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Abstract. In this work, we shall be concerned with the existence and uniqueness of weak solutions
of anisotropic elliptic operators Au + Zfil gi(z,u, Vu) + le\il Hi(x,Vu) = f — ZZ 1 (% i

where the right -hand side f belongs to LP () and k; belongs to L (Q) fori = 1,..., N, where

P, = pzpll, P, = p"il and poo = max{p*,p*} with p™ = max{p1,...,pn}, D = Z —
N 1= pz

Np
P =5 5
Vu and no growth condition with respect to u is assumed; the function H; grows as |Vu|Pi~!

and A is a Leray—Lions operator. The critical growth condition on g; is with respect to

Keywords: Anisotropic elliptic equations, anisotropic Sobolev space, nonlinear operators.

2010 Mathematics Subject Classification: 35J60, 35J65, 35J70.

1 Introduction

We are interested in existence and uniqueness results for the following anisotropic quasi-linear elliptic
problem

N N
0 .
Z@x i(z, Vu) +Zg,xuVu) ZHi(x,Vu):f—Za—xiki in 2,
=1 =1 i=1 (11)
u =0 on 0f),
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where Q ¢ RY (N > 2) is an open bounded domain with Lipschitz continuous boundary. The
functions a;, g; and H; are Carathéodory functions satisfying some conditions that we will specify
in the following pages. The functions on the right-hand side f and k; for¢ = 1,..., N belong
to suitable Lebesgue spaces. There is by now a large number of papers and an increasing interest
in anisotropic problems with no hope of being complete. Let us mention some pioneering works
on anisotropic Sobolev spaces: [3, 4, 8, 11, 12, 14, 15, 18, 20]. The existence of weak solutions
or solutions to the problem (1.1) with a;(x, Vu) = \g—;]pi_lg—;, 9 =0, H; =0and k; = 0 for
i =1,..., N and right-hand side measure data was established by L. Boccardo ef al. in [8]. An
analogous existence result concerning the problem (1.1) for a system with g; = 0, H; = 0 and
measure data was obtained by M. Bendahmane and Kenneth H. Karlsen in [5]. The problem (1.1)
with g; = 0 and H; # 0, when f € LP~ and k; € LPi(f), where p} = -2 p/ = _P=_and

pi_li Poo—1
Poo = max{p*, pt} with p* = max{p1,....,pnv}, P = v D" = NN—%, was studied by

1

N Zi:l D
R. Di Nardo and F. Feo in [14]. Moreover, the existence of weak solutions to the problem (1.1) with
H; =0and g; # 0 and k; = 0 was proved by Di Castro (see [13]).

Our objective is to study the problem (1.1) when g; # 0 and H; # 0 with f € LP and
k; € LP i (Q)

Let us mention that many results in the isotropic case have been published for problems of the
form (1.1) involving operators of type A in the variational case and in the L'-data case. We restrict
ourselves to papers dealing with k; for¢ = 0, ..., N and f belonging to the dual. Since our problem
is close to this case, we cite, among others, the papers of Guibé, Monetti and Randazzo [16, 19]
and the recent work of Y. Akdim et al. [2]. The purpose of this paper is to establish the existence
and uniqueness of weak solutions to some anisotropic elliptic equations with the two lower order
terms. The proof of the existence of such solutions is based on techniques described, in particular, in
[13, 14]. The uniqueness is obtained thanks to the following Lipschitz condition:

& — &
(n + & + 1)

’gi(xvsvf) - gi(‘r?SI?f/)’ < M|S - S/‘ +M

and .

& — &
(4 1&[ + 1€)
for some constants h > 0, M > 0,7 >0ando; >0fori=1,...,N.

|Hi(2,€) — Hi(2,&)| < h

The remaining part of this paper is organized as follows: Section 2 is devoted to preliminaries.
In Section 3 we give some assumptions and definitions. The main existence results are stated and
proved in Section 4. In Section 5 we prove the uniqueness results for the problem (1.1).

2  Preliminaries

Let © be a bounded open subset of RV (N > 2) with Lipschitz continuous boundary and let
1 < p1,...,pN < oo be N real numbers, p* = max{p1,...,pn},p~ = min{p,...,py} and

?:(pl,...,p]v).

The anisotropic Sobolev space (see [20])

W7 (Q) = {u e whi(Q): % € LPi(Q),i=1,2,... ,N}
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is a Banach space with respect to the norm

el oy = el e +ZHax ey
Z 1

The space W, ?(Q) is the closure of C§°(€2) with respect to this norm.

We recall a Poincaré-type inequality. Let u € W), ?( Q).
constant C), (depending on ¢ and p; ) such that (see [15])

Then for every ¢ > 1 there exists a

ull pogey < CPHSZHLQ(Q) fori=1,...,N. @.1)

Moreover a Sobolev -type inequality holds. Let us denote by p the harmonic mean of these numbers,
ie,z= v ZZ 1 p .Letu € W, ?(Q) Then there exists (see [20]) a constant C such that

<, H 2.2
lull a(o) H o LPZ(Q) (2.2)
where ¢ = p* = 1f p< N,orq € [l,+o0[if p > N. Itis possible to replace the geometric
mean appearing on the right-hand side of (2.2) by the arithmetic mean. Indeed, let ay,...,ay be
positive numbers. Then
N 1 N
[Tal <52 ai 2.3)
i=1 i=1
which, together with (2.2), implies that
< = 24
lll oy ZH@:& LPi(Q) @4
When
p <N, 2.5

the inequality (2.4) implies the continuous embedding of the space VVO1 7 (Q) into L7(Q2) for every
q € [1,p%].

On the other hand, the continuity of the embedding I/VO1 ?(Q) < LP"(Q) relies on the inequal-
ity (2.1).

It may happen that p* < p™, if the exponents p; are not close enough. Then p, := max{px, p™}
turns out to be the critical exponent in the anisotropic Sobolev embedding (see [15]).

Proposition 1 If the condition (2.5) holds, then for q € [1,poo| there is a continuous embedding
Wol’ﬁ(Q) — LY(Q). For q < pso the embedding is compact.
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3 Assumptions and definitions

We consider the following class of nonlinear anisotropic elliptic homogeneous Dirichlet problems
)
Zax (z, Vu) —i—ZgquVu —i—ZHmVu f—za—xzkZ in
i=1 i=1 i=1
u=0 on 02,

where € is a bounded open subset of RY (N > 2) with Lipschitz continuous boundary 052,
1 <pi,...,pN < ooand (2.5) holds.

We assume that a;: QxRY = R, g;: QxRxRY — Rand H;: QxRY — R are Carathéodory
functions such that forall s € R, & € RV, ¢ € RN and a.e. in Q:

N N
Y ai(@, )& =AD&, 3.1)

P P
|ai(z, &) <Alji(z) + &P, (32)
(ai(z,8) — ai(x,&))(& — &) >0 for& # &, (3.3)
9i(z,s,§)s > 0, (3.4)
lgi(2, 5,6)| < L(|s])(ci(z) + |&[P) foralli=1,...,N, (3.5)
|Hi(2,8)] < bil&P T, (3.6)

where A, 7y, b; are some positive constants, j; is a positive function in LPi (), ¢; is a positive function
in L1(Q) fori =1,...,Nand L: Rt — R7is a continuous and non-decreasing function. Moreover,
we suppose that

f e LP=(), 3.7)
and

ki € LPi(Q) fori=1,...,N. (3.8)

Definition 1 A function u € WOI’F(Q) is a weak solution to the problem (1.1) if
Zij\il gi(x,u, Vu) € LY (Q) and u satisfies

Z/[al (2,0, Vi) + Hi(z, Vu)g ]:/Q[fwikigﬂ

i=1
17? oo
forall p € Wy ¥ (2) N L>®().

4 Main results

In this section we prove the existence of at least a weak solution to the problem (1.1). The coercivity
of the operator is guaranteed only if the norms of b; are small enough. As usual we consider the
approximate problems.
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4.1 Approximate problems and a priori estimates

Let

%|HZ(3;, Vu) ’

gi(x,u, Vu)
1+ %\gi(m,u, Vu)

and H]'(x,Vu) =

g (x,u, Vu) =

It is well-known (see e.g. [17]) that there exists at least a weak solution u,, € WO1 7(Q) to the
following problem

Y9 N N N,
VA TR i n N9 a0
; P a;(z, Vu) + ;gz (z,u, Vu) + ;Hl (z,Vu) = f ; g ki

“4.1)
u=20 on Jf).
The first and crucial step is an a priori estimate of u,,.
Lemmal Let A € RTand u € WO1 ?(Q) Then there exists t measurable subsets Q1, ...,
of Q and t functions uy,...,us such that ; N Q; = @forz’ # 7, 1] < A and |Q] = A
fors e {1l t—1} {z € Q|9 #£ 0fori =1,....N} C Q, 2 = 3% qe in

Qs, Wus = (81 )us, up + ... +us = uin ) and s&gn(u) = sign(us) if us # 0 for

se{l,...,t}andi e {1,...,N}.
Proof. See [14, Lemma 4.2]. ]

Proposition 2 Assume that (2.5), (3.1)—(3.8) hold and let u,, € T/VO1 ’7(9) be a solution to the
problem (4.1). Then, we have

(4.2)

z/\?ﬁ?

for some positive constant C depending on N, ), )\, 7, p;, b;,

-HLp;(Q)fori =1,...,N.

Proof. In what follows we do not explicitly write the dependence on n. Let A be a positive real
number, that will be chosen later, referring to Lemma 1. Let us fix s € {1,...,¢} and let us use
Tk (us) as a test function in the problem (4.1). Using (3.1), (3.4), Young’s and Holder’s inequalities
and Proposition 1 we obtain

N

N N
Oug |P 1 ,
< / ay¥ + /Hix,Vu ug| + kil ) 4.3
SN BN e e (PR B AUTER SIS ST ICE

for some constant C; > 0, where

T/ 1er)

here and in what follows the constants depend on the data but not on the function w.
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The dominated convergence theorem implies that

N N
Oug |P 1 /
Z [ gl = (Mt + 32 [ 1t Fold + I )
i=1 i=1

Using the condition (3.6), Holder’s and Young’s inequalities, Lemma 1 and Proposition 1 we get

pz

CC aus

. ] (see [14]) (4.4)

<CQZAP1POCZ[ /Q 8ua

Oug |P

N1 ou
sc;g;Api ”[/ﬂ e Z/ o

for some constant C's > 0. Putting (4.4) in (4.3) we obtain

Ous
Z/\ I < {1l dN+ZHkaZ

ZL.

it

4.5)
11 ou ou L1
Apri Poo 5 i ay i
“’"3; Uﬂ o, 2/ 5| ]}
If A is such that
Nooa 1
1—CiC3) A< >0, (4.6)
i=1
the inequality (4.5) becomes
Oug |P L
Z / 5 {nfuw d +Zuk [
4.7)

s—1 N 11 8u N 11
+ZZA% ros (Z/ s >+2Am poodsN}
=1

o=11i=1

for some constant Cy > 0, and for s = 1 we get
Ouy |P Ouy |P N N i 1 B
/Q}aﬂfi Z/ ‘ <G HfHL’"’O(Q d +Z Ik HLP (Q)+-Z;Api B B
N N (L_i) )
Let us choose A such that (4.6)and 1 — Cy ) ;" Ari \ri P>/ > 0 hold. We obtain (see [14])

5] s N 1
(/\aﬁf (171 oy * 2l e ) f+ZHkH ]

>i<C5
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Then there exists a constant Cg > 0 such that d; < Cj and by (4.8), we obtain

ou
> [ I3l w9
1
for some constant C'; > 0. Moreover, using (4.9) in (4.7) and iterating on s, we have
ou
Z/ S| < G 1l ey + Z 1Py 1+ >t ad
i=1
Then, arguing as before, we obtain
ou
Z/ ‘ 8; < (4.10)
1
for some constant Cg > 0. Thus,
N t Ou. |Pi P%‘
S
b <3032 f[52[) " < aan
for some positive k > 0. O

Proposition 3 If u,, is a weak solution of the problem (4.1), then there exists a subsequence (uy,)p
such that u,, — u weakly in I/VO1 7(Q) strongly in LP~ () and a.e. in €.

4.2 Strong convergence of 7} (u,,)

The following lemma generalizes to the anisotropic case the analogous Lemma 5 in [10]. We use the
method of [1] and [10].

Lemma 2 Assume that
Uy — u weakly in W&’? (Q) and a.e. in Q 4.12)

and

N ou ou
Z/Q[ai(x, Vug) — ai(z, Vu)] (a:: — (%‘) — 0. (4.13)

=1

Then
Up — u Strongly in Wol’? (Q).

Proof. The proof follows as in Lemma 5 of [10] taking into account the anisotropy of the operator.
O

Proposition 4 Let u,, be a solution to the approximate problem (4.1). Then

Ti(un) — Tk (u) strongly in WOI’?(Q).
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Proof. Letus fix k and let § be a real number such that § > (%@)2

Let us define 2, = Tj(un) — Tk (u) and o(s) = se%”. It is easy to check that for all s € R one
has

(s) = L(j) (s)] > % 4.14)
Using ¢(zy,) as a test function in (4.1), we get
3 Op) = [ .
iz;/gai(x,VUn) s +Z/gi (ﬂf,un,Vun)SO(Zn)-F;/QHi (2, Vup)o(2n) s

/f“’z"+z/ o

Now, we investigate the convergence of every term in (4.15). Since ¢(z,) — 0 weakly in VV1 ?( Q),
by Proposition 1, we have

/ fo(zn) = 0asn — +oc. (4.16)
Q

Since | (z,)] < (1 + 86k2)e*** | we infer that

N
0p(z
Z/ G 4.17)
i=1 79
On the other hand,
al al Ouy, |Pi—1
HMz,V < ) TS
> Vet < 3 [ |5 et
N 1
S ([0
N 1
Z(/ |bip(2n I’”) Z
=1
By the dominated convergence theorem, we have b;(z,) — 0 strongly in LPi(2). Then
N
Z/ HP (2, Vug)p(z,) dz| — 0as n — +oo. (4.18)
Q
In what follows we will denote by £1(n),ea2(n), ... various sequences of real numbers which

converge to zero when n tends to +o0.

Since ¢}*(z, upn, Vun)(z,) > 0 on the set {|u,| > k}, by (4.15), (4.16), (4.17) and (4.18), we
deduce that

e
2 [ it ) 25 Z / L A Ve ). @19)
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On the other hand, we get

Z/ala;Vun

Z/ ai(x, VTi(un)) — as(x, VTi(w))

(4.20)
T (up)  OTp(u)\
< o, om, ><p(zn) dz + ea(n).
Indeed, we have
N
8Tk(un) 8Tk(u)> ’
ai(z, Vun = / a;(z, Vuy) ( o' (zn)
Z/ Z_Zl 8362 81‘2‘
N
= / (z, VT (uy, )<8T§g(:un) - 8?;(@»0’(271)

- IT(u)
;/{un>k} Z(JJ,VU,”) ox; Sp(zn)

The sequence (a;(z, V)¢ (zn))n is bounded in L (£2). Then, since
strongly in LPi(€2), one has

Z/az z, Vun 0:@ Z/al x, VT (uy) (87:;9(;;") — ag’i?)d(zn) + e3(n),

which we can rewrite as

N
9o (2n)
Zz;/ﬂai(x,Vun) oz, dx
N
=3 /Q (ai(x, VTk(un)) — ai(z, VTk(u))) (aTgi%) _ 321;(@)@,(%) e
=1 7 7

N OTy(un)  OTh(w)\
+;/Qai($,ka(U))< 0w, o ><p(zn)dx+53(n)_

oT;
N Junl>ky = 0

By Proposition 3, the growth condition (3.2) and Vitali’s theorem one has a;(z, VTj(u))¢'(z,) —
a;(z, VT (u)) strongly in L (). Since 8T§$”) — ag’“x(iu) weakly in LPi(£2), we have

N

n—r—4o0 4
1=

Hence, we get (4.20).

On the other hand, we have

n

S| g V() o
{lun|<k}

N
k);/ﬂ(ai(%vmun)) 4.21)

o, 9T ) () = O (e ot 24t
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Indeed, by virtue of (3.1), (3.5) and the fact that ¢(z,) — 0 weakly* in L°°(2), we have
N

S g V() da
{Jun| <k}

N N ou

o[> alel+ [ "

(Z {Jun| <k} ; {Jun] <k} | O

ox;

< LE\k) ;/Qai(x, VTk(un)).ang:n) lo(2n)| dx + e4(n)

" le(zn)] dx)

©(zn)| dx + €4(n)

N
L(k) Z/ﬂ(ai(m,VTk(un)) — ai(x, VTj,(u)))

( 8Tk (u ) 8Tk ( )
(%ci 8:6,

it o

h

N
20 > [ it 9T G o) 0

N
IR [t i), (T = T Y de o)

Since 8T§g") 8T’; (u) weakly in LPi () and (¢(z,))n is bounded, we obtain

N
Z/Qai(x, VT (u)). <8ngjn) B 8?;(7))@(2”) dz — 0asn — +o0.

Thanks to (3.2) and (4.2), the sequence (a;(z, VTj(uy))),, is bounded in LPi(Q), so there exists
li € LPi(Q) such that a;(x, VT (u,)) — Ii weakly in LPi(£2). Since ¢(z,) — 0 weakly* in
L*>(9), we conclude that

Z /Q a;(x, VTk(un))agk(u)go(zn) dz — 0asn — +oo.

%

Hence, we get (4.21). Therefore, by combining (4.19), (4.20) and (4.21), we obtain
N
S / (ai(a, VT () — ailer, V()
=17

(5250 - Bt ot

By (4.14) and (4.22), we get

4.22)

S OTo(un)  OTh(u)
0< ;/ﬂ(ai(a@,VTk(un)) —ai(x,VTk(u)))< g:cz - 8’; > < 2e6(n).

Then Lemma 2 gives that T (uy,) — Tj(u) strongly in Wol’ﬁ(Q). O
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4.3 Existence

Theorem 1 Assume that (2.5) and (3.1)—(3.8) hold. Then there exists at least a weak solution to the
problem (1.1).

Proof. By (4.2) the sequence (%)n is bounded in LPi(£2), so we have that

ou U
n 1 p’L 1 pr—
oz, — oz, weakly in LP#(Q) fori =1,..., N, (4.23)
U, — u strongly in LP~(Q). (4.24)

By Proposition 4 there exists a subsequence, which we still denote by u,,, such that

Ouy, ou
_>
Then forz =1,..., N we have

ae.in{) fori=1,...,N. (4.25)

a;(x, Vuy) — a;(x,Vu) ae. in Q,
g (x, un, Vuy) — gi(z,u, Vu) a.e. in €,
H(z,Vu,) — Hi(z,Vu) a.e. in (2.

Moreover, by (3.2) and (3.6), we have

/ ! Ouy, |Pi / ou
ai(z, Vuy,)|Pi < C / i —|—/ - } and / H(z, Vuy,)|Pi < C/ n

By (4.2), (ai(x, Vuy)), and (H;(x, Vuy)), are bounded in LPi (). Then a;(z, Vuy) = a;(x, Vu)
weakly in LPi(Q) and H;(x, Vu,) — H;(z, Vu) weakly in L (Q). Now, as in [13], we prove that
g (x, up, Vuy,) is uniformly equi-integrable for i = 1,..., N. If we take T} (uy,,) as a test function
in (4.1), by the Holder inequality we get

Ppi

N
> [ 00 Vi) Tulu) < €.
i=1 7%
Let F be a measurable subset of €. For any k € R, we have

/ 167, V)| de
E

= / 193" (2, tn, Vo) dz + / 197" (2, tn, V)| d
En{lun|<k} En{|un|>k}

D
</ LR)ei(a) + [ L(k)| 5
En{jun|<k} En{|un|<k} i

0T ()
S/EL(k)Ci(HU)JF/EL(k)’g%

Using the fact that 8T§(1_L") —
Zq

pi
dz +/ |9 (z, up, Vuy,)| dz
En{lun|>k}

i 1
? dz + k/ Ti(un)g;* (z, un, Vuy,) de.
E

81(;,; (iu) strongly in LPi(§)) and

/ T (un)g;' (z, Un, Vuy,) dz < Cf,
E
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we infer that g} is uniformly equi-integrable for any . Since g/ (x, uy,, Vuy,) — gi(z, u, Vu) a.e. in
Q, thanks to Vitali’s theorem, we get g/ (, upn, V) — gi(x, u, Vu) in LY(€).

That allows us to pass to the limit in the problem (4.1). ([l

Remark 1 For the existence of weak solutions, the condition (3.2) can replaced by

Poo
lai(z,s,6)| < v|ji +|s| ¥ + |§i|pi—1]’

where j; is a positive function in LPQ(Q)fori =1,...,N.

S Uniqueness

In this section we prove the uniqueness of weak solutions to the problem (1.1). Let us assume that a;
are strongly monotone:

(ai(@, &) — ai(z,€))(€ — &) > ale +|&] + &) 16 — &) (5.1)
witha > 0and e > 0.

The first uniqueness result is obtained when every p; is not greater than 2, assuming the following
Lipschitz conditions on g; and H;:

& — & |
(n+ &1+ 1€)7

|gi(x,5,6) — gi(z, s, &) < Ml|s —s'|+ M (5.2)

and

& — &l
(n+|&-!+|€§|)a"'
for some constants h > 0, M > 0,7 >0ando; >0fori=1,..., N.

|Hi(z,§) — Hi(x,¢)| <

(5.3)

Theorem 2 Let 1 < p; < 2if N = 2, -2 N13 2 <pi<2ifN>3ando; >1—E fori=1,...,N.
Let us assume that (2.5), (3.1)—(3.8), (5.1) with e = 0 and (5.2), (5.3) with n > 0 hold. Then there
exists a unique weak solution to the problem (1.1)

Proof. Following [3], let us suppose u and v are two weak solutions to the problem (1.1) and denote
w=(u—v)tand By = {x € Q:t < w < supw} fort € [0, sup w|. We use

o — {w(m) —t, ifw(z) > t,

i 5.4)
0, otherwise

as a test function in the difference of the equations. The strong monotonicity (5.1) with ¢ = 0 and
the Lipschitz conditions (5.2) and (5.3) with n > 0 give

Awy |2 Owy

D, _g— / oz, | Wt .
Z/E (2] +] 22 )*™ ZEt(nHaxZ + 7)™

ox;

N Owy

M / I |, MN/
+ — 5 + W+W.
@ 2 e T e e
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Since 0; > 1 — £, by the Young inequality and some easy computations we have

Awy 2
Z/ 0 _.scl/ w3+01/ w? (5.5)
e (| + ) 2 By

for some positive constant C' independent of £.

Since g;“ = %‘3’:, by (2.2) we get

2

2
2N
l/wtg <H/8th+22N
Cs E; Ey a.fl
1 N Ni2 (5.6)
Cs palle} Ey 6%'1
Then by (5.6), (2.3) and the Holder inequality, we obtain
2
e e e L)'
C2 wi < e B ‘+|8v ‘)2 r=\ Jp \10z; | 19,
and
2 . Z
1/ 2<1§:/ ’% i(/(@u_i_(% @p)Z\ ¥
cz | W =pN2 u i ’ : ‘
Hence
1 N Owy |2
ox;
2 Z/ 2—p;
OIS e (15 + 15D
2 ANN\
2Cl Z/ ‘% i\[: / <‘ ou n ov >(2—p1)]§ N
=V 2 ‘+ ‘8@ )2_pi = \ e\ 0z Oz '
Therefore,
2
120 & / ou) |ov @ PIT\ Y
<= ||+ .
052 ]V2 im1 Ey al‘l 8951
Since (2 — pz)% < p;, the dominated convergence theorem gives
ou oy 1\ @ P
lim (’ + ) =0,
t—sup w E, am‘z 8.7;2
which leads to a contradiction. ]

The second result is obtained when every p; is greater than 2 but € = 0 in (5.1), and we assume
the following Lipschitz conditions on g; and H;:

’gi(x787€)_gi($78,7€/)’ SM‘S_S/’—i_Gi(m)(’fl‘—"—’EZDUZ‘ fz‘ (57)

[Hi(x,€) — Hi(w, &)| < hi() (1] + 1€1)7" |8 — & (5.8)

witho; >0, M >0, G; € Lsi(Q>, h; € Lsi(Q) and s; > poo_p;%
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Theorem 3 Let us suppose that N > 3, 2 < p; < % s;i > max{N, %} and

0<o; <R — By b2 2 fori=1,...,N. Let us assume that (2.5), (3.1)~(3.8), (5.1) with e > 0,
(5.7) and (5 8) hold Then there exists a unique weak solution to the problem (1.1).

Proof. Arguing as in the proof of Theorem 2, by the strong monotonicity (5.1) with € = 0 and the
Lipschitz conditions (5.2) and (5.3), we get
> Pi—2

8wt 6u
Z/ ‘83}1 < 0x; +
1 8u i
- E Z/ ( Ox; >
1 & ou ov
+oez/ <‘8x2 + ox;

=1

ov
axi

ov
61:2-

811],5
Wy
8%1‘

:

Ifo; > 2 o3 2 by (5.8), Young’s and Holder’s inequalities, we have
TGN
ox; c%zz

2 N
et
\/E Ox;

(5.9

ﬁwt

N
M
—_— E wW. W.
a

i=1 7Lt

ov
81‘1'

ov
69c,-

> (201'—(101'—2))];> Iy
) (201'—(1%'—2))1;) iy

< 2
Sc'z</ wz)
Ey —
= N ou
+C</ w2*> /GN< +
2 B ; B ‘6:61
2
* 2% 2
+M02</ w2> || ™.
Ey

Moreover, by (2.2), (2.3), (5.8), Young’s and Holder’s inequalities, we have
2 2 N
1 2*>2 02 </ 2*)2* / N<) ou
—5 w < w h: +
C?2 </Et Na ; g, | \l0x;
2 N
Cz g% \ 2% N (‘ ou
e ) 2(/ Pl
c 2
+ 2</ w2*> BT,
« E:

><2a¢(pi2>>f§> iy
(5.10)

Co—e—DI\ Y o,
) +;‘Et‘ﬁ-

.

ov
Oxi

V]

2

> (201'—(131'—2))1;> N
><2a¢(p¢2>>§> iy

ou
8.7}7;

ou
81‘1'

which gives
1 CQ N au
< =
CZ—NQZ</ hi (‘axz *
N
CQ N 8U
+Naz</EtGi (‘&cz *

ov
8:&'

ov
al’i
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Slnce + M < 1, the right-hand side of (5.10) goes to zero for ¢ — sup w. That gives a

contradlctlon

If o; < Pir- 2 by (5.9) and Young’s inequality, we have

< S+ lgel)”
/ (=R
(2

ov
8%2'

<oy [ |5
05 0
<GS [ 1o
C(S 0
LS \;;;
; 2
+CSZZ;/E,5UJ

Choosing J small enough, we get

N N
8wt 2 au

20;
) i
8u o\, al 2
+C4Z/ (895, > wt+04;/&w

8952-
We have 0 < w; < w in E;. Using the inequalities (2.2), (2.3), (5.11) and the Holder inequality, we

get
) <

N
3wt
ov
ox;

20;

2 .
o |\,
Wy

8:61

ou
856,’

(5.11)

2
5%

() <1,

2=
—_

owy 8wt

0x;

=1

N

N (| Ou
/h <‘61L'1 *
Cy A\ 7 ou
L) (L (gl

2

)’
)

ov
(91‘1'

ov
8%

Then, we have

v
aﬂfi

2
au ]VO’Z N
N

2

al No;\ N
N ' B~
’ N i=1 </Et G <‘a$z * ) > + Cy| E4| N

Since & 5T N "Z < 1, the right-hand side of (5.12) goes to zero for ¢ — supw. That gives a
contradlctlon n

(5.12)

ov
8331‘
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