impulses and delays

z′ = −Az + F (t, zt), z ∈ Z, t ∈ (0, τ ], t 6= tk,

z(s) = φ(s), s ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jk(z(tk)), k = 1, 2, 3, . . . , p,

(1.1)

where 0 < t1 < t2 < t3 < · · · < tp < τ , and Z is a Banach space. With r > 0 given, let
zt denote the function from [−r, 0] to Z defined by zt(s) = z(t + s), −r ≤ s ≤ 0. Moreover,
Zα := D(Aα), Jk : Zα → Zα and F : [0, τ ] × C(−r, 0;Zα) → Z are smooth functions, and
A : D(A) ⊂ Z → Z is a sectorial operator in Z, and −A generates a strongly continuous compact
semigroup {T (t)}t≥0 ⊂ Z.

There are many practical examples of impulsive systems with delays, e.g., chemical reactor
systems, financial systems with two state variables (namely, the amount of money in a market and
the savings rate of a central bank), and the growth of population diffusing in its habitat modelled by
a reaction-diffusion equation. One may easily visualize situations in these examples where abrupt
changes such as disasters, meltdowns and instantaneous shocks may occur. These problems are
modelled by impulsive differential equations, cf. e.g. Lakshmikantham [8] and Samoilenko and
Perestyuk [11].

The existence and asymptotic behaviour of solutions of functional differential equations without
impulses have been studied by S. M. Rankin III in [10] using fractional power spaces. The existence
of solutions for impulsive abstract partial differential equations with state dependent delay has been
studied by E. Hernandez, M. Pierri and G. Goncalves [6] without using fractional power spaces,
since the nonlinear term does not involve spatial derivative. Likewise, the existence of solutions for
semilinear differential evolution equations with impulses and delay has been studied by N. Abada,
M. Benchohra and H. Hammouche in [1] and by N. Abada and M. Benchohra in [1] without using
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fractional power spaces. The existence and stability properties of partial functional differential
equations have been studied by C. C. Travis and G. F. Webb in [14]. On the other hand, the existence
and the asymptotic behaviour of a functional differential equations without impulses have been
studied by S. M. Rankin III in [10] using fractional power spaces. The approximate controllability
of semilinear partial neutral functional differential systems has been studied by Xianlong Fu and
Kaidong Mei in [3] using also fractional power spaces. In the latter work, since the nonlinear terms
involve spatial derivative, spaces of fractional exponents are used.

Our results will be applied to the following impulsive semilinear Burgers equation with impulses
and delays 

∂z(t, x)

∂t
= νzxx(t, x)− z(t− r, x)zx(t− r, x) + f(t, z(t− r)),

z(t, 0) = z(t, 1) = 0, t ∈ [0, τ ],

z(s, x) = φ(s, x), s ∈ [−r, 0], x ∈ [0, 1],

z(t+k , x) = z(t−k , x) + Jk(z(tk, x)), x ∈ Ω, k = 1, 2, 3, . . . , p,

(1.2)

where φ ∈ C([−r, 0];H1
0 ) = C([−r, 0];Z1/2) with Z = L2[0, 1], Z1/2 = D((−∆)1/2), and the

functions f, Jk are globally Lipschitz.

The following Burgers equation with delay
∂z(t, x)

∂t
= νzxx(t, x)− z(t, x)zx(t− r, x),

z(t, 0) = z(t, 1) = 0, t ∈ [0, τ ],

z(s, x) = φ(s, x), s ∈ [−r, 0], x ∈ [0, 1],

(1.3)

has been studied by Weijiu Liu in [9], Yanbin Tang and Ming Wang in [12] and Yanbin Tang in [13],
where the existence and uniqueness of global solutions has been proved.

2 Preliminaries

Throughout this paper, the operator A : D(A) ⊂ Z → Z is sectorial and −A is the infinitesimal
generator of a compact analytic semigroup of uniformly bounded linear operators {T (t)}t≥0 ⊂ Z,
with 0 ∈ ρ(A). Therefore, fractional power operators Aα, 0 < α ≤ 1, are well-defined. Since Aα is
a closed operator, its domain D(Aα) is a Banach space endowed with the graph norm

‖z‖α = ‖Aαz‖, z ∈ D(Aα).

This Banach space is denoted by Zα = D(Aα) and is dense in Z. Moreover, for 0 < β < α ≤ 1 the
embedding Zα ↪→ Zβ is compact whenever the resolvent operator of A is compact.

For the semigroup the following properties will be used: there are constants η > 0, M ≥ 1,
Mα ≥ 0 and C1−α such that

‖T (t)‖ ≤M, t ≥ 0, (2.1)

‖AαT (t)‖ ≤ Mα

tα
e−ηt, t > 0, (2.2)
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AαT (t)z = T (t)Aαz, ∀z ∈ Zα, (2.3)

‖(T (t)− I)z‖ ≤ C1−α
α

tα‖Aαz‖, t > 0, ∀z ∈ Zα. (2.4)

For more properties of sectorial operators and strongly continuous semigroups we refer the reader to
the book by D. Henry [5] and the book by Jerome A. Goldstein [4].

The functions Jk : Zα → Zα are continuous and the function F : [0,∞)×Dα → Z is smooth,
where the set Dα denotes the space

Dα = {φ : [−r, 0]→ Zα : φ is continuous}

endowed with the norm
‖φ‖d = sup

−r≤s≤0
‖φ(s)‖α.

A natural space to work with evolution equations with delay and impulses is the following Banach
space: with the notation J := [−r, τ ] and J ′ = [−r, τ ]\{t1, t2, . . . , tp}, define

PCα = PC(J ;Zα)

:= {z : J → Zα : z ∈ C(J ′;Zα) : ∀k = 1, 2, . . . , p, z(t+k ), z(t−k ) exist, and z(tk) = z(t−k )}

endowed with the norm
‖z‖ = sup

t∈[−r,τ ]
‖z(t)‖α.

For a function y ∈ PC([−r, τ ];Zα) and i = 1, 2, . . . , p, we define the function ỹi ∈
C([ti, ti+1];Z

α) by the formula

ỹi(t) =

{
y(t) for t ∈ (ti, ti+1],

y(t+i ) for t = ti.
(2.5)

For W ⊂ PC([−r, τ ];Zα) and i = 1, 2, . . . , p, we define W̃i = {ỹi : y ∈ W}. Following the
classical Arzelà–Ascoli theorem one gets a characterization of compactness in PC([−r, τ ];Zα).

Lemma 1 A set W ⊂ PC([−r, τ ];Zα) is relatively compact in PC([−r, τ ];Zα) if and only if each
set W̃i, i = 1, 2, . . . , p, with t0 = 0 and tp+1 = τ , is relatively compact in C([ti, ti+1];Z

α).

Theorem 1 (G. L. Karakostas [7]) Let Z and Y be Banach spaces and let D be a closed convex
subset of Z. Moreover, let B : D → Y be a continuous operator such that B(D) is a precompact
subset of Y , and let

T : D × B(D)→ D (2.6)

be a continuous operator such that the family {T (·, y) : y ∈ B(D)} is equicontractive. Then the
operator equation

T (z,B(z)) = z (2.7)

admits a solution in D.
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Lemma 2 (Generalized Gronwall–Bellman inequality [8, 11]) Let a non-negative function z ∈
PC([−r,∞);R) satisfy for t ≥ t0 the inequality

z(t) ≤ C +

∫ t

t0

v(s)z(s) ds+
∑

t0<tk<t

βku(tk),

where C ≥ 0, βk ≥ 0, v(s) > 0, and tk’s are the discontinuity points of first type for the function z.
Then we have

z(t) ≤ C
∐

t0<tk<t

(1 + βk)e
∫ t
t0
v(s) ds

.

3 Existences of mild solutions

In this section we shall prove the main result of this work, which concerns the existence of mild
solutions of problem (1.1).

Definition 1 A function z ∈ PCα is said to be a mild solution of problem (1.1) if it satisfies the
integral equation

z(t) = T (t)φ(0) +

∫ t

0
T (t− s)F (s, zs) ds+

∑
0<tk<t

T (t− tk)Jk(z(tk)), t ∈ [0, τ ],

z(t) = φ(t), t ∈ [−r, 0].

(3.1)

Let us consider the following hypotheses.

(H1) There exist constants dk > 0, k = 1, 2, . . . , p, such that

M

p∑
k=1

dk <
1

2
, ‖Jk(y)− Jk(z)‖α ≤ dk‖y − z‖α, y, z ∈ Zα,

where M is as in (2.1).

(H2) The function F : [0, τ ]×Dα → Z satisfies the following conditions:

‖F (t, φ1)− F (t, φ2)‖ ≤ K(‖φ1‖d, ‖φ2‖d)‖φ1 − φ2‖d, φ1, φ2 ∈ Dα,

‖F (t, φ)‖ ≤ Ψ(‖φ‖), φ ∈ Dα,

where K : R+ × R+ → R+ and Ψ: R+ → R+ are continuous and non-decreasing functions
of their arguments.

(H3) Assume that the following relation holds for ρ, τ :

τ1−α

1− α
MαΨ(‖φ̃‖+ ρ) +M

p∑
k=1

dk(‖φ̃|+ ρ) ≤ ρ,

where the function φ̃ is defined as follows:

φ̃(t) =

{
T (t)φ(0), t ∈ [0, τ ],

φ(t), t ∈ [−r, 0].
(3.2)
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(H4) Assume that the following relation holds for ρ, τ :

τ1−α

1− α
MαK(‖φ̃‖d + ρ, ‖φ̃‖d + ρ) +M

p∑
k=1

dk < 1.

Theorem 2 Suppose that (H1)–(H3) hold. Then, problem (1.1) has at least one mild solution on
[−r, τ ].

Proof. We shall transform problem (1.1) into a fixed point problem. Define the following two
operators

T : PC([−r, τ ];Zα)× PC([−r, τ ];Zα)→ PC([−r, τ ];Zα)

and
B : PC([−r, τ ];Zα)→ PC([−r, τ ];Zα)

by

T (z, y)(t) =

y(t) +
∑

0<tk<t

T (t− tk)Jk(z(tk)), t ∈ [0, τ ],

φ(t), t ∈ [−r, 0],

B(y)(t) =

T (t)φ(0) +

∫ t

0
T (t− s)F (s, ys) ds, t ∈ [0, τ ],

φ(t), t ∈ [−r, 0].

The problem of finding the solution of problem (1.1) is reduced to the problem of finding the solution
of the operator equation T (z,B(z)) = z. First, we shall prove that the operator B is compact. After
that, we shall prove that the family {T (·, y) : y ∈ B(D)} is equicontractive, where D is the closed
convex set given by (3.3). So, by applying Theorem 1 we get the result. The proof of this theorem
will be given by claims.

Claim 1: The operator B is continuous. In fact, consider z, y ∈ PC([−r, τ ];Zα) and the following
estimate

‖B(z)(t)− B(y)(t)‖α ≤
∫ t

0
‖AαT (t− s)(F (s, zs)− F (s, ys))‖ ds

≤
∫ t

0

Mα

(t− s)α
‖F (s, zs)− F (s, ys)‖ ds

≤
∫ t

0

Mα

(t− s)α
K(‖zs‖d, ‖ys‖d)‖zs − ys‖d ds

≤Mα
τ1−α

1− α
K(‖z‖, ‖y‖)‖z − y‖.

Therefore,

‖B(z)− B(y)‖ ≤Mα
τ1−α

1− α
K(‖z‖, ‖y‖)‖z − y‖.

So, B is continuous. Moreover, B is locally Lipschitz.
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Claim 2: The operator B maps bounded sets into bounded sets of PC([−r, τ ];Zα). It is enough to
show that for any q > 0 there exists l > 0 such that for each y ∈ Bq = {z ∈ PCα : ‖z‖ ≤ q} we
have ‖By‖ ≤ l. In fact, choose y ∈ Bq; then the following estimate holds

‖B(y)(t)‖α ≤ ‖AαT (t)φ(0)‖+

∫ t

0
‖AαF (s, ys))‖ ds

≤M‖Aαφ(0)‖+

∫ t

0

Mα

(t− s)α
‖F (s, ys)‖ds

≤M‖φ(0)‖α +Mα
τ1−α

1− α
Ψ(‖y||)

≤M‖φ(0)‖α +Mα
τ1−α

1− α
Ψ(q) = l.

Claim 3: The operator B maps bounded sets into equicontinuous sets of PC([−r, τ ];Zα). In
fact, consider Bq as in the foregoing claim. Then we shall prove that the family of functions
B(Bq) is equicontinuous on the interval [−r, τ ]. Clearly, it is sufficient to prove this on (0, τ ]. Let
0 < τ1 < τ2 < τ and consider the following estimate for y ∈ Bq:

‖B(y)(τ2)− B(y)(τ1)‖α ≤ ‖AαT (τ2)φ(0)−AαT (τ1)φ(0)‖

+

∫ τ1−ε

0
‖(AαT (τ2 − s)−AαT (τ1 − s))F (s, ys)‖ ds

+

∫ τ1

τ1−ε
‖(AαT (τ2 − s)−AαT (τ1 − s))F (s, ys)‖ ds

+

∫ τ2

τ1

‖AαT (τ2 − s)F (s, ys)‖ ds

≤ ‖T (τ2)− T (τ1)‖‖φ(0)‖α

+ ‖T (τ2 − τ1 + ε)− T (ε)‖
∫ τ1−ε

0
‖AαT (τ1 − s− ε)F (s, ys)‖ ds

+
MαΨ(‖y||)

1− α
{

(τ2 − τ1 + ε)1−α − (τ2 − τ1)1−α + (ε)1−α
}

+
MαΨ(‖y||)

1− α
(τ2 − τ1)1−α

≤ ‖T (τ2)− T (τ1)‖‖φ(0)‖α

+ ‖T (τ2 − τ1 + ε)− T (ε)‖MαΨ(q)

1− α
(τ1 − ε)1−α

+
MαΨ(q)

1− α
{

(τ2 − τ1 + ε)1−α − (τ2 − τ1)1−α + ε1−α
}

+
MαΨ(q)

1− α
(τ2 − τ1)1−α.

Since T (t) is a compact operator for t > 0, {T (t)}t≥0 is a uniformly continuous semigroup. This
implies that ‖B(y)(τ2)− B(y)(τ1)‖α goes to zero uniformly with respect to y as τ2 − τ1 → 0, and
therefore B(Bq) is equicontinuous.

Claim 4: The set W = {B(y) : y ∈ Bq} is relatively compact in PC([−r, τ ];Zα). To prove this
it is enough to prove that the corresponding sets W̃i are relatively compact in C([ti, ti+1];Z

α) for
i = 0, 1, 2, . . . , p with t0 = 0 and tp+1 = τ . According to the Arzelà–Ascoli theorem in infinite
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dimensional Banach spaces it is sufficient to prove that W̃i(t) = { ˜B(y)i(t) : y ∈ Bq} is relatively
compact in Zα for each t ∈ [ti, ti+1].

In fact, the case t ∈ [−r, 0] is trivial, since W (t) = φ(t). Now, suppose that t ∈ [ti, ti+1]. Then

W̃i(t) = T (t)φ(0) + Ṽi(t),

where

Ṽi(t) =

{
vi(t) =

∫ t

0
T (t− s)F (s, ỹi,s) ds : y ∈ Bq

}
.

It is sufficient to prove that Ṽi(t) is relatively compact in Zα. Observe that for 0 < α < β < 1, we
have the following estimate

‖Aβvi(t)‖ ≤
∫ t

0
‖AβT (t− s)F (s, ỹis)‖ ds

≤
∫ t

0

Mβ

(t− s)β
‖F (s, ỹis)‖ds

≤
MβΨ(q)

1− β
τ1−β,

which implies that {AβṼi(t)} is bounded in Z. On the other hand, we know that A−β : Z → Zα is
a compact operator, since the imbedding Zβ ↪→ Zα is compact. Therefore, {Ṽi(t)} is compact in
Zα, and consequently W = {B(y) : y ∈ Bq} is relatively compact in PC([−r, τ ];Zα). Hence, the
operator B is compact.

Claim 5: The family {T (·, y) : y ∈ B(D)} is equicontractive and the conditions of Theorem 1 are
satisfied for the following closed and convex set

D = D(ρ, τ, φ) = {y ∈ PC([−r, τ ];Zα) : ‖y − φ̃‖ ≤ ρ}, (3.3)

where the function φ̃ is defined as follows:

φ̃(t) =

{
T (t)φ(0), t ∈ [0, τ ],

φ(t), t ∈ [−r, 0].

In fact, for z, x ∈ PC([−r, τ ];Zα) and t ∈ [0, τ ] we have the following estimate:

‖T (z,B(y))(t)− T (x,B(y))(t)‖α ≤
∑

0<tk<t

‖AαT (t− tk)(Jk(z(tk))− Jk(x(tk)))‖

≤M
p∑

k=1

‖Aα(Jk(z(tk))− Jk(x(tk)))‖

≤M
p∑

k=1

dk‖z(tk)− x(tk)‖α

≤M
p∑

k=1

dk‖z − x‖.

Hence,

‖T (z,B(y))− T (x,B(y))‖ ≤
(
M

p∑
k=1

dk

)
‖z − x‖,
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which shows that T (·, y) is a contraction independently of y ∈ B(D), since M
∑p

k=1 dk < 1.

Finally, we shall prove that

T (·,B)D(ρ, τ, φ) ⊂ D(ρ, τ, φ).

In fact, let us consider z ∈ D(ρ, τ, φ) and

T (z,B(z))(t)

=


T (t)φ(0) +

∫ t

0
T (t− s)F (s, zs) ds+

∑
0<tk<t

T (t− tk)Jk(z(tk)), t ∈ [0, τ ],

φ(t), t ∈ [−r, 0].

Therefore,

‖T (z,B(z))(t)− φ̃(t)‖α ≤
∫ t

0
‖AαT (t− s)F (s, zs)‖ds+

∑
0<tk<t

‖AαT (t− tk)Jk(z(tk))‖

≤
∫ t

0

Mα

(t− s)α
‖F (s, zs)‖ ds+M

p∑
k=1

‖Aα(Jk(z(tk))− Jk(0))‖

≤ τ1−α

1− α
MαΨ(‖z||) +M

p∑
k=1

dk‖z(tk)‖α

≤ τ1−α

1− α
MαΨ(‖φ‖d + ρ) +

(
M

p∑
k=1

dk

)
(‖φ‖d + ρ) ≤ ρ.

From the hypothesis (H3) we get that T (·,B)D(ρ, τ, φ) ⊂ D(ρ, τ, φ). Hence, as a consequence
of Theorem 1 it follows that the equation T (z,B(z)) = z has a solution, which is a mild solution of
problem (1.1). �

Theorem 3 In addition to the conditions of Theorem 2, suppose that (H4) holds. Then problem (1.1)
has only one mild solution on [−r, τ ].

Proof. Let z1 and z2 be two solutions of problem (1.1). Then consider the following estimate:

‖z1(t)− z2(t)‖α ≤
∫ t

0
‖AαT (t− s)(F (s, z1s)− F (s, z2s))‖ ds

+
∑

0<tk<t

‖AαT (t− tk)(Jk(z1(tk))− Jk(z2(tk)))‖

≤
∫ t

0

Mα

(t− s)α
‖F (s, z1s)− F (s, z2s)‖ ds

+M

p∑
k=1

‖Aα(Jk(z1(tk))− Jk(z2(tk)))‖

≤ Mατ
1−α

1− α
K(‖z1‖, ‖z2‖)‖z1 − z2‖+M

p∑
k=1

dk‖z1 − z2‖
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≤

(
Mατ

1−α

1− α
K(‖φ‖d + ρ, ‖φ‖d + ρ) +M

p∑
k=1

dk

)
‖z1 − z2‖.

From the hypotheses (H4) we know that Mατ1−α

1−α K(‖φ‖d + ρ, ‖φ‖d + ρ) +M
∑p

k=1 dk < 1, which
implies that z1 = z2. �

Now, we shall consider the following subset D̃α of Zα:

D̃α = {y ∈ Zα : ‖y‖α ≤ q} with q = ‖φ̃‖+ ρ. (3.4)

Therefore, for all z ∈ D we have z(t) ∈ D̃α for −r ≤ t ≤ τ .

Theorem 4 Suppose that the conditions of Theorem 3 hold. If z is a solution of problem (1.1)
on [−r, τ1) and τ1 is maximal, so there is no solution of (1.1) on [−r, τ2) if τ2 > τ1, then either
τ1 = +∞ or else there exists a sequence τn → τ1 as n→∞ such that z(τn)→ ∂D̃α.

Proof. Suppose that τ1 <∞ and z(t) does not enter a neighbourhoodN of D̃α for 0 < τ2 ≤ t < τ1.
Let us take N = D̃α\B, where B is a closed subset of D̃α, and z(t) ∈ B for 0 < τ2 ≤ t < τ1.
We shall prove the existence of z1 ∈ B such that z(t) → z1 in Zα as t → τ−1 , which together
with Theorem 3 would imply that the solution may be extended beyond time τ1, contradicting the
maximality of τ1.

In fact, if we consider 0 < tp < τ2 ≤ τ < t < τ1, then

‖z(t)− z(τ)‖α ≤ ‖AαT (t)φ(0)−AαT (τ)φ(0)‖

+

∫ τ−ε

0
‖(AαT (t− s)−AαT (τ − s))F (s, zs)‖ ds

+

∫ τ

τ−ε
‖(AαT (t− s)−AαT (τ − s))F (s, zs)‖ds

+

∫ t

τ
‖AαT (t− s)F (s, zs)‖ ds

+ ‖T (t− τ + ε)− T (ε)‖
p∑

k=1

‖T (τ − tk − ε)AαJk(z(tk))‖

≤ ‖T (t)− T (τ)‖‖φ(0)‖α

+ ‖T (t− τ + ε)− T (ε)‖
∫ τ−ε

0
‖AαT (τ − s− ε)F (s, zs)‖ ds

+
MαΨ(q)

1− α
{

(t− τ + ε)1−α − (t− τ)1−α + (ε)1−α
}

+
MαΨ(q)

1− α
(t− τ)1−α +M‖T (t− τ + ε)− T (ε)‖

p∑
k=1

‖Jk(z(tk)‖α.

Since T (t) is a compact operator for t > 0, {T (t)}t≥0 is a uniformly continuous semigroup. This
implies that ‖z(t)− z(τ)‖α goes to zero. Therefore, limt→τ1 z(t) = z1 exists in Zα, and since B is
closed, z1 belongs to B. This completes the proof. �
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Corollary 1 Under the conditions of Theorem 3, if the second part of hypothesis (H2) is changed to

‖F (t, φ)‖ ≤ h(t)(1 + ‖φ(0)‖α), φ ∈ Dα,

where h(·) is a continuous function on [−r,∞), then a unique solution of problem (1.1) exists on
[−r,∞).

Proof. We have

‖z(t)‖α ≤M‖φ(0)‖α +

∫ t

0
‖AαT (t− s)F (s, zs)‖ds+

∑
0<tk<t

‖AαT (t− tk)Jk(z(tk))‖

≤M‖φ(0)‖α +

∫ t

0

Mα

(t− s)α
e−η(t−s)‖F (s, zs)‖ ds+M

p∑
k=1

‖Aα(Jk(z(tk))− Jk(0))‖

≤M‖φ(0)‖α +

∫ t

0

Mα

(t− s)α
e−η(t−s)(1 + ‖z(s)‖α) ds+M

p∑
k=1

dk‖z(tk)‖α

≤M‖φ(0)‖α +
Γ(1− α)

η1−α
Mα +

∫ t

0

Mα

(t− s)α
e−η(t−s)‖z(s)‖α ds+M

p∑
k=1

dk‖z(tk)‖α.

Then, applying Lemma 2, we get the following estimate

‖z(t)‖α ≤
(
M‖φ(0)‖α +

Γ(1− α)

η1−α
Mα

) ∐
t0<tk<t

(1 +Mdk)e
Γ(1−α)

η1−α Mα .

This implies that ‖z(t)‖α remains bounded as t→ τ1. Applying Theorem 4 we get the result. �

Theorem 5 Under the conditions of Theorem 2, if z is a solution of problem (1.1) on [−r,∞) with
‖z(t)‖α bounded as t→∞, then {z(t, φ)}t>0 is a compact set in Zα.

Proof. Observe that for 0 < α < β < 1, we have the following estimate for t > tp:

‖Aβz(t)‖ ≤ ‖Aβ−αT (t)Aαφ(0)‖α +

∫ t

0
‖AβT (t− s)F (s, zs)‖ds

+
∑

0<tk<t

‖Aβ−αT (t− tk)AαJk(z(tk))‖

≤
Mβ

tβ−α
‖φ(0)‖α +

∫ t

0

Mβ

(t− s)β
‖F (s, zs)‖ ds

+

p∑
k=1

Mβ

(t− tk)β−α
‖Aα(Jk(z(tk))− Jk(0))‖

≤
Mβ

tβ−α
‖φ(0)‖α +

∫ t

0

Mβ

(t− s)β
‖F (s, zs)‖ ds+

p∑
k=1

Mβ

(t− tk)β−α
dk‖z(tk)‖α

≤
Mβ

tβ−α
‖φ(0)‖α +

t1−β

1− β
MβΨ(‖z||) +

Mβ

(t− tp)β−α
p∑

k=1

dk‖z(tk)‖α,

which implies that {Aβz(t) : t ∈ [−r,∞)} is bounded in Z. On the other hand, we know that
A−β : Z → Zα is a compact operator, since the imbedding Zβ ↪→ Zα is compact. Therefore,
{z(t) : t ∈ [−r,∞)} is compact in Zα. �
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4 Application to the Burgers equation

In this section we shall apply our previous results to the Burgers equation with impulses and
delay (1.2). To this end, we make the following hypotheses. The nonlinear functions f, Jk : R→ R
are smooth enough and there exist constants L > 0, Lk such that

|f(t, z)− f(t, w)| ≤ L|z − w|, t ∈ [0, τ ], z, w ∈ R, (4.1)

|Jk(z)− Jk(w)| ≤ Lk|z − w|, t ∈ [0, τ ], z, w ∈ R, k = 1, 2, . . . , p, (4.2)

|f(t, z, u)| ≤ a(t)|z|+ b(t), t ∈ [0, τ ] and z, u ∈ R, a(·), b(·) ∈ L∞[0, τ ]. (4.3)

Let Ω = [0, 1]. By C we shall denote the space of continuous functions

C = {φ : [−r, 0]→ H1
0 (Ω) = Z1/2 : φ is continuous},

endowed with the norm

‖φ‖ = sup
−r≤s≤0

‖φ(s)‖Z1/2 , and φ(s)(x) = φ(s, x), x ∈ Ω = [0, 1].

Now, we choose a Hilbert space where system (1.2) can be written as an abstract differential equation
(see [2]); to this end, we consider the following notations.

Let us consider the Hilbert space Z = L2(Ω) and 0 < λ1 < λ2 < . . . < λj −→ ∞ the
eigenvalues of the operator Aφ = −νφxx. Then we have the following well-known properties.

(i) There exists a complete orthonormal set {φj} of eigenvectors of A.

(ii) For all z ∈ D(A) we have

Az =
∞∑
j=1

λj〈ξ, φj〉φj =
∞∑
j=1

λjEjz, (4.4)

where 〈·, ·〉 is the inner product in Z and

Ejz = 〈z, φj〉φj . (4.5)

So, {Ej} is a family of complete orthogonal projections in Z and z =
∑∞

j=1Ejz, z ∈ Z.

(iii) −A generates an analytic semigroup {T (t)} given by

T (t)z =
∞∑
j=1

e−λjtEjz and ‖T (t)‖ ≤ e−λ1t, t ≥ 0. (4.6)

Consequently, systems (1.2) can be written as an abstract functional differential equation with
memory in Z: 

z′ = −Az + fe(t, zt(−r)), z ∈ Z, t ≥ 0,

z(s) = φ(s), s ∈ [−r, 0],

z(t+k ) = z(t−k ) + Jek(z(tk)), k = 1, 2, 3, . . . , p,

(4.7)
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where zt ∈ C([−r, 0];Z1/2) is defined by zt(s) = z(t + s), −r ≤ s ≤ 0, and the functions
Jek : Z → Z, fe : [0, τ ]× C → Z are defined for k = 1, 2, . . . , p by

Jek(z)(x) = Jk(z(x)), ∀x ∈ Ω

and
fe(t, φ)(x) = φ(−r, x)φx(−r, x) + f(t, φ(−r, x)), ∀x ∈ Ω.

Proposition 1 The function fe is locally Lipschitz in the second variable. Moreover, the following
estimates hold:

‖fe(t, φ1)− fe(t, φ2)‖ ≤ {‖φ1 − φ2‖C + L}‖φ1 − φ2‖C , (4.8)

‖fe(t, φ)‖ ≤ ‖φ(−r)‖2 + 4‖a‖L∞‖φ(−r)‖+ 4‖b‖L∞
√
µ(Ω)

≤ ‖φ‖2C + 4‖a‖L∞‖φ‖C + 4‖b‖L∞
√
µ(Ω).

(4.9)

Proof. Clearly, the following estimate holds:

‖fe(t, φ)− fe(t, ψ)‖Z ≤ ‖φ(−r)φx(−r)− ψ(−r)ψx(−r)‖Z + L‖φ(−r)− ψ(−r)‖Z . (4.10)

On the other hand,

‖φ(−r)φx(−r)− ψ(−r)ψx(−r)‖Z
≤ ‖φ(−r)[φx(−r)− ψx(−r)]‖Z + ‖[φ(−r)− ψ(−r)]ψx(−r)‖Z
≤ ‖φ(−r)‖L∞‖[φx(−r)− ψx(−r)]‖Z + ‖[φ(−r)− ψ(−r)]‖L∞‖ψx(−r)‖Z .

Then, for all z ∈ Z1/2 = H1
0 (Ω), by the Sobolev theorem and the Poincaré inequality we have

‖z‖2L∞ ≤ 2‖z‖Z‖zx‖Z ≤ ‖z‖2Z + ‖zx‖2Z = ‖z‖2
Z1/2

and

‖φ(−r)φx(−r)− ψ(−r)ψx(−r)‖Z
≤ ‖φ(−r)‖Z1/2‖[φ(−r)− ψ(−r)]‖Z1/2 + ‖[φ(−r)− ψ(−r)]‖Z1‖ψ(−r)‖Z1/2 .

Using this estimate and (4.10) we get the result. �

In this case the functions K : R+ × R+ → R+ and Ψ: R+ → R+ are given by

K(v, w) = v + w + L and Ψ(v) = v2 + 4‖a‖∞v + 4‖b‖∞,

since
√
µ(Ω) = 1. Therefore, we have the following result for the impulsive Burgers equation with

delay.

Theorem 6 For dk small enough there exists τ > 0 such that the system (1.2) has only one mild
solution defined on [−r, τ ].
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