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Abstract. In this paper, we prove the existence and uniqueness of quadratic mean almost periodic
mild solutions for a class of fractional stochastic differential equations of Sobolev type in a real
separable Hilbert space. To establish our main results, we use the Banach contraction mapping
principle, fractional calculus, stochastic analysis and an analytic semigroup of linear operators. An
example is given to illustrate the theory.
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1 Introduction

Stochastic differential equations have attracted great interest due to their applications in various fields
of science and engineering. There are many interesting results on the theory and applications of
stochastic differential equations (see for instance [6, 16, 18, 20, 23, 24, 30, 31, 32, 33, 34, 35] and
the references therein).

The existence of periodic and almost periodic solutions for stochastic differential equations was
obtained. We refer the reader to [2, 5, 7, 15] and references therein.

On the other hand, recently fractional differential equations have found numerous applications in
various fields of science and engineering [1, 4, 9, 10, 14, 17, 25, 26, 27].
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The qualitative properties of stochastic fractional differential equations have been considered
only in few publications. El-Borai et al. [13] studied the existence, uniqueness and continuity of the
solution of a fractional stochastic integral equation; M. Kerboua et al. [21] derived a set of sufficient
conditions for approximate controllability of Sobolev type nonlocal fractional stochastic dynamic
systems in Hilbert spaces by using a stochastic version of the well-known fixed point theorem and
semigroup theory. Moreover, theory of neutral differential equations is of both theoretical and
practical interests. For a large class of electrical net-works containing lossless transmission lines,
the describing equations can be reduced to neutral differential equations; N. Ding [12] has derived
the exponential stability in mean square of mild solutions for neutral stochastic partial functional
differential equations with impulses by applying the impulsive Gronwall–Bellman inequality, the
stochastic analytic techniques, the fractional power of operator, and semigroup theory; Sakthivel et
al. [36] have studied the existence and asymptotic stability in pth moment of a mild solution to a
class of nonlinear fractional neutral stochastic differential equations with infinite delays in Hilbert
spaces with the help of semigroup theory and fixed point technique.

It should be mentioned that there is no work yet reported on the quadratic mean almost periodic
mild solutions to a fractional Sobolev type stochastic differential equations in Hilbert spaces. Moti-
vated by the above facts, the main purpose of this paper is to investigate the existence and uniqueness
of quadratic mean almost periodic solutions to a class of neutral fractional Sobolev type stochastic
differential equation in the abstract form

CDq
t

[
Ex(t)− h (t, x(t))

]
= Ax(t) + σ (t, x(t))

dw(t)

dt
, t ∈ R, (1.1)

where CDq
t denotes the Caputo fractional derivative operator of order q, 0 < q < 1, A : D (A) ⊂

L2(Ω, X) → L2(Ω, X) and E : D (E) ⊂ L2(Ω, X) → L2(Ω, X) are linear operators from a
Hilbert space L2(Ω, X) to L2(Ω, X). The functions h : R× L2(Ω, X)→ L2(Ω, Xα) and σ : R×
L2(Ω, X)→ L2(Ω, L0

2) are jointly continuous functions, w(t) is a Brownian motion.

The paper is organized as follows. In Section 2, we present some essential facts in fractional
calculus, semigroup theory and stochastic analysis that will be used to obtain our main results. In
Sections 3, the existence and uniqueness of mean square almost periodic mild solutions is proved.
An example is given to illustrate our results in Section 4.

2 Preliminaries

This section is mainly concerned with some notations, definitions, lemmas and preliminary facts
which are used in what follows. For more details on this section, we refer the reader to [2, 3, 10, 8].

Let X , E and U be separable Hilbert spaces. By L(E,X) we denote the set of all linear bounded
operators from E into X which is equipped with the usual operator norm ||·||. Let (Ω,F , P ) be
a complete probability space. We let L2(E,X) denote the space of all Hilbert–Schmidt operators
Φ: E → X , equipped with the Hilbert–Schmidt norm ||·||2.

For a symmetric nonnegative operator Q ∈ L2(E,X) with finite trace we suppose that {w(t) :
t ∈ R} is a Q-Wiener process defined on (Ω,F , P ) and with values in E. So, actually, w can be
obtained as follows: let wi(t), t ∈ R, i = 1, 2, be independent E-valued Q-Wiener processes; then

w(t) =

{
w1(t) if t ≥ 0,

w2(−t) if t ≤ 0



QUADRATIC MEAN ALMOST PERIODIC SOLUTIONS TO FSDE 57

is Q-Wiener process with R as time parameter. We then let Ft = σ{w(s) : s ≤ t} be the σ-algebra
generated by w.

Let E(·) denote the expectation with respect to the measure P . Let C(R, L2(Ω, X)) be the
Banach space of continuous maps from R into L2(Ω, X) satisfying E ||x(t)||2 <∞. For details, we
refer the reader to [8, 32, 35] and references therein.

Let E0 = Q
1
2E and L2

0(E0, X) with respect to the norm

‖Φ‖2L2
0

=
∥∥ΦQ

1
2

∥∥2

2
= Tr (ΦQΦ∗) .

We introduce the following assumptions on the operators L and M :

(i) E and A are linear operators, and A is closed;

(ii) D(E) ⊂ D(A) and E is bijective;

(iii) E−1 : L2(Ω, X)→ D(E) ⊂ L2(Ω, X) is a linear compact operator.

From (iii) we deduce that E−1 is a bounded operator; for short, we denote its norm by C =∣∣∣∣E−1
∣∣∣∣. Note that (iii) also implies that E is closed since the fact: E−1 is closed and injective, then

its inverse is also closed. From (i)–(iii) and the closed graph theorem we obtain the boundedness
of the linear operator AE−1 : L2(Ω, X)→ L2(Ω, X). Consequently, AE−1 generates a semigroup{
S(t) := eAE

−1t : t ≥ 0
}

. We suppose that K0 = supt≥0 ||S(t)|| <∞.

Let 0 ∈ ρ(A), where ρ(A) is the resolvent of A. Then for 0 < α ≤ 1 it is possible to define
the fractional power (−A)α as a closed linear operator on its domain D((−A)α). Furthermore,
the subspace D((−A)α) is dense in L2(Ω, X), and we denote by L2(Ω, Xα) the Banach space
D((−A)α) endowed with the norm ||x||α = ||(−A)αx||L2(Ω,X), which is equivalent to the graph
norm of (−A)α.

The following properties hold by [28].

Lemma 1 (see [28]) Suppose that 0 ∈ ρ(A). Then we know that there exist constants K0 ≥ 1,
δ > 0 such that ||S(t)|| ≤ K0e

−δt for t ≥ 0, and for every 0 < α ≤ 1

(i) we have for each x ∈ D((−A)α),

S(t)(−A)αx = (−A)αS(t)x;

(ii) there exists Kα > 0 such that

||(−A)αS(t)|| ≤ Kα

tα
e−δt.

Definition 1 The fractional integral of order α > 0 of a function f ∈ L1([a, b],R+) is given by

Iαa f(t) =
1

Γ (α)

∫ t

a
(t− s)α−1f(s) ds,

where Γ is the gamma function.
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If a = 0, we can write Iαf(t) = (gα ∗ f)(t), where

gα (t) =

{
1

Γ(α) t
α−1, if t > 0,

0, if t ≤ 0,

and as usual ”∗” denotes the convolution of functions. Moreover, limα→0 gα(t) = δ(t), where δ is
the Dirac delta function.

Definition 2 The Riemann–Liouville derivative of order n − 1 < α < n, n ∈ N, for a function
f ∈ C([0,+∞)) is given by

LDαf(t) =
1

Γ (n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−n ds, t > 0.

Definition 3 The Caputo derivative of order n− 1 < α < n, n ∈ N, for a function f ∈ C([0,+∞))
is given by

CDαf(t) = LDα

(
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0.

Remark 1 The following properties hold (see, e.g., [37]):

(i) if f(t) ∈ Cn ([0,∞)), then

CDαf(t) =
1

Γ (n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n ds = In−αf (n)(s), t > 0, n−1 < α < n, n ∈ N;

(ii) the Caputo derivative of a constant is equal to zero;

(iii) if f is an abstract function with values in X , then integrals which appear in Definitions 1, 2
and 3 are taken in Bochner’s sense.

According to previous definitions, it is suitable to rewrite problem (1.1) as the equivalent integral
equation

x(t) = [x(a)− h(a, x(a))] + E−1h(t, x(t)) +
1

Γ (q)

∫ t

a
E−1 (t− s)q−1Ax (s) ds

+
1

Γ (q)

∫ t

a
E−1 (t− s)q−1 σ (s, x (s)) dw (s)

(2.1)

for all t ≥ a and for each a ∈ R.

In the following results and definitions, we let (X, ||·||X), (Y, ||·||Y ) and (Z, ||·||Z) be Banach
spaces and let L2(Ω;X), L2(Ω;Y ) and L2(Ω;Z) be their corresponding L2-spaces, respectively.

Definition 4 (see [2]) A stochastic process x : R→ L2(Ω;X) is said to be continuous, whenever

lim
t→s

E ||x(t)− x(s)||2X = 0.
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Definition 5 (see [2]) A continuous stochastic process x : R → L2(Ω;X) is said to be quadratic
mean almost periodic if for each ε > 0 there exists l(ε) > 0 such that any interval of length l(ε)
contains at least a number τ for which

sup
t∈R

E ||x(t+ τ)− x(t)||2X < ε.

The collection of all stochastic processes x : R→ L2(Ω;X) which are quadratic mean almost
periodic is then denoted by AP (R;L2(Ω, X)).

Lemma 2 (see [2]) If x belongs to AP (R;L2(Ω, X)), then the following hold true:

(i) the mapping t→ E ||x(t)||2X is uniformly continuous;

(ii) there exists a constant N > 0 such that E ||x(t)||2X ≤ N for each t ∈ R;

(iii) x is stochastically bounded.

Let C(R, L2(Ω;X)) denote the space of all continuous stochastic processes x : R →
L2(Ω;X). The notation CUB(R;L2(Ω;X)) stands for the collection of all stochastic processes
x : R → L2(Ω;X), which are continuous and uniformly bounded. It is known from [2] that
CUB(R;L2(Ω;X)) is a Banach space endowed with the norm:

||x||∞ = sup
t∈R

(
E ||x(t)||2X

) 1
2
.

Lemma 3 (see [2]) AP
(
R;L2(Ω, X)

)
⊂ CUB(R;L2(Ω;X)) is a closed subspace.

Lemma 4 (see [2]) AP
(
R;L2(Ω, X), ||·||AP (R;L2(Ω,X))

)
is a Banach space endowed with the

norm:

||x||AP (R;L2(Ω,X)) = sup
t∈R

(
E ||x(t)||2X

) 1
2
.

Definition 6 (see [2]) A function F : R×L2(Ω;Y )→ L2(Ω;Z), (t, y)→ F (t, y), which is jointly
continuous, is said to be quadratic mean almost periodic in t ∈ R uniformly in y ∈ B, where
B ⊂ L2(Ω;Y ) is compact, if for any ε > 0 there exists l(ε,B) > 0 such that any interval of length
l(ε,B) contains at least a number τ for which

sup
t∈R

E ||F (t+ τ, y)− F (t, y)||2Z < ε

for each stochastic process y : R→ B.

Lemma 5 (see [2]) Let F : R × L2(Ω;Y ) → L2(Ω;Z), (t, y) → F (t, y) be a quadratic mean
almost periodic process in t ∈ R uniformly in y ∈ B, where B ⊂ L2(Ω;Y ) is compact. Suppose that
F is Lipschitz in the following sense:

E ||F (t, x)− F (t, y)||2Z ≤ M̃E ||x− y||2Y
for all x, y ∈ L2(Ω;Y ) and for each t ∈ R, where M̃ > 0. Then for any quadratic mean almost
periodic process Ψ: R→ L2(Ω;Y ) the stochastic process t→ F (t,Ψ(t)) is quadratic mean almost
periodic.
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Definition 7 A Ft-progressively process {x(t)}t∈R is called a mild solution of the problem (1.1) on
R if the function s→ (t− s)q−1ATq(t− s)h(s, x(s)) is integrable on (−∞, t) for each t ∈ R, and
x(t) satisfies

x(t) = Sq(t− a)[x(a)− h(a, x(a))] + E−1h(t, x(t))

+

∫ t

a
(t− s)q−1AE−1Tq(t− s)h(s, x(s)) ds

+

∫ t

a
(t− s)q−1E−1Tq(t− s)σ (s, x (s)) dw (s)

for all t ≥ a and for each a ∈ R, where

Sq(t) =

∫ +∞

0
ξq(θ)S (tqθ) dθ and Tq(t) = q

∫ +∞

0
θξq(θ)S (tqθ) dθ;

here S(t) is aC0-semigroup generated by the linear operatorAE−1 : X → X and ξq is a probability
density function defined on (0,∞), that is, ξq(θ) ≥ 0, θ ∈ (0,∞) and

∫∞
0 ξq(θ) dθ = 1.

Lemma 6 (see [37]) The operators Sq(t) and Tq(t) have the following properties:

(i) for any fixed t ≥ 0, Sq(t) and Tq(t) are linear and bounded operators, i.e., for any x ∈
L2(Ω, X),

||Sq(t)x|| ≤ K0 ||x|| , ||Tq(t)x|| ≤
qK0

Γ (1 + q)
||x|| ;

(ii) the operators {Sq(t)}t≥0 and {Tq(t)}t≥0 are strongly continuous and compact;

(iii) for any x ∈ L2(Ω, X), β ∈ (0, 1) and α ∈ (0, 1], we have

ATq(t)x = A1−βTq(t)Aβx, t ≥ 0,

||(−A)αTq(t)|| ≤
qKαΓ (2− α)

tqαΓ (1 + q (1− α))
e−δt, t ≥ 0.

For the problem (1.1), we impose the following assumptions.

(A1) The linear operator AE−1 : D
(
AE−1

)
⊂ L2(Ω, X) → L2(Ω, X) generates a semigroup{

S(t) := eAE
−1t : t ≥ 0

}
on L2(Ω, X) such that ||S(t)|| ≤ K0e

−δt for K0 ≥ 1 and δ > 0.

(A2) There exists a positive number α ∈ (0, 1) such that h : R × L2(Ω, X) → L2(Ω, Xα) is
quadratic mean almost periodic in t ∈ R uniformly in x ∈ B1, where B1 ⊂ L2(Ω, X) is a
compact subspace. Moreover, h is Lipschitz in the sense that there exists Kh > 0 such that

E ||(−A)αh (t, x)− (−A)αh (t, y)||2 ≤ KhE ||x− y||2

for all t ∈ R and for all stochastic processes x, y ∈ L2(Ω, X).

(A3) The function σ : R × L2(Ω, X) → L2(Ω, L0
2) is quadratic mean almost periodic in t ∈ R

uniformly in x ∈ B3, where B3 ⊂ L2(Ω, X) is a compact subspace. Moreover, σ is Lipschitz
in the sense that there exists Kσ > 0 such that

E ||σ (t, x)− σ (t, y)||2L0
2
≤ KσE ||x− y||2

for all t ∈ R and for all stochastic processes x, y ∈ L2(Ω, X).
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3 Main results

This section is devoted to proving the existence and uniqueness of a quadratic-mean almost periodic
solution of neutral fractional Sobolev type stochastic differential equation (1.1)

Theorem 1 Assume the conditions (A1)–(A3) are satisfied. Then the problem (1.1) admits a unique
quadratic mean almost periodic mild solution on R provided that

L0 =

{
3C2

∣∣∣∣(−A)−α
∣∣∣∣2Kh + 3C2Khδ

−2qα (K1−αΓ (1 + α))2

+3C2

(
qKαΓ (2− α)

Γ (1 + q (1− α))

)2

TrQKσ (2δ)−2q(1−α)+3 Γ (2q (1− α))

}
< 1,

(3.1)

where Γ(·) is the gamma function.

Proof. Let Ψ: AP (R;L2(Ω, X))→ C(R, L2(Ω, X)) be the operator defined by

Ψx (t) = Sq(t− a)[x(a)− h(a, x(a))] + E−1h(t, x(t))

+

∫ t

−∞
(t− s)q−1AE−1Tq(t− s)h(s, x(s)) ds

+

∫ t

−∞
(t− s)q−1E−1Tq(t− s)σ (s, x (s)) dw (s) , t ∈ R.

First we prove that Ψx is well-defined. From Lemma 5, we infer that s → h(s, x(s)) is
in AP (R, L2(Ω, Xα)). Thus, using Lemma 2 (ii) it follows that there exists a constant K̃h >
0 such that E ||(−A)αh (t, x)||2 ≤ K̃h for all t ∈ R. Moreover, from the continuity of s →
(t− s)q−1AE−1Tq(t− s) and s→ Tq(t− s) in the uniform operator topology on (−∞, t) for each
t ∈ R and the estimate

E

∣∣∣∣∣∣∣∣∫ t

−∞
(t− s)q−1AE−1Tq(t− s)h(s, x(s)) ds

∣∣∣∣∣∣∣∣2
= E

∣∣∣∣∣∣∣∣∫ t

−∞
(t− s)q−1E−1 (−A)1−α Tq(t− s) (−A)α h(s, x(s)) ds

∣∣∣∣∣∣∣∣2
≤ E

(∫ t

−∞
(t− s)q−1

∣∣∣∣∣∣E−1 (−A)1−α Tq(t− s)
∣∣∣∣∣∣× ||(−A)α h(s, x(s))|| ds

)2

≤
(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

× C2E

(∫ t

−∞
e−δ(t−s) (t− s)qα−1 ||(−A)α h(s, x(s))|| ds

)2

≤
(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

× C2

(∫ t

−∞
e−δ(t−s) (t− s)qα−1 ds

)
×
(∫ t

−∞
e−δ(t−s) (t− s)qα−1E ||(−A)α h(s, x(s))||2 ds

)
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≤
(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

× C2K̃2
h

(∫ t

−∞
e−δ(t−s) (t− s)qα−1 ds

)2

≤
(
qC1−αΓ (1 + α)

Γ (1 + qα)

)2

× C2K̃2
h × δ−2qα [Γ (qα)]2

≤ (C1−αΓ (α))2 × C2 × K̃2
h × δ−2qα,

it follows that s → (t− s)q−1AE−1Tq(t − s)h(s, x(s)) and (t− s)q−1E−1Tq(t − s)σ (s, x (s))
are integrable on (−∞, t) for every t ∈ R. Therefore, Ψx is well-defined and continuous.

Next, we show that Ψx(t) ∈ AP (R, L2(Ω, X)). We define

Ψ1x(t) =

∫ t

−∞
(t− s)q−1AE−1Tq(t− s)h(s, x(s)) ds,

Ψ2x(t) =

∫ t

−∞
(t− s)q−1E−1Tq(t− s)σ (s, x (s)) dw (s) .

Let us show that Ψ1x(t) is quadratic mean almost periodic. Now, since h (·, x(·)) ∈
AP (R, L2(Ω, Xα)), by Definition 5, it follows that for any ε > 0, there exists l(ε) > 0 such
that every interval of length l(ε) contains at least a number τ with the property that

E ||(−A)αh (t+ τ, x (t+ τ))− (−A)αh (t, x (t))||2 < ε

(K1−αΓ (α))2 × C2 × δ−2qα

for t ∈ R.

Now, using the Cauchy–Schwarz inequality, we see that

E ||Ψ1x(t+ τ)−Ψ1x(t)||2

= E

∣∣∣∣∣∣∣∣∫ t+τ

−∞
(t+ τ − s)q−1AE−1Tq(t+ τ − s)h(s+ τ, x(s+ τ))

−
∫ t

−∞
(t− s)q−1AE−1Tq(t− s)h(s, x(s)) ds

∣∣∣∣∣∣∣∣2
= E

∣∣∣∣∣∣∣∣∫ ξ

−∞
(ξ − s)q−1AE−1Tq(ξ − s)h(s+ τ, x(s+ τ))

−
∫ t

−∞
(t− s)q−1AE−1Tq(t− s)h(s, x(s)) ds

∣∣∣∣∣∣∣∣2
= E

∣∣∣∣∣∣∣∣∫ t

−∞
(t− s)q−1AE−1Tq(t− s) [h(s+ τ, x(s+ τ))− h(s, x(s))] ds

∣∣∣∣∣∣∣∣2
= E

∣∣∣∣∣∣∣∣∫ t

−∞
(t− s)q−1 (−A)1−αE−1Tq(t− s)

× [(−A)α h(s+ τ, x(s+ τ))− (−A)α h(s, x(s))] ds

∣∣∣∣∣∣∣∣2
≤
(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

× C2 × E
(∫ t

−∞
e−δ(t−s) (t− s)qα−1

× ||(−A)α h(s+ τ, x(s+ τ))− (−A)α h(s, x(s))|| ds

)2
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≤
(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

× C2 ×
(∫ t

−∞
e−δ(t−s) (t− s)qα−1 ds

)
×
(∫ t

−∞
e−δ(t−s) (t− s)qα−1E ||(−A)α h(s+ τ, x(s+ τ))− (−A)α h(s, x(s))||2 ds

)
≤
(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

× C2 ×
(∫ t

−∞
e−δ(t−s) (t− s)qα−1 ds

)2

× sup
t∈R

E ||(−A)α h(t+ τ, x(t+ τ))− (−A)α h(t, x(t))||2

≤
(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

× C2 × ε

(K1−αΓ (α))2 × C2 × δ−2qα

×
(∫ t

−∞
e−δ(t−s) (t− s)qα−1 ds

)2

≤
(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

× C2 × ε

(K1−αΓ (α))2 × C2 × δ−2qα
× δ−2qα [Γ (qα)]2 = ε.

Hence, Ψ1x(·) is quadratic mean almost periodic.

Similarly, by using Lemma 5, one can easily see that s→ σ(s, x(s)) is quadratic mean almost
periodic. Therefore, it follows from Definition 5 that for any ε > 0 there exists l(ε) > 0 such that
every interval of length l(ε) contains at least a number τ with the property that

E ||σ (t+ τ, x (t+ τ))− σ (t, x (t))||2 ≤ δ2q(1−α)ε

TrQ× C2 × (KαΓ (1− α))2

for each t ∈ R. Now, let us prove that Ψ2x(t) is quadratic mean almost periodic. We adopt the
techniques developed in [2]. Let w̃(t) = w(t + τ) − w(τ) for each t ∈ R. Note that w̃ is also a
Brownian motion and has the same distribution as w.

Now, we consider

E ||Ψ2x(t+ τ)−Ψ2x(t)||2

= E

∣∣∣∣∣∣∣∣∫ t+τ

−∞
(t+ τ − s)q−1E−1Tq(t+ τ − s)σ(s, x(s)) dw (s)

−
∫ t

−∞
(t− s)q−1E−1Tq(t− s)σ(s, x(s)) dw (s)

∣∣∣∣∣∣∣∣2
= E

∣∣∣∣∣∣∣∣∫ t

−∞
(t− s)q−1E−1Tq(t− s) [σ(s+ τ, x(s+ τ))− σ(s, x(s))] dw̃(s)

∣∣∣∣∣∣∣∣2 .
Thus, using an estimate on Itô integral established by Ichikawa [19], we obtain that

E ||Ψ2x(t+ τ)−Ψ2x(t)||2

= E

∣∣∣∣∣∣∣∣∫ t

−∞
(t− s)q−1E−1Tq(t− s) [σ(s+ τ, x(s+ τ))− σ(s, x(s))] dw̃(s)

∣∣∣∣∣∣∣∣2
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≤ TrQE

[∫ t

−∞

∣∣∣∣∣∣(−A)α (t− s)q−1E−1Tq(t− s) [σ(s+ τ, x(s+ τ))− σ(s, x(s))]
∣∣∣∣∣∣2 ds

]
≤ TrQE

[∫ t

−∞

∣∣∣∣∣∣(−A)α (t− s)q−1E−1Tq(t− s)
∣∣∣∣∣∣2

× ||σ(s+ τ, x(s+ τ))− σ(s, x(s))||2L0
2

ds

]
≤ TrQ× C2 ×

(
qKαΓ (2− α)

Γ (1 + q (1− α))

)2

×
(∫ t

−∞
e−δ(t−s) (t− s)q(1−α)−1 ds

)
×
(∫ t

−∞
e−δ(t−s) (t− s)q(1−α)−1E ||σ(s+ τ, x(s+ τ))− σ(s, x(s))||2L0

2
ds

)
≤ TrQ× C2 ×

(
qKαΓ (2− α)

Γ (1 + q (1− α))

)2

×
(∫ t

−∞
e−δ(t−s) (t− s)q(1−α)−1 ds

)2

× sup
t∈R

E ||σ(s+ τ, x(s+ τ))− σ(s, x(s))||2L0
2

≤ TrQ× C2 ×
(

qKαΓ (2− α)

Γ (1 + q (1− α))

)2

× δ−2q(1−α) [Γ (q (1− α))]2

× δ2q(1−α)ε

TrQ× C2 × (KαΓ (1− α))2 = ε.

Thus, Ψ2x(·) is quadratic mean almost periodic. And in view of the above, it is clear that Ψ maps
AP (R, L2(Ω, X)) into itself.

Now, the remaining task is to prove that Ψ is a strict contraction on AP (R, L2(Ω, X)). Indeed,
for each t ∈ R, x, y ∈ AP (R, L2(Ω, X)), we have

E ||Ψx(t)−Ψy(t)||2 ≤ 3E
∣∣∣∣E−1h(t, x(t))− E−1h(t, y(t))

∣∣∣∣2
+ 3E

(∣∣∣∣∣∣∣∣∫ t

−∞
(t− s)q−1AE−1Tq(t− s) [h(s, x(s))− h(s, y(s))] ds

∣∣∣∣∣∣∣∣)2

+ 3E

(∣∣∣∣∣∣∣∣∫ t

−∞
(t− s)q−1E−1Tq(t− s) [σ (s, x (s))− σ (s, y (s))] dw (s)

∣∣∣∣∣∣∣∣)2

≤ 3C2
∣∣∣∣(−A)−α

∣∣∣∣2E ||(−A)α [h(t, x(t))− h(t, y(t))]||2

+ 3C2E

(∣∣∣∣∣∣∣∣∫ t

−∞
(t− s)q−1(−A)1−α Tq(t− s) [(−A)α h(s, x(s))− (−A)α h(s, y(s))] ds

∣∣∣∣∣∣∣∣)2

+ 3C2 TrQE

(∫ t

−∞

∣∣∣∣∣∣(−A)α (t− s)q−1 Tq(t− s) [σ (s, x (s))− σ (s, y (s))]
∣∣∣∣∣∣2 ds

)
.

We first evaluate the first term of the right-hand side as follows

3C2
∣∣∣∣(−A)−α

∣∣∣∣2E ||(−A)α [h(t, x(t))− h(t, y(t))]||2

≤ 3C2
∣∣∣∣(−A)−α

∣∣∣∣2 sup
t∈R

E ||(−A)α [h(t, x(t))− h(t, y(t))]||2

≤ 3C2
∣∣∣∣(−A)−α

∣∣∣∣2Kh sup
t∈R

E ||x(t)− y(t)||2 .
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As regards the second term, by the Cauchy–Schwarz inequality, we have

3C2E

(∣∣∣∣∣∣∣∣∫ t

−∞
(t− s)q−1 (−A)1−α Tq(t− s) [(−A)α h(s, x(s))− (−A)α h(s, y(s))] ds

∣∣∣∣∣∣∣∣)2

≤ 3C2

(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

× E
(∫ t

−∞
e−δ(t−s) (t− s)qα−1 ||(−A)α h(s, x(s))− (−A)α h(s, y(s))|| ds

)2

≤ 3C2

(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

E

[(∫ t

−∞
e−δ(t−s) (t− s)qα−1 ds

)
×
(∫ t

−∞
e−δ(t−s) (t− s)qα−1 ||(−A)α h(s, x(s))− (−A)α h(s, y(s))|| ds

)]
≤ 3C2

(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2(∫ t

−∞
e−δ(t−s) (t− s)qα−1 ds

)
×
(∫ t

−∞
e−δ(t−s) (t− s)qα−1E ||(−A)α h(s, x(s))− (−A)α h(s, y(s))|| ds

)
≤ 3C2

(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

Kh

(∫ t

−∞
e−δ(t−s) (t− s)qα−1 ds

)2

sup
t∈R

E ||x(t)− y(t)||2

≤ 3C2

(
qK1−αΓ (1 + α)

Γ (1 + qα)

)2

Khδ
−2qα [Γ (qα)]2 sup

t∈R
E ||x(t)− y(t)||2

≤ 3C2Khδ
−2qα (K1−αΓ (1 + α))2 sup

t∈R
E ||x(t)− y(t)||2 .

As regards the third term, we use again the Cauchy-Schwarz inequality and obtain

3C2 TrQE

(∫ t

−∞

∣∣∣∣∣∣(−A)α (t− s)q−1 Tq(t− s) [σ (s, x (s))− σ (s, y (s))]
∣∣∣∣∣∣2 ds

)
≤ 3C2

(
qKαΓ (2− α)

Γ (1 + q (1− α))

)2

× TrQ

∫ t

−∞
e−2δ(t−s) (t− s)2(q(1−α)−1)E ||σ (s, x (s))− σ (s, y (s))||2 ds

≤ 3C2

(
qKαΓ (2− α)

Γ (1 + q (1− α))

)2

× TrQKσ

(∫ t

−∞
e−2δ(t−s) (t− s)2(q(1−α)−1) ds

)
sup
t∈R

E ||x(t)− y(t)||2

≤ 3C2

(
qKαΓ (2− α)

Γ (1 + q (1− α))

)2

TrQKσ (2δ)−2q(1−α)+3 Γ (2q (1− α)) sup
t∈R

E ||x(t)− y(t)||2 .

Thus, by combining the above three estimates, it follows that for each t ∈ R we have

E ||Ψx(t)−Ψy(t)||2 ≤ 3C2

{∣∣∣∣(−A)−α
∣∣∣∣2Kh +Khδ

−2qα (K1−αΓ (1 + α))2

+

(
qKαΓ (2− α)

Γ (1 + q (1− α))

)2

TrQKσ (2δ)−2q(1−α)+3 Γ (2q (1− α))

}
sup
t∈R

E ||x(t)− y(t)||2 ,
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that is,
E ||Ψx(t)−Ψy(t)||2 ≤ L0 sup

t∈R
E ||x(t)− y(t)||2 .

Note that

sup
t∈R

E ||x(t)− y(t)||2 ≤
[
sup
t∈R

(
E ||x(t)− y(t)||2

) 1
2

]2

.

Thus, it follows that for each t ∈ R,(
E ||Ψx(t)−Ψy(t)||2

) 1
2 ≤

√
L0 ||x− y||AP (R;L2(Ω,X)) .

Hence

||Ψx−Ψy||AP (R;L2(Ω,X)) = sup
t∈R

(
E ||x(t)− y(t)||2

) 1
2

≤
√
L0 ||x− y||AP (R;L2(Ω,X)) .

Since L0 < 1, it follows that Ψ is a contraction mapping on AP (R;L2(Ω, X)). The Banach
contraction theorem shows that there exists a unique fixed point x(·) for Ψ in AP (R;L2(Ω, X))
such that Ψx = x. Thus, we conclude that

x(t) = Sq(t− a)[x(a)− h(a, x(a))] + E−1h(t, x(t))

+

∫ t

a
(t− s)q−1AE−1Tq(t− s)h(s, x(s)) ds

+

∫ t

a
(t− s)q−1E−1Tq(t− s)σ (s, x (s)) dw (s)

is a mild solution of the problem (1.1) and x(·) ∈ AP (R;L2(Ω, X)). The proof is complete. �

4 Example

In this section, we consider a simple example to illustrate our main theorem.

We consider the following stochastic fractional partial differential equation of Sobolev type

CDq
t [x(t, z)− xzz(t, z)− h(t, x(t, z))] =

∂2

∂z2
x(t, z) + σ̂(t, x(t, z))

dŵ(t)

dt
,

t ∈ R, z ∈ [0, π] ,

x(t, 0) = x(t, π) = 0, t ∈ R,

(4.1)

where 0 < q ≤ 1, the function x(t)(z) = x(t, z), σ(t, x(t))(z) = σ̂(t, x(t, z)) and ŵ(t) is a
two-sided standard one-dimensional Brownian motion defined on the filtered probability space
(Ω,Γ, P ).

To write the system (4.1) into the abstract form of (1.1) we consider the space X = L2[0, π]
and define the operators E : D(E) ⊂ X → X and A : D(A) ⊂ X → X by Ex = x − x88 and
Ax = −x88 where domains D(E) and D(A) are given by{

x ∈ X : x, x88 are absolutely continuous, x88 ∈ X, x(0) = x(π) = 0
}
.
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Then E and A can be written respectively as

Ex =
∞∑
n=1

(1 + n2)(x, xn)xn, x ∈ D(E) and Ax =
∞∑
n=1

−n2(x, xn)xn, x ∈ D(A),

where xn(s) =
(√

2
)

sin (ns), n = 1, 2, . . ., is the orthogonal set of eigenfunctions of A. Further,
for any x ∈ X we have

E−1x =

∞∑
n=1

1

1 + n2
(x, xn)xn, AE−1x =

∞∑
n=1

−n2

1 + n2
(x, xn)xn

and

S(t)x =
∞∑
n=1

exp

(
−n2t

1 + n2

)
(x, xn)xn.

It is easy to see that E−1 is compact, bounded with
∣∣∣∣E−1

∣∣∣∣ ≤ 1 and AE−1 generates the above
strongly continuous semigroup {S(t) : t ≥ 0} on L2 (R, X) satisfying (A1). Thus, under the as-
sumptions (A2)–(A3), once (3.1) holds, an application of Theorem 1 yields that (4.1) has a unique
mild solution, which is obviously quadratic mean almost periodic.

Acknowledgement. The authors are grateful to the anonymous referee for the valuable suggestions
for improving this paper.
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