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Abstract. In this article, we study the existence and uniqueness of solutions for nonlinear elliptic
problems with non-local boundary conditions. In order to get the unique solution, we study first
an auxiliary problem, for which we deduce useful a priori estimates. The study of the auxiliary
problem gives us the equivalence between this kind of problem and a nonlinear problem with very
large diffusion around the boundary.
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1 Introduction and assumptions

Let Ω be an open bounded domain in RN (N ≥ 2) such that ∂Ω is Lipschitz and ∂Ω = ΓD ∪ ΓNe
with ΓD ∩ ΓNe = ∅. Our aim is to study the following problem

P (β, ρ, f, d)



β(u)−∇ · a(x,∇u) = f in Ω,

u = 0 on ΓD,

ρ(u) +

∫
ΓNe

a(x,∇u).η = d on ΓNe,

u ≡ constant on ΓNe,
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where η is the unit outward normal vector on ∂Ω, β and ρ are two continuous and non-decreasing
functions on R such that

D(β) = D(ρ) = R, Im(β) = Im(ρ) = R and β(0) = ρ(0) = 0,

a is a Leray–Lions type operator, f is a function in L∞(Ω) and d ∈ R.

Recall that a Leray–Lions type operator is a Carathéodory function a(x, ξ) : Ω × RN → RN
(i.e., a(x, ξ) is continuous in ξ for a.e. x ∈ Ω and measurable in x for every ξ ∈ RN ) and there exists
p ∈ (1,+∞) such that

• there exists a positive constant C with

|a(x, ξ)| ≤ C
(
j(x) + |ξ|p−1

)
(1.1)

for almost every x ∈ Ω and for every ξ ∈ RN , where j is a non-negative function in Lp
′
(Ω)

with 1
p + 1

p′ = 1;

• the following inequalities hold(
a(x, ξ)− a(x, η)

)
.(ξ − η) > 0 (1.2)

for almost every x ∈ Ω and for every ξ, η ∈ RN with ξ 6= η, and there exists C ′ > 0 such that

1

C ′
|ξ|p ≤ a(x, ξ).ξ (1.3)

for almost every x ∈ Ω and for every ξ ∈ RN .

Boundary value problems involving PDEs arise in physical sciences and applied mathematics. In
some of these problems, subsidiary conditions are imposed locally. In some other cases, non-local
conditions are imposed. It is sometimes better to impose non-local conditions since the measurements
needed by a non-local condition may be more precise than the measurement given by a local condition.
Indeed, in the problem P (β, ρ, f, d), in contrast to the standard case where the condition on the
boundary is given on the local values of the flux, non-local boundary conditions act on the average of
the flux on the boundary. More precisely, in addition to the Dirichlet boundary condition on ΓD, i.e.,

u = 0 on ΓD, (1.4)

u is asked to satisfy the following non-local condition

ρ(u) +

∫
ΓNe

a(x,∇u).η = d on ΓNe. (1.5)

It is well-known that under only conditions (1.4) and (1.5), the problem P (β, ρ, f, d) is ill-posed. To
make the problem P (β, ρ, f, d) well-posed, we ask the unknown function u to be constant on ΓNe.
Beside the mathematical interest of non-local conditions, it seems that this type of boundary condition
appears in petroleum engineering model for well modelling in a 3D stratified petroleum reservoir
with arbitrary geometry; this kind of boundary condition also arises in petroleum engineering, in the
simulation of wells performance, since a nonlinear relation exists between the performance pressure
tangential gradient and the fluid velocity along the well (see [1, 2] and [4] for details).
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In the sequel, we consider the following spaces:

W 1,p
D (Ω) = {ϕ ∈W 1,p(Ω) : ϕ = 0 on ΓD}

and
W 1,p
Ne (Ω) = {ϕ ∈W 1,p

D (Ω) : ϕ ≡ constant on ΓNe}.

For any v ∈W 1,p
Ne (Ω), we set vNe := v|ΓNe

.

The concept of a solution for P (β, ρ, f, d) is given as follow.

Definition 1 A measurable function u : Ω→ R is a solution of P (β, ρ, f, d) if
u ∈W 1,p

Ne (Ω), β(u) ∈ L1(Ω) and for every ϕ ∈W 1,p
Ne (Ω) ∩ L∞(Ω),∫

Ω
a(x,∇u).∇ϕdx+

∫
Ω
β(u)ϕdx =

∫
Ω
fϕdx+

(
d− ρ(u)Ne

)
ϕNe.

(1.6)

Our main result in this paper is the following

Theorem 1 For any f ∈ L∞(Ω) the problem P (β, ρ, f, d) admits a unique solution u.

Before proving Theorem 1, we study an auxiliary problem, from which we deduce useful a priori
estimates.

The paper is organized as follow. In Section 2, we study the auxiliary problem and in Section 3,
we prove the existence and uniqueness of solutions to the problem P (β, ρ, f, d).

2 The approximated problem corresponding to P (β, ρ, f, d)

We define a new bounded domain Ω̃ in RN as follow. We fix δ > 0 and we set Ω̃ = Ω ∪ {x ∈ RN :
dist(x,ΓNe) < δ}. Then, ∂Ω̃ = ΓD ∪ Γ̃Ne is Lipschitz with ΓD ∩ Γ̃Ne = ∅.

Ne

Ne

D

Figure 1: Domains representation

Let us consider a Leray–Lions type operator ã(x, ξ) : Ω̃ × RN → RN satisfying (1.1), (1.2)
and (1.3). We consider the problem

P (β̃, ρ̃, f̃ , d̃)


β̃(x, u)−∇ · ã(x,∇u) = f̃ in Ω̃,

u = 0 on ΓD,

ρ̃(u) + ã(x,∇u).η = d̃ on Γ̃Ne,
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where the functions β̃, ρ̃, f̃ and d̃ are defined as follow:

• β̃(x, s) = β(s)χΩ(x) for all (x, s) ∈ Ω̃× R;

• ρ̃(s) = 1

|Γ̃Ne|
ρ(s) for all s ∈ R, where |Γ̃Ne| denotes the Hausdorff measure of Γ̃Ne;

• f̃(x) = (fχΩ)(x) for all x ∈ Ω̃;

• d̃ is a function in L∞(Γ̃Ne) such that ∫
Γ̃Ne

d̃dσ = d. (2.1)

Obviously, we have f̃ ∈ L∞(Ω̃).

The following definition gives the notion of a solution for the problem P (β̃, ρ̃, f̃ , d̃).

Definition 2 A measurable function u : Ω̃→ R is a solution for P (β̃, ρ̃, f̃ , d̃) if
u ∈W 1,p

D (Ω̃), β(u) ∈ L1(Ω) and for every ϕ̃ ∈W 1,p
D (Ω̃) ∩ L∞(Ω),∫

Ω
ã(x,∇u).∇ϕ̃dx+

∫
Ω
β(u)ϕ̃dx =

∫
Ω
fϕ̃dx+

∫
Γ̃Ne

(
d̃− ρ̃(u)

)
ϕ̃dσ.

(2.2)

We have the following existence result for the problem P (β̃, ρ̃, f̃ , d̃).

Theorem 2 Assume the functions β̃, ρ̃, f̃ and d̃ are as above. Then, the problem P (β̃, ρ̃, f̃ , d̃) admits
at least one solution in the sense of Definition 2.

Before proving Theorem 2, we study an existence result to the following problem. For any k > 0
we consider

Pk(β̃, ρ̃, f̃ , d̃)


Tk
(
β̃(x, uk)

)
−∇ · ã(x,∇uk) = f̃ in Ω̃,

uk = 0 on ΓD,

Tk (ρ̃(uk)) + ã(x,∇uk).η = d̃ on Γ̃Ne,

where the truncation function Tk : R→ R is defined as

Tk(s) =


−k, if s < −k,
s, if |s| ≤ k,
k, if s > k.

We next prove the following theorem.

Theorem 3 Assume the functions β̃, ρ̃, f̃ and d̃ are as above. Then, for any k > 0 the problem
Pk(β̃, ρ̃, f̃ , d̃) admits at least one solution uk in the sense

uk ∈W 1,p
D (Ω̃) and for all ϕ̃ ∈W 1,p

D (Ω̃),∫
Ω̃
ã(x,∇uk).∇ϕ̃dx+

∫
Ω
Tk (β(uk)) ϕ̃dx =

∫
Ω
fϕ̃dx+

∫
Γ̃Ne

(
d̃− Tk (ρ̃(uk))

)
ϕ̃dσ.

(2.3)
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Furthermore, for any k large enough

|β(uk)| ≤ θ1 := max
{
‖f‖∞, (β ◦ ρ−1

0 )
(
|Γ̃Ne|‖d̃‖∞

)}
a.e. in Ω,

|ρ̃(uk)| ≤ θ2 := max
{
‖d̃‖∞, (ρ̃ ◦ β−1

0 )
(
‖f‖∞

)}
a.e. in Γ̃Ne.

(2.4)

Proof. For any k > 0 let us introduce the operator Λk : W 1,p
D (Ω̃)→

(
W 1,p
D (Ω̃)

)′ such that for any
(u, v) ∈W 1,p

D (Ω̃)×W 1,p
D (Ω̃),

〈Λk(u), v〉 =

∫
Ω̃
ã(x,∇u).∇v dx+

∫
Ω
Tk (β(u)) v dx+

∫
Γ̃Ne

Tk (ρ̃(u)) v dσ. (2.5)

We need to prove that for any k > 0 the operator Λk is bounded, coercive, of type M and hence,
surjective.

(i) Boundedness of Λk. For every (u, v) ∈W 1,p
D (Ω̃)×W 1,p

D (Ω̃) we have

∣∣〈Λk(u), v〉
∣∣ ≤ ∫

Ω̃
|ã(x,∇u)||∇v|dx+ k

∫
Ω
|v|dx+ k

∫
Γ̃Ne

|v|dσ

≤
∫

Ω̃
|ã(x,∇u)||∇v|dx+ kC1(meas(Ω), p)‖v‖Lp(Ω) + kC2(|Γ̃Ne|, p)‖v‖Lp(Γ̃Ne)

≤
∫

Ω̃
C
(
j(x) + |∇u|p−1

)
|∇v| dx+ kC1(meas(Ω), p)‖v‖Lp(Ω)

+ kC2(|Γ̃Ne|, p)‖v‖Lp(Γ̃Ne)
thanks to assumption (1.1)

≤
∫

Ω̃
Cj(x)|∇v| dx+

∫
Ω̃
C|∇u|p−1|∇v| dx+ kC1(meas(Ω), p)‖v‖Lp(Ω)

+ kC2(|Γ̃Ne|, p)‖v‖Lp(Γ̃Ne)

≤ C3(j, p)‖∇v‖
Lp(Ω̃)

+ C4‖∇u‖p−1

Lp(Ω̃)
‖∇v‖

Lp(Ω̃)
+ kC1(meas(Ω), p)‖v‖Lp(Ω)

+ kC2(|Γ̃Ne|, p)‖v‖Lp(Γ̃Ne)
.

Thanks to Theorem 1 in [3], we have ‖v‖
Lp(Γ̃Ne)

≤ C‖v‖
W 1,p

D (Ω̃)
.

Taking into account the fact that ‖ϕ̃‖
Lp(Ω̃)

≤ ‖ϕ̃‖
W 1,p

D (Ω̃)
and ‖∇ϕ̃‖

Lp(Ω̃)
≤ ‖ϕ̃‖

W 1,p
D (Ω̃)

for any

ϕ̃ ∈W 1,p
D (Ω̃), we get∣∣〈Λk(u), v〉

∣∣ ≤ C3(j, p)‖v‖
W 1,p

D (Ω̃)
+ C4‖u‖p−1

W 1,p
D (Ω̃)

‖v‖
W 1,p

D (Ω̃)
+ kC1(meas(Ω), p)‖v‖

W 1,p
D (Ω̃)

+ kC2(|Γ̃Ne|, p)‖v‖W 1,p
D (Ω̃)

≤
(
C3(j, p) + C4‖u‖p−1

W 1,p
D (Ω̃)

+ kC1(meas(Ω), p) + kC2(|Γ̃Ne|, p)
)
‖v‖

W 1,p
D (Ω̃)

.

From this inequality one sees that Λk maps bounded subsets of W 1,p
D (Ω̃) into bounded subsets of(

W 1,p
D (Ω̃)

)′. Therefore, Λk is bounded on W 1,p
D (Ω̃).

(ii) Coerciveness of Λk. We have to show that for any k > 0 we have 〈Λk(u),u〉
‖u‖

W
1,p
D

(Ω̃)

→ +∞ as

‖u‖
W 1,p

D (Ω̃)
→ +∞.
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For any u ∈W 1,p
D (Ω̃) we have

〈Λk(u), u〉 =

∫
Ω̃
a(x,∇u).∇udx+

∫
Ω
Tk (β(u))u dx+

∫
Γ̃Ne

Tk (ρ̃(u))udσ. (2.6)

The last two terms on the right-hand side of (2.6) are non-negative. Using the assumption (1.3), we
deduce that ∫

Ω̃
a(x,∇u).∇udx ≥ 1

C ′
‖∇u‖p

Lp(Ω̃)
.

Therefore, from (2.6) we get

〈Λk(u), u〉 ≥ 1

C ′
‖∇u‖p

Lp(Ω̃)
.

Since u ∈ W 1,p
D (Ω̃), by the Poincaré inequality, we have ‖u‖p

Lp(Ω̃)
≤ C‖∇u‖p

Lp(Ω̃)
. Then,

‖u‖
W 1,p

D (Ω̃)
→ +∞ implies ‖∇u‖

Lp
D(Ω̃)

→ +∞. Hence, Λk is coercive.

(iii) The operator Λk is of type M. For the proof of (iii), we need the following lemma.

Lemma 1 (cf. [5]) Let A and B be two operators. If A is of type M and B is monotone and weakly
continuous, then A+ B is of type M .

Now, we set 〈Au, v〉 :=
∫

Ω̃
ã(x,∇u).∇v dx and 〈Bku, v〉 :=

∫
Ω Tk (β(u)) v dx +∫

Γ̃Ne
Tk (ρ̃(u)) v dσ. Then, for every k > 0 we have Λk = A+ Bk. We now have to show that for

every k > 0 the operator Bk is monotone and weakly continuous, because it is well-known that the
operator A is of type M . For the monotonicity of Bk, we have to show that 〈Bku−Bkv, u− v〉 ≥ 0
for all (u, v) ∈ W 1,p

D (Ω̃)× W 1,p
D (Ω̃). We have

〈Bku− Bkv, u− v〉

=

∫
Ω

(
Tk (β(u))− Tk (β(v))

)
(u− v) dx+

∫
Γ̃Ne

(
Tk (ρ̃(u))− Tk (ρ̃(v))

)
(u− v) dσ.

From the monotonicity of β, ρ̃ and the map Tk, we conclude that

〈Bku− Bkv, u− v〉 ≥ 0. (2.7)

We need now to prove that for each k > 0 the operator Bk is weakly continuous, that is, for all
sequences (un)n∈N ⊂ W 1,p

D (Ω̃) such that un ⇀ u in W 1,p
D (Ω̃), we have Bkun ⇀ Bku as n→ +∞.

For all φ ∈W 1,p
D (Ω̃) we have

〈Bkun, φ〉 :=

∫
Ω
Tk (β(un))φ dx+

∫
Γ̃Ne

Tk (ρ̃(un))φ dσ. (2.8)

Passing to the limit in (2.8) as n goes to +∞ and using the Lebesgue dominated convergence theorem,
for the first term on the right-hand side of (2.8), we obtain

lim
n→+∞

∫
Ω
Tk (β(un))φ dx =

∫
Ω
Tk (β(u))φ dx. (2.9)

Furthermore, since un ⇀ u in W 1,p
D (Ω̃), up to a subsequence, we have un → u in Lp(∂Ω̃) and a.e.

on ∂Ω̃, and we deduce using again the Lebesgue dominated convergence theorem that

lim
n→+∞

∫
Γ̃Ne

Tk (ρ̃(un))φ dσ =

∫
Γ̃Ne

Tk (ρ̃(u))φ dσ. (2.10)
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From (2.9) and (2.10) we conclude that for every k > 0, limn→+∞〈Bkun, φ〉 = 〈Bku, φ〉, which
means that Bkun ⇀ Bku.

The operator A is type M and as Bk is monotone and weakly continuous, thanks to Lemma 1,
we conclude that the operator Λk is of type M . Then, for any L ∈

(
W 1,p
D (Ω̃)

)′, there exists
uk ∈W 1,p

D (Ω̃) such that Λk(uk) = L. We consider L ∈
(
W 1,p
D (Ω̃)

)′ defined by L(v) :=
∫

Ω fv dx+∫
Γ̃Ne

d̃v dσ for v ∈W 1,p
D (Ω̃) and we obtain (2.3).

To end the proof of Theorem 3, we prove inequalities (2.4). For any ε > 0 let us introduce the
function Hε : R→ R:

Hε(s) =


0, if s < 0,
s
ε , if 0 ≤ s ≤ ε,
1, if s > ε.

In (2.3) we set ϕ̃ = Hε(uk −M), ε > 0, where M > 0 is to be fixed later. We get∫
Ω̃
ã(x,∇uk).∇Hε(uk −M) dx+

∫
Ω
Tk (β(uk))Hε(uk −M) dx

=

∫
Ω
fHε(uk −M) dx+

∫
Γ̃Ne

(
d̃− Tk (ρ̃(uk))

)
Hε(uk −M) dσ.

(2.11)

The first term in (2.11) is non-negative. Indeed,∫
Ω̃
ã(x,∇uk).∇Hε(uk −M) dx =

1

ε

∫
{0≤uk−M≤ε}

ã(x,∇uk).∇uk dx ≥ 0.

From (2.11) we obtain∫
Ω
Tk (β(uk))Hε(uk −M) dx ≤

∫
Ω
fHε(uk −M) dx+

∫
Γ̃Ne

(
d̃− Tk (ρ̃(uk))

)
Hε(uk −M) dσ.

Then, one has∫
Ω

(
Tk (β(uk))− Tk (β(M))

)
Hε(uk −M) dx+

∫
Γ̃Ne

(
Tk (ρ̃(uk))− Tk (ρ̃(M))

)
Hε(uk −M) dσ

≤
∫

Ω

(
f − Tk (β(M))

)
Hε(uk −M) dx+

∫
Γ̃Ne

(
d̃− Tk (ρ̃(M))

)
Hε(uk −M) dσ.

Letting ε go to 0 in the above inequality, we get∫
Ω

(
Tk (β(uk))− Tk (β(M))

)
sign+

0 (uk −M) dx

+

∫
Γ̃Ne

(
Tk (ρ̃(uk))− Tk (ρ̃(M))

)
sign+

0 (uk −M) dσ

≤
∫

Ω

(
f − Tk (β(M))

)
sign+

0 (uk −M) dx

+

∫
Γ̃Ne

(
d̃− Tk (ρ̃(M))

)
sign+

0 (uk −M) dσ,

which is equivalent to say
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Ω

(
Tk (β(uk))− Tk (β(M))

)+
dx+

∫
Γ̃Ne

(
Tk (ρ̃(uk))− Tk (ρ̃(M))

)+
dσ

≤
∫

Ω

(
f − Tk (β(M))

)
sign+

0 (uk −M) dx+

∫
Γ̃Ne

(
d̃− Tk (ρ̃(M))

)
sign+

0 (uk −M) dσ.

As Im(β) = Im(ρ) = R, we can fix M = M0 = max
{
β−1

0 (‖f‖∞), ρ−1
0

(
|Γ̃Ne|‖d̃‖∞

)}
.

From the above inequality we obtain∫
Ω

(
Tk (β(uk))− Tk (β(M0))

)+
dx+

∫
Γ̃Ne

(
Tk (ρ̃(uk))− Tk (ρ̃(M0))

)+
dσ

≤
∫

Ω

(
f − Tk (‖f‖∞)

)
sign+

0 (uk −M0) dx+

∫
Γ̃Ne

(
d̃− Tk

(
‖d̃‖∞

))
sign+

0 (uk −M0) dσ.

For k > k0 := max
{
‖f‖∞, ‖d̃‖∞

}
, it follows that∫

Ω

(
Tk (β(uk))− Tk (β(M0))

)+
dx+

∫
Γ̃Ne

(
Tk (ρ̃(uk))− Tk (ρ̃(M0))

)+
dσ ≤ 0. (2.12)

Then, it yields ∫
Ω

(
Tk (β(uk))− Tk (β(M0))

)+
dx ≤ 0,∫

Γ̃Ne

(
Tk (ρ̃(uk))− Tk (ρ̃(M0))

)+
dσ ≤ 0.

So ∫
Ω

(
Tk (β(uk))− Tk (β(M0))

)+
dx = 0,∫

Γ̃Ne

(
Tk (ρ̃(uk))− Tk (ρ̃(M0))

)+
dσ = 0.

(2.13)

From (2.13) we have (
Tk (β(uk))− Tk (β(M0))

)+
= 0 a.e. in Ω,(

Tk (ρ̃(uk))− Tk (ρ̃(M0))
)+

= 0 a.e. on Γ̃Ne.

This means that for any k > k0 := max
{
‖f‖∞, ‖d̃‖∞

}
we have

Tk (β(uk)) ≤ Tk (β(M0)) a.e. in Ω,

Tk (ρ̃(uk)) ≤ Tk (ρ̃(M0)) a.e. on Γ̃Ne.
(2.14)

From (2.14) we deduce that for every k > k1 := max
{
‖f‖∞, ‖d̃‖∞, β(M0), ρ̃(M0)

}
we have

β(uk) ≤ β(M0) a.e. in Ω,

ρ̃(uk) ≤ ρ̃(M0) a.e. on Γ̃Ne.

Note that with the choice of M0 and the fact that D(β) = D(ρ) = R, for every k > k1 :=
max

{
‖f‖∞, ‖d̃‖∞, β(M0), ρ̃(M0)

}
we have

β(uk) ≤ max
{
‖f‖∞, (β ◦ ρ−1

0 )
(
|Γ̃Ne|‖d̃‖∞

)}
a.e. in Ω,

ρ̃(uk) ≤ max
{
‖d̃‖∞, (ρ̃ ◦ β−1

0 ) (‖f‖∞)
}

a.e. on Γ̃Ne.
(2.15)
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We need to show that for any k large enough

β(uk) ≥ −max
{
‖f‖∞, (β ◦ ρ−1

0 )
(
|Γ̃Ne|‖d̃‖∞

)}
a.e. in Ω,

ρ̃(uk) ≥ −max
{
‖d̃‖∞, (ρ̃ ◦ β−1

0 ) (‖f‖∞)
}

a.e. on Γ̃Ne.
(2.16)

It is easy to see that if uk is a solution of Pk(β̃, ρ̃, f̃ , d̃), then (−uk) is a solution of

Pk(β̂, ρ̂, f̂ , d̂ )


Tk
(
β̂(x, u)

)
−∇ · â(x,∇u) = f̂ in Ω̃,

u = 0 on ΓD,

Tk (ρ̂(u)) + â(x,∇u).η = d̂ on Γ̃Ne,

where

â(x, ξ) = −ã(x,−ξ), β̂(x, s) = −β̃(x,−s), ρ̂(s) = −ρ̃(−s), f̂ = −f̃ and d̂ = −d̃.

Then, for every k > k2 := max
{
‖f‖∞, ‖d̃‖∞,−β(−M0),−ρ̃(−M0)

}
we have

−β(uk) ≤ max
{
‖f‖∞, (β ◦ ρ−1

0 )
(
|Γ̃Ne|‖d̃‖∞

)}
a.e. in Ω,

−ρ̃(uk) ≤ max
{
‖d̃‖∞, (ρ̃ ◦ β−1

0 ) (‖f‖∞)
}

a.e. on Γ̃Ne,

which implies (2.16).

From the relations (2.15) and (2.16), we deduce (2.4). �

Since uk is a solution of Pk(β̃, ρ̃, f̃ , d̃), thanks to (2.4) and the fact that Ω is bounded, we have
β(uk) ∈ L1(Ω). For k = 1 + max{θ1, θ2} fixed, by (2.4), one sees that the problem P (β̃, ρ̃, f̃ , d̃)
admits at least one solution u.

Remark 1 Using the relations (2.4) and the fact that the functions β and ρ are non-decreasing, one
sees that for k large enough the solution u of the problem P (β̃, ρ̃, f̃ , d̃) belongs to L∞(Ω)∩L∞(Γ̃Ne)
and |u| ≤ C(β, θ1) a.e. in Ω and |u| ≤ C(ρ, θ2) a.e. on Γ̃Ne.

Now, we set

ã(x, ξ) := a(x, ξ)χΩ(x) +
1

εp
|ξ|p−2ξχ

Ω̃\Ω(x) for all (x, ξ) ∈ Ω̃× RN

and we consider the following problem

Pε(β̃, ρ̃, f̃ , d̃)


β̃(x, uε)−∇.

(
a(x,∇uε) +

1

εp
|∇uε|p−2∇uεχΩ̃\Ω(x)

)
= f̃ in Ω̃,

uε = 0 on ΓD,

ρ̃(uε) +
(
a(x,∇uε)

)
.η = d̃ on Γ̃Ne.

Thanks to Theorem 2, Pε(β̃, ρ̃, f̃ , d̃) has at least one solution. So, there exists at least one measurable
function uε : Ω̃→ R such that

uε ∈W 1,p
D (Ω̃), β(uε) ∈ L1(Ω) and for every ϕ̃ ∈W 1,p

D (Ω̃) ∩ L∞(Ω),∫
Ω
a(x,∇uε).∇ϕ̃dx+

∫
Ω̃\Ω

1

εp
|∇uε|p−2∇uε.∇ϕ̃dx+

∫
Ω
β(uε)ϕ̃dx

=

∫
Ω
fϕ̃dx+

∫
Γ̃Ne

(
d̃− ρ̃(uε)

)
ϕ̃dσ.

(2.17)

Thanks to Remark 1, we have uε ∈ L∞(Ω) ∩ L∞(Γ̃Ne).
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Remark 2 If uε is a solution of Pε(β̃, ρ̃, f̃ , d̃), then using test functions ϕ̃ ∈ W 1,p
Ne (Ω) ∩ L∞(Ω)

such that ϕ̃ ≡ constant on Ω̃ \ Ω, we see that the second term in the equality in (2.17) is equal to
zero and the last term is equal to

(
d−

∫
Γ̃Ne

ρ̃(uε) dσ
)
ϕ̃Ne, so that one has∫

Ω
a(x,∇uε).∇ϕ̃dx+

∫
Ω
β(uε)ϕ̃dx =

∫
Ω
fϕ̃dx+

(
d−

∫
Γ̃Ne

ρ̃(uε) dσ

)
ϕ̃Ne. (2.18)

The next result gives us a priori estimates on the solution uε of the problem Pε(β̃, ρ̃, f̃ , d̃).

Proposition 1 Let uε be a solution of Pε(β̃, ρ̃, f̃ , d̃). Then, the following statements hold true:

(i)
∫

Ω |∇uε|
p dx +

∫
Ω̃\Ω

1
εp |∇uε|

p dx ≤ C ×
(
‖d̃‖

L1(Γ̃Ne)
+ ‖f‖L1(Ω)

)
, where C is a positive

constant independent of ε;

(ii)
∫

Ω |β(uε)| dx+
∫

Γ̃Ne
|ρ̃(uε)| dσ ≤ ‖d̃‖L1(Γ̃Ne)

+ ‖f‖L1(Ω).

Proof. We set ϕ̃ = uε in (2.17) to get∫
Ω
a(x,∇uε).∇uε dx+

∫
Ω̃\Ω

1

εp
|∇uε|p−2∇uε.∇uε dx+

∫
Ω
β(uε)uε dx

=

∫
Ω
fuε dx+

∫
Γ̃Ne

(
d̃− ρ̃(uε)

)
uε dσ.

(2.19)

(i) Obviously, we have
∫

Ω β(uε)uε dx ≥ 0,
∫

Ω̃\Ω
1
εp |∇uε|

p−2∇uε.∇uε dx ≥ 0 and
∫

Ω fuε dx ≤
C(β, θ1)‖f‖L1(Ω). For the last term in (2.19), we have∫

Γ̃Ne

(
d̃− ρ̃(uε)

)
uε dσ =

∫
Γ̃Ne

d̃uε dσ −
∫

Γ̃Ne

ρ̃(uε)uε dσ

≤
∫

Γ̃Ne

d̃uε dσ

≤
∫

Γ̃Ne

|d̃||uε|dσ

≤ C(ρ, θ2)‖d̃‖
L1(Γ̃Ne)

.

Having in mind the relation a(x, ξ).ξ ≥ 1
C′ |ξ|

p, we get∫
Ω
a(x,∇uε).∇uε dx ≥ 1

C ′

∫
Ω
|∇uε|p dx.

Using the inequalities above, one gets∫
Ω
|∇uε|p dx ≤ C ′

(
C(β, θ1)‖f‖L1(Ω) + C(ρ, θ2)‖d̃‖

L1(Γ̃Ne)

)
≤ C ×

(
‖d̃‖

L1(Γ̃Ne)
+ ‖f‖L1(Ω)

) (2.20)

with C ≥ max {C ′C(β, θ1), C ′C(ρ, θ2)}.
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In (2.19), the terms
∫

Ω a(x,∇uε).∇uε dx and
∫

Ω β(uε)uε dx are non-negative so that we obtain∫
Ω̃\Ω

1

εp
|∇uε|p dx ≤ C ×

(
‖d̃‖

L1(Γ̃Ne)
+ ‖f‖L1(Ω)

)
. (2.21)

Adding (2.20) and (2.21), we obtain (i).

(ii) We set ϕ̃ = Tk(uε), k > 0, in (2.17) to get∫
Ω
a(x,∇uε).∇Tk(uε) dx+

∫
Ω̃\Ω

1

εp
|∇uε|p−2∇uε.∇Tk(uε) dx+

∫
Ω
β(uε)Tk(uε) dx

+

∫
Γ̃Ne

ρ̃(uε)Tk(uε) dσ =

∫
Ω
fTk(uε) dx+

∫
Γ̃Ne

d̃Tk(uε) dσ.

(2.22)

The first two terms in (2.22) are non-negative. For the terms on the right-hand side of (2.22), we have∫
Ω
fTk(uε) dx+

∫
Γ̃Ne

d̃Tk(uε) dσ ≤ k
(∫

Ω
|f |dx+

∫
Γ̃Ne

d̃dσ

)
= k

(
‖d̃‖

L1(Γ̃Ne)
+ ||f ||L1(Ω)

)
.

Then, from (2.22), it yields∫
Ω
β(uε)Tk(uε) dx+

∫
Γ̃Ne

ρ̃(uε)Tk(uε) dσ ≤ k
(
‖d̃‖

L1(Γ̃Ne)
+ ||f ||L1(Ω)

)
.

We divide the above inequality by k and let k go to zero to get∫
Ω
β(uε) sign(uε) dx+

∫
Γ̃Ne

ρ̃(uε) sign(uε) dσ =

∫
Ω
|β(uε)|dx+

∫
Γ̃Ne

|ρ̃(uε)| dσ

≤
(
‖d̃‖

L1(Γ̃Ne)
+ ||f ||L1(Ω)

)
. �

The following result states useful convergences results.

Proposition 2 As ε→ 0, we have

(i) uε → u a.e. in Ω and a.e. on Γ̃Ne;

(ii) β(uε)→ β(u) in L1(Ω);

(iii) ∇uε ⇀ ∇u in
(
Lp(Ω̃ \ Ω)

)N and ∇u = 0 in Ω̃ \ Ω;

(iv) ρ̃(uε)→ ρ̃(u) in L1(Γ̃Ne);

(v) a(x,∇uε) ⇀ a(x,∇u) in
(
Lp
′
(Ω)
)N .

Proof. (i) For any 0 < ε < 1 we have∫
Ω̃
|∇uε|p dx =

∫
Ω
|∇uε|p dx+

∫
Ω̃\Ω
|∇uε|p dx ≤

∫
Ω
|∇uε|p dx+

∫
Ω̃\Ω

1

εp
|∇uε|p dx.
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Then, thanks to Proposition 1 (i), the sequence (|∇uε|)ε>0 is bounded inLp(Ω̃). Since uε ∈W 1,p
D (Ω̃),

the sequence (uε)ε>0 is bounded in W 1,p
D (Ω̃). Up to a subsequence, we get as ε→ 0 that

uε ⇀ u in W 1,p
D (Ω̃), uε → u a.e. in Ω̃ and a.e. on Γ̃Ne.

We conclude (i) using the fact that Ω ⊂ Ω̃.

(ii) As uε → u a.e. in Ω and β is continuous, we deduce that β(uε)→ β(u) a.e. in Ω. Using Fatou’s
lemma and Proposition 1 (ii), we obtain β(u) ∈ L1(Ω). Having in mind that |β(uε)| ≤ θ1 a.e. in Ω,
by using Lebesgue dominated convergence theorem (since Ω is bounded), we see that β(uε)→ β(u)
in L1(Ω).

(iii) The fact that uε ⇀ u in W 1,p
D (Ω̃) implies that ∇uε ⇀ ∇u in

(
Lp(Ω̃)

)N and then ∇uε ⇀ ∇u
in
(
Lp(Ω̃ \ Ω)

)N . By Proposition 1 (i) we can assert that
(

1
εp |∇uε|

p
)
ε>0

is bounded in L1(Ω̃ \ Ω).

Then,
(

1
ε∇uε

)
ε>0

is bounded in
(
Lp(Ω̃ \ Ω)

)N . Therefore, there exists Θ ∈
(
Lp(Ω̃ \ Ω)

)N such
that

1

ε
∇uε ⇀ Θ in

(
Lp(Ω̃ \ Ω)

)N as ε→ 0.

For any v ∈
(
Lp
′
(Ω̃ \ Ω)

)N we have∫
Ω̃\Ω
∇uε.v dx =

∫
Ω̃\Ω

ε

(
1

ε
∇uε

)
.v dx =

∫
Ω̃\Ω

(
1

ε
∇uε −Θ

)
.(εv) dx+ ε

∫
Ω̃\Ω

Θ.v dx. (2.23)

As (εv)ε>0 converges strongly to zero in
(
Lp
′
(Ω̃\Ω)

)N, passing to the limit in (2.23) as ε→0, we get

∇uε ⇀ 0 in
(
Lp(Ω̃ \ Ω)

)N
.

Hence, one has∇uε ⇀ ∇u = 0 in
(
Lp(Ω̃ \ Ω)

)N .

(iv) As uε → u a.e. on Γ̃Ne and ρ̃ is continuous, we get ρ̃(uε)→ ρ̃(u) a.e. on Γ̃Ne. Using Fatou’s
lemma and Proposition 1 (ii), we obtain ρ̃(u) ∈ L1(Γ̃Ne). By the estimate |ρ̃(uε)| ≤ θ2 a.e. in Γ̃Ne
and the Lebesgue dominated convergence theorem, we get (iv).

(v) The sequence (a(x,∇uε))ε>0 is bounded in
(
Lp
′
(Ω)
)N according to (1.1). We can extract a

subsequence such that a(x,∇uε) ⇀ Φ in
(
Lp
′
(Ω)
)N . We have to show that Φ = a(x,∇u) a.e. in

Ω. The proof consists of two steps.

Step 1: We prove that

lim sup
ε→0

∫
Ω
a(x,∇uε).∇ (uε − u) dx ≤ 0. (2.24)

Let us take ϕ̃ = uε − u as a test function in (2.17). We get∫
Ω
a(x,∇uε).∇(uε − u) dx+

∫
Ω̃\Ω

1

εp
|∇uε|p−2∇uε.∇(uε − u) dx+

∫
Ω
β(uε)(uε − u) dx

+

∫
Γ̃Ne

ρ̃(uε)(uε − u) dσ =

∫
Ω
f(uε − u) dx+

∫
Γ̃Ne

d̃(uε − u) dσ.

(2.25)

Note that∫
Ω
β(uε)(uε − u) dx =

∫
Ω

(β(uε)− β(u)) (uε − u) dx+

∫
Ω
β(u)(uε − u) dx.
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Since
∫

Ω (β(uε)− β(u)) (uε − u) dx ≥ 0, we get∫
Ω
β(uε)(uε − u) dx ≥

∫
Ω
β(u)(uε − u) dx.

Using the Lebesgue dominated convergence theorem we deduce that limε→0

∫
Ω β(u)(uε−u) dx = 0,

and then
lim sup
ε→0

∫
Ω
β(uε)(uε − u) dx ≥ 0. (2.26)

As ∇u = 0 in Ω̃ \ Ω, we obtain

lim sup
ε→0

∫
Ω̃\Ω

1

εp
|∇uε|p−2∇uε.∇(uε − u) dx

= lim sup
ε→0

∫
Ω̃\Ω

1

εp
|∇uε|p−2∇uε.∇uε dx ≥ 0.

(2.27)

We also have∫
Γ̃Ne

ρ̃(uε)(uε − u) dσ =

∫
Γ̃Ne

(
ρ̃(uε)− ρ̃(u)

)
(uε − u) dσ +

∫
Γ̃Ne

ρ̃(u)(uε − u) dσ

≥
∫

Γ̃Ne

ρ̃(u)(uε − u) dσ.

As uε → u a.e. on Γ̃Ne, by the Lebesgue dominated convergence theorem, we get

lim
ε→0

∫
Γ̃Ne

ρ̃(u)(uε − u) dσ = 0.

Hence,

lim sup
ε→0

∫
Γ̃Ne

ρ̃(uε)(uε − u) dσ ≥ 0. (2.28)

Applying the Lebesgue dominated convergence theorem again, we obtain

lim
ε→0

∫
Ω
f(uε − u) dx = 0 (2.29)

and
lim
ε→0

∫
Γ̃Ne

d̃(uε − u) dσ = 0. (2.30)

Letting ε go to zero in (2.25) and using (2.26)–(2.30), we get (2.24).

Step 2: By standard monotonicity arguments we prove that Φ = a(x,∇u) a.e. in Ω.

Let ϕ ∈ D(Ω) and λ ∈ R∗. Using (2.24) and (1.2), we get

λ lim
ε→0

∫
Ω
a(x,∇uε).∇ϕdx ≥ lim sup

ε→0

∫
Ω
a(x,∇uε).∇

(
uε − u+ λϕ

)
dx

≥ lim sup
ε→0

∫
Ω
a(x,∇(u− λϕ)).∇

(
uε − u+ λϕ

)
dx.

Hence,

λ lim
ε→0

∫
Ω
a(x,∇uε).∇ϕdx ≥ λ

∫
Ω
a(x,∇(u− λϕ)).∇ϕdx. (2.31)
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Dividing (2.31) by λ > 0 and by λ < 0 respectively, and passing to the limit with λ→ 0 we obtain

lim
ε→0

∫
Ω
a(x,∇uε).∇ϕdx =

∫
Ω
a(x,∇u).∇ϕdx.

This means that
∫

Ω Φ.∇ϕdx =
∫

Ω a(x,∇u).∇ϕdx and so div(Φ) = div a(x,∇u) in D′(Ω).
Hence, Φ = a(x,∇u) a.e. in Ω and we have a(x,∇uε) ⇀ a(x,∇u) in

(
Lp
′
(Ω)
)N as ε→ 0.

�

3 Existence and uniqueness of solutions to P (β, ρ, f, d)

We are now able to prove Theorem 1.

Proof. The fact that∇u = 0 in Lp(Ω̃ \Ω) ensure that u ≡ constant on Ω̃ \Ω, so that u ∈W 1,p
Ne (Ω).

Moreover, in the proof of Proposition 2 (ii) we have already seen that β(u) ∈ L1(Ω).

To show that u is a solution of P (β, ρ, f, d), we only have to prove the equality in (1.6). For
any ϕ ∈ W 1,p

Ne (Ω) ∩ L∞(Ω), we consider the function ϕ̃ ∈ W 1,p
D (Ω̃) ∩ L∞(Ω) such that ϕ̃ =

ϕχΩ + ϕNeχΩ̃\Ω. Then, ϕ̃ ≡ constant on Ω̃ \ Ω. Such function ϕ̃ in the equality in (2.17) gives us,
thanks to Remark 2,∫

Ω
a(x,∇uε).∇ϕdx+

∫
Ω
β(uε)ϕdx =

∫
Ω
fϕdx+

(
d−

∫
Γ̃Ne

ρ̃(uε) dσ

)
ϕNe. (3.1)

Passing to the limit in (3.1) as ε→ 0 and using the convergences in Proposition 2, one has∫
Ω
a(x,∇u).∇ϕdx+

∫
Ω
β(u)ϕdx =

∫
Ω
fϕdx+ dϕNe −

(
lim
ε→0

∫
Γ̃Ne

ρ̃(uε) dσ

)
ϕNe

=

∫
Ω
fϕdx+ dϕNe −

(∫
Γ̃Ne

ρ̃(u) dσ

)
ϕNe

=

∫
Ω
fϕdx+ dϕNe −

(∫
Γ̃Ne

ρ̃(u)Ne dσ

)
ϕNe

=

∫
Ω
fϕdx+

(
d− ρ(u)Ne

)
ϕNe,

which means that u is a solution of P (β, ρ, f, d).

Let us prove now the uniqueness part of Theorem 1. This proof is a straightforward consequence
of the following lemma.

Lemma 2 Assume that u1 and u2 are two solutions for the problems P (β, ρ, f1, d1) and
P (β, ρ, f2, d2), respectively. Then,

(
ρ(u1)Ne − ρ(u2)Ne

)+
+

∫
Ω

(
β(u1)− β(u2)

)+
dx ≤ ‖f1 − f2‖L1(Ω) + |d1 − d2| . (3.2)
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Proof. For any ϕ ∈W 1,p
Ne (Ω) ∩ L∞(Ω) we have∫

Ω
a(x,∇u1).∇ϕdx+

∫
Ω
β(u1)ϕdx =

∫
Ω
f1ϕdx+

(
d1 − ρ(u1)Ne

)
ϕNe (3.3)

and ∫
Ω
a(x,∇u2).∇ϕdx+

∫
Ω
β(u2)ϕdx =

∫
Ω
f2ϕdx+

(
d2 − ρ(u2)Ne

)
ϕNe. (3.4)

Subtracting (3.4) from (3.3), one has∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇ϕdx+

∫
Ω

(β(u1)− β(u2))ϕdx

+
(
ρ(u1)Ne − ρ(u2)Ne

)
ϕNe =

∫
Ω

(f1 − f2)ϕdx+ (d1 − d2)ϕNe.

(3.5)

In (3.5) we take ϕ = Hε(u1 − u2) to get∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇Hε(u1 − u2) dx

+

∫
Ω

(β(u1)− β(u2))Hε(u1 − u2) dx

+
(
ρ(u1)Ne − ρ(u2)Ne

)
(Hε(u1 − u2))Ne

=

∫
Ω

(f1 − f2)Hε(u1 − u2) dx+ (d1 − d2) (Hε(u1 − u2))Ne .

(3.6)

Since |Hε(r)| ≤ 1 for all r ∈ R, it follows that∫
Ω

(f1 − f2)Hε(u1 − u2) dx+ (d1 − d2) (Hε(u1 − u2))Ne ≤ ‖f1 − f2‖L1(Ω) + |d1 − d2| .

Thanks to (1.2), the first term in (3.6) is non-negative. Indeed, we have∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇Hε(u1 − u2) dx

=
1

ε

∫
{0<u1−u2<ε}

(
a(x,∇u1)− a(x,∇u2)

)
. (∇u1 −∇u2) dx ≥ 0.

Hence, from (3.6) we obtain∫
Ω

(β(u1)− β(u2))Hε(u1 − u2) dx+
(
ρ(u1)Ne − ρ(u2)Ne

)
(Hε(u1 − u2))Ne

≤ ‖f1 − f2‖L1(Ω) + |d1 − d2| .
(3.7)

Letting ε go to zero in (3.7), we deduce (3.2). �

Inequality (3.2) allows us to write(
ρ(u1)Ne − ρ(u2)Ne

)+ ≤ ‖f1 − f2‖L1(Ω) + |d1 − d2| ,∫
Ω

(β(u1)− β(u2))+ dx ≤ ‖f1 − f2‖L1(Ω) + |d1 − d2| .
(3.8)
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For f1 = f2 and d1 = d2, by (3.8) one has(
ρ(u1)Ne − ρ(u2)Ne

)+
= 0,∫

Ω
(β(u1)− β(u2))+ dx = 0.

Therefore, (
ρ(u1)Ne − ρ(u2)Ne

)+
= 0 and (β(u1)− β(u2))+ = 0 a.e. in Ω.

This means that
ρ(u1)Ne ≤ ρ(u2)Ne and β(u1) ≤ β(u2) a.e. in Ω.

Since β and ρ are non-decreasing continuous functions on R, we have

(u1)Ne ≤ (u2)Ne and u1 ≤ u2 a.e. in Ω.

By changing the roles of u1 and u2, we obtain

(u2)Ne ≤ (u1)Ne and u2 ≤ u1 a.e. in Ω.

Hence, we get
(u1)Ne = (u2)Ne and u1 = u2 a.e. in Ω

and the uniqueness part is proved. �
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