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Abstract. In this paper, we discuss the existence and uniqueness of solutions for a fractional order
neutral differential equation with deviated arguments. We use the method of resolvent operators
for integral equations suggested by Hernández et al. (On recent developments in the theory of
abstract differential equations with fractional derivatives, Nonlinear Anal. 73 (2010), 3462–3471)
for fractional differential equations. At the end, an example is given to illustrate our analytical
findings.
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1 Introduction

The theory of fractional calculus started with a correspondence between L’Hospital and Leibniz in
1695. Presently, lots of literature is available on theoretical as well as numerical work on this topic.
It has applications in numerous fields, for example, control theory, signal and image processing,
aerodynamics and biophysics, etc. For the fundamental concepts of fractional calculus, we refer the
readers to a few excellent books by Kilbas et al. [11], Miller and Ross [13], Hilfer [9], Podlubny [16]
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and Abbas et al. [2]. The existence and uniqueness of solutions for fractional order differential
systems has been studied by several authors; see, for example, [1, 3, 4, 5, 6, 10, 12, 14] and reference
therein.

In this work, we consider the following nonautonomous neutral differential equation of fractional
order α ∈ (0, 1] with deviated arguments in a Banach space X [7]:

Dα
t (u(t) + g(t, u(a(t)))) = A(t)u(t) + f(t, u(t), u(h(t, u(t)))),

u(0) = u0, a(t) ≤ t, ∀ t > 0,
(1.1)

where Dα
t is the α−fractional derivative in the Caputo sense. We denote A = A(0) and assume that

0 ∈ ρ(A). In order to establish our results, we introduce some notations. L(X) denotes the space of
bounded linear operators from the Banach space X into X endowed with the operator norm ‖ · ‖L(X).
D(A) is the domain of the operator A endowed with the graph norm ‖x‖D(A) = ‖x‖+ ‖Ax‖. The
space of all the continuous functions from [0, T ] into X , endowed with the sup-norm ‖ · ‖C([0,T ],X),
is denoted by C([0, T ], X); similarly, the space of all the continuous functions from [0, T ] into R+,
endowed with the sup-norm | · |C([0,T ],R+), is denoted by C([0, T ],R+). The notation Cγ([0, T ], X),
γ ∈ (0, 1), represents the space formed of all the γ-Hölder X-valued continuous functions from
[0, T ] into X endowed with the norm ‖u‖Cγ([0,T ],X) = ‖u‖C([0,T ],X) + [|u|]Cγ([0,T ],X), where

[|u|]Cγ([0,T ],X) = sup
t,s∈[0,T ]
t6=s

‖u(t)− u(s)‖X
(t− s)γ

.

For simplicity, instead of | · |C([0,T ],R+), ‖ · ‖C([0,T ],X) and ‖ · ‖Cγ([0,T ],X) we will write | · |C , ‖ · ‖C
and ‖ · ‖Cγ , respectively.

In [8] Hernández et al. showed that the approach used by several authors to define mild solutions
of abstract differential equations with fractional derivatives is not appropriate. In order to overcome
the shortcoming, Hernández et al. used another approach to treat abstract differential equations
with fractional derivatives based on the well developed theory of resolvent operators for integral
equations. Motivated by the work of Hernández et al. [8], we investigate the existence and uniqueness
of mild solutions for the problem (1.1). We use their approach to solve a nonautonomous problem of
fractional order.

In this paper, Section 2 provides some basic definitions and notations mainly concerned with
analytic resolvent operators. In Section 3, we establish sufficient conditions for the existence and
uniqueness of mild solutions for the problem (1.1). In the last section, Section 4, we give an example
to show an application of our results.

2 Preliminaries and assumptions

We assume that the integral equation

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s) ds, t ≥ 0,

has an associated resolvent operator (S(t))t≥0 on X .
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Definition 1 A family of bounded linear operators (S(t))t≥0 on X is said to be a resolvent operator
for the above integral equation if the following conditions hold:

• S(·)u ∈ C([0,∞), X) and S(0)u = u for all u ∈ X;

• S(t)D(A) ⊂ D(A), AS(t)u = S(t)Au and

S(t)u = u+
1

Γ(α)

∫ t

0
(t− s)α−1AS(s)u ds for all u ∈ D(A), t ≥ 0.

Throughout the paper we assume that (S(t))t≥0 is an analytic resolvent for the integral equation.
Therefore, we assume that there exist a function φA ∈ L1

loc([0,∞),R+) and positive constants Mi,
i = 0, 1, 2, such that ‖S ′(t)x‖ ≤ φA(t)‖x‖D(A) for all t > 0, x ∈ D(A), ‖S(t)‖L(X) ≤ M0 and
‖Si(t)‖L(X) ≤ Mi

ti
for i = 1, 2; for more details we refer to [17].

Now, we consider the following integral equation

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s) ds+ h(t), t ∈ [0, T ]. (2.1)

Definition 2 ([8, Definition 1.2]) A continuous function x defined on [0, T0], T0 ≤ T , is called a
mild solution of (2.1) if

∫ t
0 (t− s)α−1x(s) ds ∈ D(A) and

x(t) =
1

Γ(α)
A

∫ t

0
(t− s)α−1x(s) ds+ h(t), t ∈ [0, T0].

Definition 3 A continuous function x defined on [0, T0], T0 ≤ T , is called a strong solution of (2.1)
if x ∈ C([0, T0], D) and the integral equation is satisfied for each t ∈ [0, T0].

Let C([0, T0], X) be the space of all continuous functions x : J = [0, T0]→ X; endowed with
the sup-norm it is a Banach space. We define another set:

CL(J,X) = {x ∈ C(J,X) : ‖x(t)− x(s)‖ ≤ L|t− s|, ∀ t, s ∈ J},

where L is a suitable positive constant.

In order to prove the existence of solution of the problem (1.1), we need the following assump-
tions:

(A1) f : J ×X ×X → X is a continuous function and there exists Lf ∈ C([0, T ],R+) such that

‖f(t, x1, y1)− f(t, x2, y2)‖ ≤ Lf (t)(‖x1 − x2‖+ ‖y1 − y2‖)

for every x1, x2, y1 and y2 ∈ X;

(A2) g : J ×X → X is a continuous function and there exists Lg ∈ C([0, T ],R+) such that

‖g(t, x1)− g(s, x2)‖ ≤ Lg(t)(|t− s|+ ‖x1 − x2‖)

for every x1, x2 ∈ X;
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(A3) h : X × R+ → R+ satisfies the Lipschitz condition

|h(s, x1)− h(s, x2)| ≤ Lh‖x1 − x2‖;

(A4) a : R+ → R+ satisfies the condition

|a(t)− a(s)| ≤ La|t− s|.

Lemma 1 ([8, Lemma 1.1]) The following properties are valid:

(i) if x(.) is a mild solution of (2.1) on [0, T0], then the function t 7→
∫ t

0 S(t − s)h(s) ds is
continuously differentiable on [0, T0] and

x(t) =
d
dt

∫ t

0
S(t− s)h(s) ds for every t ∈ [0, T0];

(ii) if h ∈ Cβ([0, T0], X) for some β ∈ (0, 1), then the function defined by

x(t) = S(t)(h(t)− h(0)) +

∫ t

0
S ′(t− s)(h(s)− h(t)) ds+ S(t)h(0), t ∈ [0, T0],

is a mild solution of the equation (2.1) on [0, T0];

(iii) if h ∈ C([0, T0], [D(A)]) for some 0 ≤ T0 ≤ T , then the function x : [0, T0]→ X defined by

x(t) =

∫ t

0
S ′(t− s)h(s) ds+ h(t), t ∈ [0, T0],

is a mild solution of the equation (2.1) on [0, T0].

3 Existence of solutions

Now, we do some setting in order to get the form of solution of the problem (1.1). De-
fine A∗v : [0, T0] → X by A∗v(t) = A(t)v(t) − Av(t) (see [15]). Assume that there exists
LA ∈ C([0, T ],R+) such that

‖A∗u(t)−A∗v(t)‖ ≤ LA(t)‖u− v‖ for all u, v ∈ X.

For our convenience we take

Âv(t) =
1

Γ(α)

∫ t

0
(t− s)α−1A∗v(s) ds.

We also define

Fu(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s, u(s), u(h(s, u(s)))) ds.

By applying the Riemann–Liouville fractional integral of order α to both sides of the problem (1.1),
we obtain
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u(t) + g(t, u(a(t)))

= u0 + g(0, u(a(0))) +
1

Γ(α)

∫ t

0
(t− s)α−1A(s)u(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, u(s), u(h(s, u(s)))) ds

= u0 + g(0, u(a(0))) +
1

Γ(α)

∫ t

0
(t− s)α−1(A∗u(s) +Au(s)) ds+ Fu(t)

= u0 + g(0, u(a(0))) +
1

Γ(α)

∫ t

0
(t− s)α−1A∗u(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1Au(s) ds+ Fu(t)

= u0 + g(0, u(a(0))) +
1

Γ(α)

∫ t

0
(t− s)α−1Au(s) ds+ Âu(t) + Fu(t)

for each t ∈ [0, T0]. Hence, we get

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1Au(s) ds

+ Âu(t) + Fu(t)− g(t, u(a(t))) + u0 + g(0, u(a(0))).

For our convenience we use the notation Gu for the function Gu : [0, T0] → X given by Gu(t) =
u0 + g(0, u(a(0)))− g(t, u(a(t))). Incorporating these notations, we get the following form

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1Au(s) ds+ Âu(t) + Fu(t) +Gu(t).

Definition 4 A continuous function u ∈ C([0, T0], X) is called a mild solution of the equation (1.1)
on [0, T0], 0 < T0 ≤ T , if

∫ t
0 (t − s)α−1u(s) ds ∈ D(A) for each t ∈ [0, T0] and u satisfies the

integral equation

u(t) =
1

Γ(α)
A

∫ t

0
(t− s)α−1u(s) ds+ Âu(t) + Fu(t) +Gu(t). (3.1)

Theorem 1 Assume that g ∈ C([0, T ]×X, [D(A)]) and the function Lg ∈ C([0, T ],R+) are such
that Lg(0) < 1 and ‖g(t, x)−g(t, y)‖[D(A)] ≤ Lg(t)‖x−y‖ for all t ∈ [0, T ], x, y ∈ X . Then there
exists a unique mild solution of (1.1) on [0, T0] for some 0 < T0 ≤ T , if assumptions (A1)–(A4) are
satisfied.

Proof. Since Lg(0) < 1, |Lg|C([0,T1],R+) → Lg(0) and ‖φA‖L1([0,T1],R+) → 0 as T1 → 0, there
exists 0 < T0 ≤ T such that

µ =

(
|Lg|C +

(2 + L.Lh)|Lf |C
αΓ(α)

Tα0 +
|LA|C
αΓ(α)

Tα0

)(
1 + ‖φA‖L1([0,T0],R+)

)
< 1.

From the part (iii) of Lemma 1, we have

u(t) =

∫ t

0
S ′(t− s)[Âu(s) + Fu(s) +Gu(s)] ds+ Âu(t) + Fu(t) +Gu(t).
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Now, we introduce the map F : CL([0, T0], X)→ CL([0, T0], X) by the formula

Fu(t) =

∫ t

0
S ′(t− s)[Âu(s) + Fu(s) +Gu(s)] ds+ Âu(t) + Fu(t) +Gu(t).

We observe that∫ t

0
‖S ′(t− s)[Âu(s) + Fu(s) +Gu(s)]‖ ds

≤
∫ t

0
φA(t− s)‖[Âu(s) + Fu(s) +Gu(s)]‖D(A) ds

≤
∫ t

0
φA(t− s) 1

Γ(α)

∫ s

0
(s− τ)α−1‖A∗(τ)‖D(A) dτ ds

+

∫ t

0
φA(t− s) 1

Γ(α)

∫ s

0
(s− τ)α−1‖f(τ, u(τ), u[h(τ, u(τ))])‖D(A) dτ ds

+ ‖Gu‖C
∫ t

0
φA(t− s) ds

≤ 1

Γ(α)
‖A∗‖C

∫ t

0
φA(t− s)s

α

α
ds+

1

Γ(α)
‖f‖C

∫ t

0
φA(t− s)s

α

α
ds

+ ‖Gu‖C‖φA‖L1

≤
(
‖A∗‖C

Tα0
αΓ(α)

+ ‖f‖C
Tα0

αΓ(α)
+ ‖Gu‖C

)
‖φA‖L1 .

This shows that the function s 7→ S ′(t − s)[Âu(s) + Fu(s) + Gu(s)] is integrable and Fu ∈
CL([0, T0], X). Thus, F is well-defined. For any u, v ∈ CL([0, T0], X) we have

‖(Fu)(t)− (Fv)(t)‖ ≤ ‖Âu(t)− Âv(t)‖+ ‖Fu(t)− Fv(t)‖+ ‖Gu(t)−Gv(t)‖

+

∫ t

0

∥∥∥∥S ′(t− s) 1

Γ(α)

∫ s

0
(s− τ)α−1(A∗u(τ)−A∗v(τ)) dτ

∥∥∥∥ds

+

∫ t

0

∥∥∥∥S ′(t− s) 1

Γ(α)

∫ s

0
(s− τ)α−1

(
f(τ, u(τ), u[h(τ, u(τ)]))

− f(τ, v(τ), v[h(τ, v(τ))])
)

dτ

∥∥∥∥ds

+

∫ t

0
‖S ′(t− s)(Gu(s)−Gv(s))‖ds

≤ |LA|C
αΓ(α)

Tα0 ‖u− v‖C +
(2 + LLh)|Lf |C

αΓ(α)
Tα0 ‖u− v‖C

+ |Lg|C‖u− v‖C +

∫ t

0
φA(t− s) ds

|LA|C
αΓ(α)

Tα0 ‖u− v‖C

+

∫ t

0
φA(t− s) ds

(2 + LLh)|Lf |C
αΓ(α)

Tα0 ‖u− v‖C

+

∫ t

0
φA(t− s) ds|Lg|C‖u− v‖C

≤ µ‖u− v‖C .

By the Banach fixed point theorem, there exists a unique fixed point u(·) of the map F . Hence, u(·)
is the mild solution of (1.1). �



EXISTENCE AND UNIQUENESS OF SOLUTIONS OF CERTAIN FDEs 87

Now, we discuss our results assuming Hölder type properties for the functions f, g.

Lemma 2 Assume that α ∈ (1
2 , 1) and u ∈ C(J,X). Then, Fu ∈ C1−α(J,X) and

[|Fu|]C1−α([0,T0],X) ≤
T 2α−1
0
Γ(α)

(
2

2α−1 + 1
α

)
‖f(·, u(·), u(h(·, u(·))))‖C([0,T0],X).

Proof. For t ∈ [0, T0) and h > 0 such that t+ h ∈ [0, T0], we have

‖Fu(t+ h)− Fu(t)‖ ≤ 1

Γ(α)

∫ t

0

[
1

(t+ h− s)1−α +
1

|(s− t)|1−α

]
‖f‖X ds

+
1

Γ(α)

∫ t+h

t

‖f‖X
(t+ h− s)1−α ds

≤ 1

Γ(α)

∫ t

0

(
2

|(s− t)|1−α
h1−α

(s− t)1−α

)
‖f‖X ds

+
1

Γ(α)

∫ t+h

t

‖f‖X
(t+ h− s)1−α ds

≤ 1

Γ(α)
‖f(·, u(·), u(h(·, u(·))))‖Ch1−α

∫ t

0

2

(t− s)2(1−α)
ds

+
1

Γ(α)
‖f(·, u(·), u(h(·, u(·))))‖C

∫ t+h

t

1

(t+ h− s)1−α ds.

Hence, we obtain

‖Fu(t+ h)− Fu(t)‖ ≤ 1

Γ(α)
‖f(·, u(·), u(h(·, u(·))))‖C

(
h1−α 2T 2α−1

0

2α− 1
+
hα

α

)
≤ 1

Γ(α)
‖f(·, u(·), u(h(·, u(·))))‖C

(
2T 2α−1

0

2α− 1
+
T 2α−1

0

α

)
h1−α.

We get [|Fu|]C1−α([0,T0],X) ≤
T 2α−1
0
Γ(α)

(
2

2α−1 + 1
α

)
‖f(·, u(·), u(h(·, u(·))))‖C . �

Lemma 3 Assume that α ∈ (1
2 , 1) and u ∈ C(J,X). Then, Âu ∈ C1−α(J,X) and

[|Âu|]C1−α([0,T0],X) ≤
T 2α−1
0
Γ(α)

(
2

2α−1 + 1
α

)
‖A∗u‖C([0,T0],X).

Proof. For t ∈ [0, T0) and h > 0 such that t+ h ∈ [0, T0], we have

‖Âu(t+ h)− Âu(t)‖ ≤ 1

Γ(α)

∫ t

0

[
1

(t+ h− s)1−α +
1

|(s− t)|1−α

]
‖A∗u(s)‖X ds

+
1

Γ(α)

∫ t+h

t

‖A∗u(s)‖X
(t+ h− s)1−α ds

≤ 1

Γ(α)

∫ t

0

(
2

|(s− t)|1−α
h1−α

(s− t)1−α

)
‖A∗u(s)‖X ds

+
1

Γ(α)

∫ t+h

t

‖A∗u(s)|‖X
(t+ h− s)1−α ds.
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Thus, we obtain

‖Âu(t+ h)− Âu(t)‖ ≤ 1

Γ(α)
||A∗u(·)‖Ch1−α

∫ t

0

2

(t− s)2(1−α)
ds

+
1

Γ(α)
‖A∗u(·)‖C

∫ t+h

t

1

(t+ h− s)1−α ds

≤ 1

Γ(α)
‖A∗u(·)‖C

(
h1−α 2T 2α−1

0

2α− 1
+
hα

α

)
≤ 1

Γ(α)
‖A∗u(·)‖C

(
2T 2α−1

0

2α− 1
+
T 2α−1

0

α

)
h1−α.

Hence, we get [|Âu|]C1−α([0,T0],X) ≤
T 2α−1
0
Γ(α)

(
2

2α−1 + 1
α

)
‖A∗u(·)‖C . �

Theorem 2 Assume that α ∈ (1
2 , 1), f ∈ C(J1, L(X)), g ∈ C1−α(J1, L(X)) and S(·)u0 ∈

C1−α([0, T ], X), where J1 = [0, T ]. If there exists 0 < T0 ≤ T such that(
M0 +

2M1

1− α
+

M2

(1− α)α

)
‖g‖C1−α([0,T0],L(X)) < 1,

then there exists a unique mild solution of (1.1) on [0, T1] for 0 < T1 < T0.

Proof. We choose a suitable T0 such that 0 < T1 < T0 and(
M0 +

2M1

1− α
+

M2

(1− α)α
+ λ(g, T1)

)
‖g‖C1−α([0,T1],L(X))

+

(
M0T

α
1

αΓ(α)
+

M1T
α
1

(1− α)Γ(α)

( 2

2α− 1
+

1

α

)
+ λ(f, T1)

)
‖f‖C(L(X))

+

(
M0T

α
1

αΓ(α)
+

M1T
α
1

(1− α)Γ(α)

( 2

2α− 1
+

1

α

)
+ λ(A∗u, T1)

)
‖A∗u‖C(L(X)) < 1,

where λ(g, T1), λ(f, T1) and λ(A∗u, T1) are given by

λ(g, T1) =

(
M0T

1−α
1 +M1

(
T 1−α

1

1− α
+
Tα1
α

))
,

λ(f, T1) =
T 2α−1

1

Γ(α)

(
2

2α− 1
+

1

α

)(
M1

(
2

1− α
+
Tα1
α

)
+M0 +

M2

(1− α)α

)
,

λ(A∗u, T1) =
T 2α−1

1

Γ(α)

(
2

2α− 1
+

1

α

)(
M1

(
2

1− α
+
Tα1
α

)
+M0 +

M2

(1− α)α

)
.

We define the map F : C1−α([0, T1], X)→ C1−α([0, T1], X) by F = F1 + F2 + F3, where

(F1u)(t) = S(t)(Gu(t)− u0) +

∫ t

0
S ′(t− s)[Gu(s)−Gu(t)] ds+ S(t)u0,

(F2u)(t) = S(t)Fu(t) +

∫ t

0
S ′(t− s)[Fu(s)− Fu(t)] ds,

(F3u)(t) = S(t)Âu(t) +

∫ t

0
S ′(t− s)[Âu(s)− Âu(t)] ds.
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Now, our aim is to prove that F is actually well-defined. For this we take t ∈ [0, T1]. We have∫ t

0
S ′(t− s)[Gu(s)−Gu(t)] ds

≤M1

∫ t

0

‖g(s, u(a(s)))− g(t, u(a(t)))‖
t− s

ds

≤M1

∫ t

0

‖(g(s)− g(t))u(a(t))‖+ ‖g(t)(u(a(t))− u(a(s)))‖
t− s

ds

≤M1

(
[|g|]C1−α‖u‖C + ‖g‖C [|u|]C1−α

) ∫ t

0

(t− s)1−α

t− s
ds

≤M1‖g‖CαL(X)‖u‖Cα(X)
(T1)1−α

1− α
.

This shows that the function s 7→ S ′(t− s)[Gu(s)−Gu(t)] is integrable on the interval [0, T1] and
t 7→

∫ t
0 S
′(t− s)[Gu(s)−Gu(t)] ds ∈ C([0, T1], X). Similarly,∫ t

0
S ′(t− s)[Fu(s)− Fu(t)] ds ≤M1‖f‖C(X)

T 2α−1
1

Γ(α)

(
2

2α− 1
+

1

α

)∫ t

0

(t− s)1−α

t− s
ds

≤M1‖f‖C(L(X))‖u‖C(X)
T 2α−1

1

Γ(α)

(
2

2α− 1
+

1

α

)
T 1−α

1

1− α
.

This shows that the function s 7→ S ′(t− s)[Fu(s)− Fu(t)] is integrable on the interval [0, T1] and
t 7→

∫ t
0 S
′(t− s)[Fu(s)− Fu(t)] ds ∈ C([0, T1], X). Similarly,∫ t

0
S ′(t− s)[Âu(s)− Âu(t)] ds ≤M1‖A∗u‖C(X)

T 2α−1
1

Γ(α)

(
2

2α− 1
+

1

α

)∫ t

0

(t− s)1−α

t− s
ds

≤M1‖A∗u‖C(L(X))‖u‖C(X)
T 2α−1

1

Γ(α)

(
2

2α− 1
+

1

α

)
T 1−α

1

1− α
.

This allows us to say that t 7→
∫ t

0 S
′(t− s)[Âu(s)− Âu(t)] ds ∈ C([0, T1], X). Hence, we conclude

that F ∈ C([0, T1], X). It can be easily seen that

‖Fu‖C(X) ≤
(
M0T

1−α
1 +M1

T 1−α
1

1− α

)
‖g‖CαL(X)‖u‖Cα(X) + ‖S(·)u0‖C(X)

+

(
M0

Tα1
αΓ(α)

+M1
Tα1

Γ(α)(1− α)

(
2

2α− 1
+

1

α

))
‖f‖C(L(X))‖u‖C(X)

+

(
M0

Tα1
αΓ(α)

+M1
Tα1

Γ(α)(1− α)

(
2

2α− 1
+

1

α

))
‖A∗u‖C(L(X))‖u‖C(X).

Now, we prove that Fi ∈ C1−α([0, T1], X), i = 1, 2, 3. By taking ln( t+hh ) ≤ hα

α for all t ∈ [0, T1)
and t+ h ∈ [0, T1], where h > 0, we have

‖(F1u)(t+ h)− (F1u)(t)‖
≤ ‖(S(t+ h)− S(t))(Gu(t)− u0)‖

+ ‖S(t+ h)‖L(X)‖(Gu(t+ h)−Gu(t))‖

+

∫ t+h

t
‖S ′(t+ h− s)‖L(X)‖(Gu(s)−Gu(t+ h))‖ ds
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+

∫ t

0
‖S ′(h+ s)− S ′(s)‖L(X)‖(Gu(t+ s)−Gu(t))‖ ds

+

∫ t

0
‖S ′(h+ s)‖L(X)‖Gu(t)−Gu(t+ h)‖ ds+ ‖S ′u0‖C1−α(X)h

1−α.

Thus, we have

‖(F1u)(t+ h)− (F1u)(t)‖

≤
∫ t+h

t
‖S ′(s)(Gu(t)− u0)‖ ds+M0‖g‖C1−α(L(X))‖u‖C1−α(X)h

1−α

+

∫ t+h

t
‖S ′(t+ h− s)‖‖g||C1−α(L(X))‖u‖C1−α(X)(t+ h− s)1−α ds

+

∫ t

0

∫ t+h

t
‖S ′′(η)‖L(X)‖g‖C1−α(L(X))‖u‖C1−α(X)(s)

1−α dη ds

+ ‖g‖C1−α(L(X))‖u‖C1−α(X)(h)1−α
∫ t

0
‖S ′(h+ s)‖ ds+ ‖S ′u0‖h1−α

≤M1‖g‖C1−α(L(X))‖u‖C1−α

∫ t+h

t

s1−α

s
ds

+M0‖g‖C1−α(L(X))‖u‖C1−α(X)h
1−α

+M1‖g‖C1−α(L(X))‖u‖C1−α(X)

∫ t+h

t

ds

(t+ h− s)α

+M2‖g‖C1−α(L(X))‖u‖C1−α(X)

∫ t

0

∫ s+h

s

1

η1+α
dη ds

+ ‖g‖C1−α(L(X))‖u‖C1−α(X)(h)1−αM1 ln
( t+ h

h

)
+ ‖S ′u0‖C1−α(X)h

1−α.

Hence, we obtain

‖(F1u)(t+ h)− (F1u)(t)‖

≤
[
‖g‖C1−α(L(X))‖u‖C1−α(X)

(
M1

(
2

1− α
+
Tα1
α

)
+M0 +

M2

α(1− α)

)
+ ‖S ′u0‖C1−α(X)

]
h1−α

and

[|F1u|]C1−α(X)

≤ ‖g‖C1−α(L(X))‖u‖C1−α(X)

(
M1

(
2

1− α
+
Tα1
α

)
+M0 +

M2

α(1− α)

)
+ ‖S ′u0‖C1−α(X).
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Similarly, by Lemma 2, we have

[|F2u|]C1−α(X)

≤ T 2α−1
1

Γ(α)

(
2

2α− 1
+

1

α

)
‖f‖C(L(X))‖u‖C(X)

(
M1

(
2

1− α
+
Tα1
α

)
+M0 +

M2

α(1− α)

)
and by Lemma 3, we obtain

[|F3u|]C1−α(X)

≤ T 2α−1
1

Γ(α)

(
2

2α− 1
+

1

α

)
‖A∗u‖C(L(X))‖u‖C(X)

(
M1

(
2

1− α
+
Tα1
α

)
+M0 +

M2

α(1− α)

)
.

This implies that Fu ∈ C1−α([0, T1], X). By using the above inequalities, we arrive at the following
expression

‖Fu−Fv‖

≤
[
M0 +

2M1

1− α
+

M2

(1− α)α
+ λ(g, T1)

]
‖g‖C1−α(L(X))‖u− v‖C1−α(X)

+

[
M0T

α
1

αΓ(α)
+

M1T
α
1

(1− α)Γ(α)

(
2

2α− 1
+

1

α

)
+ λ(f, T1)

]
‖f‖C(L(X))‖u− v‖C1−α(X)

+

[
M0T

α
1

αΓ(α)
+

M1T
α
1

(1− α)Γ(α)

(
2

2α− 1
+

1

α

)
+ λ(A∗u, T1)

]
‖A∗u‖C(L(X))‖u− v‖C1−α(X).

This shows that F is a contraction mapping. Hence, by Banach’s fixed point theorem, F has a unique
fixed point. Thus, the proof is complete. �

4 Example

In this section, we consider an example of a partial differential equation of neutral type with retarded
argument. The main aim is to show the applicability of our result. Let X = L2(0, 1). We consider
the following partial differential equations with deviated argument:

∂αt [w(t, x) + f1(t, w(a(t), x))]−m(t)∂2
xw(t, x) = f2(x,w(t, x)) + f3(t, x, w(t, x)),

x ∈ (0, 1), t > 0,

w(t, 0) = w(t, 1) = 0, t ∈ [0, T ], 0 < T <∞,
w(0, x) = u0, x ∈ (0, 1),

(4.1)

where
f2(x,w(t, x)) =

∫ x

0
K(x, s)w(s, h(t)(a1|w(s, t)|+ b1|ws(s, t)|)) ds.

Further, we assume that a1, b1 ≥ 0, (a1, b1) 6= (0, 0), h : R+ → R+ is locally continuous in t with
h(0) = 0 and K : [0, 1]× [0, 1]→ R. We define the operator A as follows

A(t)u = m(t)u′′ with u ∈ D(A) = {u ∈ H1
0 (0, 1) ∩H2(0, 1) : u′′ ∈ X}. (4.2)
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We may choose m(t) such that m(0) = 1. Hence, A(0) = A, which is self-adjoint with
compact resolvent and is the infinitesimal generator of an analytic semigroup S(t) such that

S(t)u =
∑∞

n=1 e
−n2t(u, φn)φn, where φn =

√
2
π sinnx, n = 1, 2, 3, · · · .

The equation (4.1) can be reformulated as the following abstract equation in X = L2(0, 1):

dα

dtα
[u(t) + g(t, u(a(t)))] = A(t)u(t) + f(t, u(t), u[h(u(t), t)]), t > 0,

u(0) = u0,

where u(t) = w(t, ·), that is, u(t)(x) = w(t, x), x ∈ (0, 1). The function g : R+ × X → X is
such that g(t, u(a(t)))(x) = f1(t, w(a(t), x)) and the operator A is same as in formula (4.2). The
function f : R+ ×X ×X → X is given by

f(t, ψ, ξ)(x) = f2(x, ξ) + f3(t, x, ψ),

where f2 : [0, 1]×X → H1
0 (0, 1) is given by

f2(t, ξ) =

∫ x

0
K(x, y)ξ(y) dy.

And
‖f3(t, x, ψ)‖ ≤ Q(x, t)(1 + ‖ψ‖H2(0,1))

with Q(·, t) ∈ X and Q is continuous in its second argument. We can easily verify that the function
f satisfies the assumption (A1). For more details see [7]. For the function a we can take:

(i) a(t) = kt, where t ∈ [0, T ] and 0 < k ≤ 1;

(ii) a(t) = ktn for t ∈ I = [0, 1], k ∈ (0, 1] and n ∈ N;

(iii) a(t) = k sin t for t ∈ I = [0, π2 ] and k ∈ (0, 1].
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