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1 Introduction

For many control systems in real life impulses are intrinsic properties that do not modify their
controllability. So we conjecture that under certain conditions the abrupt changes as perturbations of
a system do not modify certain properties such as controllability. In other words, the controllability is
robust by looking the impulses as perturbations. In this regard, here we prove the exact controllability
and the approximate controllability of semilinear difference equations with impulses.

One of the main sources for applications of discrete control systems methods are continuous
control systems; that is to say, those models described by differential equations instead of difference
equations. The reason for this is that while physical systems are modelled by differential equations,
control laws are implemented often in a digital computer, whose inputs and outputs are sequences.
A common approach to design controls in this case is to obtain a difference equation model that
approximates the continuous system that will be controlled.

Considering this observation and using some ideas presented in [1, 2, 3, 4, 5, 6] we will give
sufficient conditions for the exact controllability and the approximate controllability of the following
semilinear impulsive difference equation

z(n+ 1) = A(n)z(n) +B(n)u(n) + f(n, z(n), u(n)), n > m ∈ N∗,
z(m) = z0,

z(mk) = z(mk − 0) + Ik(mk, z(mk), u(mk)), k = 1, 2, . . . , p,

(1.1)

where N∗ = N ∪ {0}, m < m1 < m2 < · · · < mp < n, mi ∈ N = {1, 2, 3, · · · , }, k = 1, . . . , p,
z(n) ∈ Z, u(n) ∈ U , Z and U are Hilbert spaces, A ∈ l∞(N, L(Z)), B ∈ l∞(N, L(U,Z)),
u ∈ l2(N, U), L(U,Z) denotes the space of all bounded linear operators from U to Z,
L(Z,Z) = L(Z) and f, Ik : N×Z ×U → Z are nonlinear perturbations; l2(N, U) = {s : N→ U :∑∞

n=1 ‖s(n)‖2
U
<∞} and l∞(N, L(U,Z)) = {D : N→ L(U,Z) : supn∈N ‖D(n)‖

L(U,Z)
<∞}.

In (1.1), z(mk−0) represents the value of z(mk) determined by the first equation of (1.1), which
is used to find the new value z(mk) in the third equation of (1.1) and with this value we calculate
z(mk + 1) in the first equation of (1.1).

Consider the set ∆ = {(n,m) ∈ N × N : n ≥ m} and let Φ = {Φ(n,m)}(n,m)∈∆ be the
evolution operator associated to A, i.e.,

Φ(n,m) =

{
A(n− 1) · · ·A(m), n > m,

Id, n = m,

where Id is the identity operator in the space of bounded and linear operators L(Z). Then, for z0 ∈ Z
the equation (1.1) has a unique solution given by

zu(n) = Φ(n,m)z0 +

n∑
k=m+1

Φ(n, k)
[
B(k − 1)u(k − 1) + f(k − 1, z(k − 1), u(k − 1))

]
+

p∑
i=1

Φ(n,mi)Ii(mi, z(mi), u(mi)), n > m ∈ N∗.
(1.2)

Corresponding to the nonlinear system (1.1) we consider also the linear system:{
z(n+ 1) = A(n)z(n) +B(n)u(n), n > m ∈ N∗,
z(m) = z0.

(1.3)
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We will use the following notation [m,n0]N = [m,n0] ∩ N∗ with 0 ≤ m < n0.

Definition 1 (Exact controllability of system (1.1)) The system (1.1) is said to be exactly
controllable on [m,n0]N if for every z0, z1 ∈ Z there exists u ∈ l2(N, U) such that the corre-
sponding solution of (1.1) satisfies z(m) = z0 and z(n0) = z1.

Definition 2 (Approximate controllability of system (1.1)) The system (1.1) is said to be
approximately controllable on [m,n0]N if for every z0, z1 ∈ Z and ε > 0 there exists u ∈ l2(N, U)
such that the corresponding solution of (1.1) satisfies ‖z(n0)− z1‖ < ε.

Definition 3 (Approximate controllability on free time of (1.1)) The system (1.1) is said to be
approximately controllable on free time if for every z0, z1 ∈ Z and ε > 0 there exists u ∈ l2(N, U)
and n0 ∈ N such that the corresponding solution of (1.1) satisfies ‖z(n0)− z1‖ < ε.

Remark 1 To avoid trivialities and contradictions, in order to analyse the controllability on [m,n0]N
of the semilinear system with impulses (1.1), we shall assume the following condition:

m < m1 < m2 < · · · < mp < n0. (1.4)

Let us assume the following conditions for k ∈ N, u1, u2 ∈ l2(N, U), z1, z2 ∈ Z,

‖f(k, z2, u2)− f(k, z1, u1)‖ ≤ L1{‖z2 − z1‖+ ‖u2 − u1‖}, (1.5)

‖Ii(k, z2, u2)− Ii(k, z1, u1)‖ ≤ L2{‖z2 − z1‖+ ‖u2 − u1‖}, i = 1, . . . , p, (1.6)

and for n ∈ N, u ∈ l2(N, U), z ∈ Z,

‖Φ(n, k)f(k−1, z(k − 1), u(k−1))‖ ≤Mk, 1 ≤ k ≤ n, (1.7)
∞∑
k=1

Mk <∞. (1.8)

We will prove the following statements:

(A) If conditions (1.5)–(1.6) hold and the linear system (1.3) is exactly controllable on [0, n0]N for
some n0 > mp, then the semilinear system (1.1) is exactly controllable on [0, n0]N.

(B) If the conditions (1.7)–(1.8) hold and the linear system (1.3) is approximately controllable on
[m,n0]N for all 0 ≤ m < n0 with n0 ≥ 1, then the semilinear system (1.1) is approximately
controllable on free time.

We have already obtained some results on exact and approximate controllability for linear and
semilinear difference equations without impulses [13, 14, 15, 16].
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2 Controllability of the linear equation without impulses

In this section we will present some characterization of the exact controllability and the approximate
controllability for the linear difference equation (1.3), which appears in the foregoing references. To
this end, we note that the solution of (1.3) is given by the discrete variation of constants formula

z(n) = Φ(n,m)z0 +

n∑
k=m+1

Φ(n, k)B(k − 1)u(k − 1), n > m. (2.1)

Definition 4 For the linear system (1.3) we define the following concepts:

(a) the controllability map Bmn0 : l2(N, U)→ Z (for 0 < m < n0 ∈ N) is defined by

Bmn0u =

n0∑
k=m+1

Φ(n0, k)B(k − 1)u(k − 1); (2.2)

(b) the grammian map (for 0 < m < n0 ∈ N) is defined by LBmn0 = Bmn0Bmn0∗.

The proof of the following Proposition can be seen in [13].

Proposition 1 The adjoint Bmn0∗ : Z → l2(N, U) of the operator Bmn0 is given by

(Bmn0∗z)(k − 1) =

{
B∗(k − 1)Φ∗(n0, k)z, k ≤ n0,

0, k > n0,
(2.3)

and

LBmn0z =

n0∑
k=m+1

Φ(n0, k)B(k − 1)B∗(k − 1)Φ∗(n0, k)z, z ∈ Z. (2.4)

When (m = 0) in (1.3) instead of Bmn0 we write Bn0 and instead of LBmn0 we write LBn0 .

The following Theorem holds in general for a linear bounded operator G : W → Z between
Hilbert spaces W and Z (see [1, 2, 7, 8, 14, 15]).

Theorem 1 (1) The equation (1.3) is exactly controllable on [0, n0]N for some n0 ∈ N if and only
if one of the following statements holds:

(a) Range(Bn0) = Z,

(b) there exists γ > 0 such that
〈LBn0z, z〉 ≥ γ‖z‖2Z ,

(c) there exists γ > 0 such that

‖Bn0∗z‖l2(N,U) ≥ γ‖z‖Z , z ∈ Z.

(2) The linear system (1.3) is approximately controllable on [m,n0]N if and only if one of the
following statements holds:
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(a) Range(Bmn0) = Z,

(b) Ker(Bmn0∗) = {0},
(c) 〈LBmn0z, z〉 > 0, z 6= 0 in Z,

(d) if B∗(k − 1)Φ∗(n0, k)z = 0 for k ≤ n0, then z = 0,

(e) limα→0+ α(αI + LBmn0 )−1z = 0,

(f) for all z ∈ Z we have Bmn0uα = z − α(αI + LBmn0 )−1z, where

uα = Bmn0∗(αI + LBmn0 )−1z, α ∈ (0, 1];

so, limα→0 Bmn0uα = z and the error Eαz of this approximation is given by

Eαz = α(αI + LBmn0 )−1z, α ∈ (0, 1].

Remark 2 The foregoing theorem implies that the family of operators Γαmn0 : Z → l2(N, U)
defined by

Γαmn0z = Bmn0∗(αI + LBmn0 )−1z, α ∈ (0, 1],

is an approximate right inverse of the operator Bmn0 , i.e.,

lim
α→0+

Bmn0Γαmn0 = I

in the strong topology.

The following Lemma can be found in [13].

Lemma 1 The equation (1.3) is exactly controllable on [0, n0]N for n0 ∈ N if and only if LBn0

is invertible. Moreover, in this case S = Bn0∗L−1
Bn0

is a right inverse of Bn0 and the control

u ∈ l2(N, U) steering an initial state z0 to a final state z1 is given by:

u = Bn0∗L−1
Bn0 (z1 − Φ(n0, 0)z0). (2.5)

Lemma 2 If the linear system (1.3) is approximately controllable on [m,n0]N, a sequence of controls
steering the initial state z0 to a ε-neighbourhood of a final state z1 in time n0 is given by

uα = Bmn0∗(αI + LBmn0 )−1(z1 − Φ(n0,m)z0),

with corresponding solutions y(n) = y(n,m, y0, uα) of the initial value problem{
y(n+ 1) = A(n)y(n) +B(n)uα(n), n > m ∈ N∗,
y(m) = y0,

(2.6)

satisfying
lim
α→0+

y(n,m, y0, uα) = z1, (2.7)

i.e.,

lim
α→0+

y(n) = lim
α→0+

{
Φ(n,m)z(m) +

n∑
k=m+1

Φ(n, k)Bumα (k − 1)

}
= z1. (2.8)
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3 Exact controllability of the nonlinear difference equation with im-
pulse

In this section we shall study the exact controllability of the nonlinear difference equation with
impulses (1.1) on [0, n0]N with n0 > mp.

The technique applied in the main result of this section can be used in a more general problem
since it is based on the following Theorem used to characterize center manifolds in dynamical system
theory.

Theorem 2 Let Z be a Banach space and K : Z → Z a Lipschitz function with a Lipschitz constant
k < 1 and consider G(z) = z + Kz. Then G is a homeomorphism whose inverse is a Lipschitz
function with a Lipschitz constant (1− k)−1.

Corresponding to the nonlinear system (1.1) we consider also the linear system (1.3) with m = 0:{
z(n+ 1) = A(n)z(n) +B(n)u(n), n ∈ N∗,
z(0) = z0.

(3.1)

Then, the solution of (3.1) is given by the discrete variation of constants formula:

z(n) = Φ(n, 0)z(0) +
n∑
k=1

Φ(n, k)B(k − 1)u(k − 1), n ∈ N. (3.2)

Consider the following nonlinear operator Bn0
f,I : l2(N, U)→ Z defined by

Bn0
f,Iu =

n0∑
k=1

Φ(n0, k)B(k − 1)u(k − 1) +

n0∑
k=1

Φ(n0, k)f(k − 1, z(k − 1), u(k − 1))

+

p∑
i=1

Φ(n0,mi)Ii(mi, z(mi), u(mi)).

(3.3)

Then, the following proposition is a characterization of the exact controllability of the nonlinear
system (1.1) on [0, n0]N.

Proposition 2 The system (1.1) is exactly controllable on [0, n0]N for some n0 if and only if
R(Bn0

f,I) = Z.

Proof. Assume that (1.1) is exactly controllable on [0, n0]N for some n0 ∈ N. Given z ∈ Z, we can
find z0, z1 ∈ Z such that

z1 = Φ(n0, 0)z0 + z. (3.4)

Then, there exists a control u ∈ l2(N, U) such that zu(0) = z0 and zu(n0) = z1. So,

z1 = zu(n0) = Φ(n0, 0)z0 +

n0∑
k=1

Φ(n0, k)B(k − 1)u(k − 1)

+

n0∑
k=1

Φ(n0, k)f(k − 1, zu(k − 1), u(k − 1)) +

p∑
i=1

Φ(n0,mi)Ii(mi, z(mi), u(mi)).

(3.5)
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By substituting (3.4) in (3.5), we obtain

Φ(n0, 0)z0 + z = Φ(n0, 0)z0 +

n0∑
k=1

Φ(n0, k)B(k − 1)u(k − 1)

+

n0∑
k=1

Φ(n0, k)f(k − 1, zu(k − 1), u(k − 1)) +

p∑
i=1

Φ(n0,mi)Ii(mi, z(mi), u(mi)).

Then,

z =

n0∑
k=1

Φ(n0, k)B(k − 1)u(k − 1) +

n0∑
k=1

Φ(n0, k)f(k − 1, zu(k − 1), u(k − 1))

+

p∑
i=1

Φ(n0,mi)Ii(mi, z(mi), u(mi)) = Bn0
f,Iu.

So, Range(Bn0
f,I) = Z.

Assume now that Range(Bn0
f,I) = Z. Consider z ∈ Z such that

z = z1 − Φ(n0, 0)z0, (3.6)

with z0, z1 ∈ Z. Then there exists a control u ∈ l2(N, U) such that

Bn0
f,Iu = z. (3.7)

Then, by substituting (3.6) in (3.7), we obtain

z = z1 − Φ(n0, 0)z0 =

n0∑
k=1

Φ(n0, k)B(k − 1)u(k − 1)

+

n0∑
k=1

Φ(n0, k)f(k − 1, zu(k − 1), u(k − 1)) +

p∑
i=1

Φ(n0,mi)Ii(mi, z(mi), u(mi)).

Therefore,

zu(n0) = Φ(n0, 0)z0 +

n0∑
k=1

Φ(n0, k)B(k − 1)u(k − 1)

+

n0∑
k=1

Φ(n0, k)f(k − 1, zu(k − 1), u(k − 1)) +

p∑
i=1

Φ(n0,mi)Ii(mi, z(mi), u(mi)).

So, we have found a solution zu(·) of (1.1) such that zu(n0) = z1 and zu(0) = z0, i.e., (1.1) is
exactly controllable on [0, n0]N for some n0 ∈ N. �

Lemma 3 Let u1, u2 ∈ l2(N, U) and let z1, z2 be the corresponding solutions of (1.1). Then, the
following inequality holds:

‖z1(j)− z2(j)‖Z ≤ [M(‖B‖+ L1) + L2]
√
n0e

(ML1+L2)n0‖u1 − u2‖l2(N,U), (3.8)

where j ≤ n0 and M = sup1≤j,k≤n0
{‖Φ(j, k)‖}.
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Proof. Let z1, z2 be solutions of (1.1) corresponding to u1, u2, respectively. Then

‖z1(j)− z2(j)‖ ≤
j∑

k=1

‖Φ(j, k)‖‖B‖‖u1(k − 1)− u2(k − 1)‖

+

j∑
k=1

‖Φ(j, k)‖‖f(k − 1, z1(k − 1), u1(k − 1))− f(k − 1, z2(k − 1), u2(k − 1))‖

+

p∑
i=1

‖Φ(j,mi)‖‖Ii(k − 1, z1(mi), u1(mi))− Ii(mi, z2(mi), u2(mi))‖

≤M [‖B‖+ L1]

j∑
k=1

‖u1(k − 1)− u2(k − 1)‖+ L2

p∑
i=1

‖u1(mi)− u2(mi)‖

+ML1

j∑
k=1

‖z1(k − 1)− z2(k − 1)‖+ L2

p∑
i=1

‖z1(mi)− z2(mi)‖

≤ [M(‖B‖+ L1) + L2]
√
n0‖u1 − u2‖+ [ML1 + L2]

j∑
k=1

‖z1(k − 1)− z2(k − 1)‖.

Using the Discrete Gronwall Inequality (see [11, Corollary 1.6.2]), we obtain

‖z1(j)− z2(j)‖Z ≤ [M(‖B‖+ L1) + L2]
√
n0e

(ML1+L2)n0‖u1 − u2‖l2(N,U),

for j ≤ n0. �

Now, we are ready to formulate and prove the main result of this section.

Theorem 3 Under conditions (1.5) and (1.6), if the system (3.1) is exactly controllable and the
following estimate holds

LK = M(L1 + L2)(Γ + 1)‖Bn0∗‖‖L−1
Bn0‖
√
n0 < 1, (3.9)

where Γ = [M(‖B‖+ L1) + L2]
√
n0e

(ML1+L2)n0 , then the system (1.1) is exactly controllable on
[0, n0]N.

Proof. We want to prove that

Bn0
f,I(l

2(N;U)) = Range(Bn0
f,I) = Z.

But, from the exact controllability of the linear system (1.3) we know due to Lemma 1 that the
operator S = Bn0∗L−1

Bn0
is a right inverse of Bn0 . Then, it is enough to prove that the operator

B̃n0
f,I = Bn0

f,I ◦ S is surjective. From the equation (2.2) we obtain the following expression for this
operator:

B̃n0
f,Iξ = ξ +

n0∑
k=1

Φ(n0, k)f(k − 1, z(k − 1), S(ξ)(k − 1))

+

p∑
i=1

Φ(n0,mi)Ii(mi, z(mi), u(mi)).

(3.10)
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Now, if we define the operator K : Z → Z by

Kξ =

n0∑
k=1

Φ(n0, k)f(k − 1, z(k − 1), S(ξ)(k − 1))

+

p∑
i=1

Φ(n0,mi)Ii(mi, z(mi), u(mi)),

(3.11)

where z = zξ is the solution of (1.1) corresponding to the control u = S(ξ), then the equation (3.10)
takes the form

B̃n0
f,I = Id +K. (3.12)

The function K is globally Lipschitz. In fact, let z1, z2 be solutions of (1.1) corresponding to the
controls Sξ1, Sξ2, respectively. Then

‖Kξ1 −Kξ2‖

≤
n0∑
k=1

‖Φ(n0, k)‖‖f(k − 1, z1(k − 1), S(ξ1)(k − 1))− f(k − 1, z2(k − 1), S(ξ2)(k − 1))‖

+

p∑
i=1

‖Φ(n0,mi)‖‖Ii(mi, z1(mi), S(ξ1)(mi))− Ii(mi, z2(mi), S(ξ2)(mi))‖

≤
n0∑
k=1

ML1{‖z1(k − 1)− z2(k − 1)‖+ ‖(Sξ1)(k − 1)− (Sξ2)(k − 1)‖}

+

p∑
i=1

ML2{‖z1(mi)− z2(mi)‖+ ‖(Sξ1)(mi)− (Sξ2)(mi)‖}

≤
n0∑
k=1

M(L1 + L2)(Γ + 1)‖(Sξ1)(k − 1)− (Sξ2)(k − 1)‖

≤M(L1 + L2)(Γ + 1)
√
n0‖Sξ1 − Sξ2‖l2(N,U)

≤M(L1 + L2)(Γ + 1)‖Bn0∗‖‖L−1
Bn0‖
√
n0‖ξ1 − ξ2‖.

Therefore, the operator K satisfies Lipschitz’ condition with the Lipschitz constant
LK = M(L1 + L2)(Γ + 1)‖Bn0∗‖‖L−1

Bn0‖
√
n0, and the assumption (3.9) implies that LK < 1.

Hence, from Theorem 2 we get that B̃n0
f,I = Id + K is a homeomorphism and consequently the

operator Bn0
f,I is surjective; that is to say,

Bn0
f,I(l

2(N;U)) = Range(Bn0
f,I) = Z. �

4 Approximate controllability of the nonlinear impulsive equations

In this section we shall study the approximate controllability on free time of the nonlinear difference
equation with impulse (1.1).

Theorem 4 Under conditions (1.7) and (1.8), if the system (1.3) is approximately controllable on
[m,n0]N for all 0 ≤ m < n0 and n0 ≥ 1, then the system (1.1) is approximately controllable on free
time.
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Proof. Given an initial state z0, a final state z1 and ε > 0, we want to find a control ulα ∈ l2(N, U)
steering the system from z0 to an ε-neighbourhood of z1 on time n0. Specifically, the corresponding
solution zlα(n) = z(n, 0, z0, u

l
α) of initial value problem (1.1) at time n0 satisfies

‖zlα(n0)− z1‖ ≤ ε. (4.1)

Consider any u ∈ l2(N, U) and the corresponding solution z(n) = z(n, 0, z0, u) of initial value
problem (1.1). For α ∈ (0, 1], we define the control ulα ∈ l2(N, U) as follows:

ulα(n) =

{
u(n), if 0 < n ≤ l, n ∈ N,
uα(n), if l < n ≤ n0, n ∈ N,

(4.2)

where
uα = Bln0∗(αId + LBln0 )−1(z1 − Φ(n0, l)z0). (4.3)

Now, assume that mp < l < n0. Then the corresponding solution zlα(n) = z(n, 0, z0, u
l
α) of

initial value problem (1.1) at time n0 can be written as follows:

zlα(n0) = Φ(n0, 0)z0 +

n0∑
k=1

Φ(n0, k)Bulα(k − 1)

+

n0∑
k=1

Φ(n0, k)f(k − 1, zlα(k − 1), ulα(k − 1))

+

p∑
i=1

Φ(n0,mi)Ii(mi, z
l
α(mi), u

l
α(mi))

= Φ(n0, l)

{
Φ(l, 0)z0 +

l∑
k=1

Φ(l, k)Bulα(k − 1)

+
l∑

k=1

Φ(l, k)f(k − 1, zlα(k − 1), ulα(k − 1))

+

p∑
i=1

Φ(l,mi)Ii(mi, z
l
α(mi), u

l
α(mi))

}

+

n0∑
k=l+1

Φ(n0, k)Bulα(k − 1)

+

n0∑
k=l+1

Φ(n0, k)f(k − 1, zlα(k − 1), ulα(k − 1))

= Φ(n0, l)z(l) +

n0∑
k=l+1

Φ(n0, k)Bulα(k − 1)

+

n0∑
k=l+1

Φ(n0, k)f(k − 1, zlα(k − 1), ulα(k − 1)).
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Therefore, the solution zlα(n) = z(n, 0, z0, u
l
α) of initial value problem (1.1) at time n0 can be

written as follows:

zlα(n0) = Φ(n0, l)z(l) +

n0∑
k=l+1

Φ(n0, k)Buα(k − 1)

+

n0∑
k=l+1

Φ(n0, k)f(k − 1, zlα(k − 1), uα(k − 1)).

The corresponding solution ylα(n) = y(n, l, z(l), uα) of initial value problem (2.6) at time n0 is
given by

y(n0) = Φ(n0,m)z(l) +

n0∑
k=l+1

Φ(n0, k)Buα(k − 1). (4.4)

Hence, for l, n0 ∈ N big enough, with mp < l < n0, we obtain that

‖zlα(n0)− ylα(n0)‖ ≤
n0∑

k=l+1

‖Φ(n0, k)‖‖f(k − 1, zlα(k − 1), uα(k − 1))‖

≤
n0∑

k=l+1

Mk <
ε

2
.

On the other hand, from Lemma 2, there exists α > 0 such that

‖ylα(n0)− z1‖ ≤
ε

2
.

Therefore, from the above two inequalities we get the following estimate

‖zlα(n0)− z1‖ ≤ ‖zlα(n0)− ylα(n0)‖+ ‖ylα(n0)− z1‖ <
ε

2
+
ε

2
= ε,

which completes the proof of the theorem. �

5 Applications

Now, as an application of the main results of this paper we shall consider two important examples,
a flow-discretization of the controlled nonlinear 1D heat equation and the controlled nD wave
equation with impulses.

In general, given a controlled evolution equation

z′ = Az +Bu, z ∈ Z, u ∈ U, t > 0,

where z ∈ Z, u ∈ U , Z and U are Hilbert spaces, A is the infinitesimal generator of a C0-semigroup
{T (t)}t≥0, one can consider a discretization on its flow, the same that is used in [9] and [10] to study
the exponential dichotomy of evolution equations. That is to say,

z(n+ 1) = T (n)z(n) +Bu(n), n ∈ N∗,

where the control u = {u(n)}n≥1 belongs to l2(N, U) and z(n) ∈ Z.



60 C. Duque, H. Leiva and J. Uzcategui, J. Nonl. Evol. Equ. Appl. 2017 (2017) 49–64

Example 1 (Heat equation) We shall consider a discrete version on flow of the controlled nonlinear
heat equation in 1 dimension 

yt = yxx + u(t, x),

yx(t, 0) = yx(t, 1) = 0,

y(0, x) = y0(x).

(5.1)

The system (5.1) can be written as an abstract system in the space Z = L2[0, 1] as follows:{
z′ = −Az +Bu(t), z ∈ Z,
z(0) = z0,

(5.2)

where B = Id, the control function u belongs to L2(0, r;Z) and the operator A is given by
Aφ = −φxx with domain D(A) = H2 ∩H1

0 . A has the following spectral decomposition.

(a) For all z ∈ D(A) we have

Az =
∞∑
n=1

λnEn(z),

where λn = n2π2, En(z) = π2〈z, φn〉φn and φn(x) = sin(nπx).

(b) −A is the infinitesimal generator of a C0-semigroup {T (t)}t≥0 given by

T (t)z =
∞∑
n=1

e−λntEnz, z ∈ Z, t ≥ 0. (5.3)

So, {En} is a family of complete orthogonal projections in Z and

z =

∞∑
n=1

Enz, z ∈ Z.

Now, the discretization of (5.3) on flow is given by{
z(n+ 1) = T (n)z(n) +B(n)u(n), z ∈ Z,
z(0) = z0.

(5.4)

In this case, T ∗(t) = T (t) andB = Id. The system (5.4) is exactly controllable (see [13]). Therefore,
if we consider a perturbation with impulses of the equation (5.4), say

z(n+ 1) = T (n)z(n) + u(n) + f(n, z(n), u(n)), z ∈ Z,
z(0) = z0,

z(mk) = z(mk − 0) + Ik(mk, z(mk), u(mk)), k = 1, 2, . . . , p.

(5.5)

where the nonlinear term f and the impulses satisfy the conditions of Theorem 3, then we have
immediately that (5.5) is exactly controllable.
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Example 2 (Wave equation) Now, we shall consider a discretization on flow of the controlled
nonlinear wave equation 

ytt −∆y = u(t, x), x ∈ Ω,

y = 0 on R× ∂Ω,

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω,

(5.6)

where Ω is a bounded domain in Rn, the distributed control u ∈ L2(0, τ ;L2(Ω)), y0 ∈ H2(Ω)∩H1
0 ,

y1 ∈ L2(Ω). The system (5.6) can be written as an abstract second order equation in the Hilbert
space X = L2[0, 1] as follows:

{
y′′ = −Ay + u(t),

y(0) = y0, y′(0) = y1,
(5.7)

where the operator A is given by Aφ = −∆φ with the domain D(A) = H2(Ω,R) ∩H1
0 (Ω,R).

The operator A has the following properties: the spectrum of A consists only of eigenvalues
0 < λ1 < λ2 < · · · < λn → ∞, each one with multiplicity γn equal to the dimension of the
corresponding eigenspace.

(a) There exists a orthonormal and complete set {φn} of eigenvectors of A.

(b) For all x ∈ D(A) we have

Ax =

∞∑
n=1

λn

γn∑
k=1

〈ξ, φn,k〉φn,k =

∞∑
n=1

λnEnξ, (5.8)

where 〈·, ·〉 is the inner product in X and

Enx =

γn∑
k=1

〈ξ, φn,k〉φn,k. (5.9)

So, {En} is an orthonormal and complete family of projections in X and x =
∑∞

n=1Enx, x ∈ X.

(c) −A generates an analytical semigroup {e−At} given by

e−Atx =

∞∑
n=1

e−λntEnx. (5.10)

(d) The spaces of fractional powers Xr are given by:

Xr = D(Ar) =

{
x ∈ X :

∞∑
n=1

(λn)2r‖Enx‖2 <∞
}
, r ≥ 0,

with the norm

‖x‖r = ‖Arx‖ =

{ ∞∑
n=1

λ2r
n ‖Enx‖2

}1/2

, x ∈ Xr,

and

Arx =
∞∑
n=1

λrnEnx. (5.11)
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Also, for r ≥ 0 we define Zr = Xr ×X , which is a Hilbert space with the norm∥∥∥∥[ wv
]∥∥∥∥2

Zr

= ‖w‖2r + ‖v‖2.

Now, using the change of variables y′ = v, the second order equation (5.7) can be written as a
first order system of ordinary differential equations in the Hilbert space Z = X1/2 ×X as{

z′ = Az +Bu(t), z ∈ Z,
z(0) = z0,

(5.12)

where

z =

[
w
v

]
, B =

[
0
I

]
, A =

[
0 I

−A 0

]
, (5.13)

A is an unbounded linear operator with domain D(A) = D(A)×X , u ∈ L2(0, τ, U) with U = X .

The proof of the following Theorem follows directly from Lemma 2.1 in [12].

Theorem 5 The operator A given by (5.13) is the infinitesimal generator of a strongly continuous
group {T (t)}t∈R given by

T (t)z =
∞∑
j=1

eAjtPjz, z ∈ Z, t ≥ 0, (5.14)

where {Pj}j≥1 is a complete family of orthogonal projections in the Hilbert space Z given by

Pj = diag[Ej , Ej ], n ≥ 1 (5.15)

and

Aj = RjPj , Rj =

[
0 1
−λj 0

]
, j ≥ 1. (5.16)

Note that

R∗j =

[
0 −1
λj 0

]
, Aj = RjPj , A

∗
j = R∗jPj , j ≥ 1,

and there exist M > 1 such that ‖T (t)‖ ≤M .

Now, the discretization of (5.12) on flow is given by{
z(n+ 1) = T (n)z(n) +B(n)u(n), z ∈ Z,
z(m) = z0,

(5.17)

where

u ∈ l2(N, U), B : U → Z, Bu =

[
0
u

]
.

In this case, the evolution operator associated to T (·), is given by

Φ(m,n) = T (m− 1)T (m− 2) . . . T (n), n < m,
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and Φ(m,m) = I . Note that Φ(m,n) = T (Θ(m,n)), where Θ(m,n) = m2−n2+n−m
2 ∈ N,

m > n.

It has already been shown that (5.17) is approximately controllable on [m,n0]N (see [16]). So, if
we consider a perturbation with impulses of the equation (5.17), say

z(n+ 1) = T (n)z(n) +B(n)u(n) + f(n, z(n), u(n)), z ∈ Z,
z(0) = z0,

z(mk) = z(mk − 0) + Ik(mk, z(mk), u(mk)), k = 1, 2, . . . , p.

(5.18)

where the nonlinear term f and the impulses Ik, k = 1, . . . , p, are suitable functions, then from the
results obtained in Section 4, we see that (5.18) is approximately controllable on free time.
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