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1 Introduction

Let Ω ⊂ RN be a bounded domain and let M , P be two N -functions such that P �M . Moreover,
let M , P be the complementary functions of M and P , respectively. In this article, we prove the
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existence of solutions for nonlinear degenerate elliptic equations of the form

A(u) + g(x, u,∇u) = f, (1.1)

where A(u) = −div(ρ(x)a(x, u,∇u)) + a0(x, u,∇u) is a Leray–Lions operator defined on
D(A) ⊂ W 1

0LM (Ω), a : Ω × R × RN → RN and a0 : Ω × R × RN → R are Carathéodory’s
functions satisfying some natural growth conditions with respect to u and ∇u and the degenerate
ellipticity condition

a0(x, s, ξ)s+ ρ(x)a(x, s, ξ)ξ ≥ λ0[M(λ1s) + ρ(x)M(λ2|ξ|)];

g is a nonlinearity which satisfies the natural growth condition

|g(x, s, ξ)| ≤ b(|s|)(c(x) +M(|ξ|)ρ(x))

and the classical sign condition

g(x, s, ξ).s ≥ 0.

The source term f is supposed to be in L1(Ω). Some model examples of this problem are

−div(ρ(x)|∇u|p−2∇u) = f in Ω,

−div(ρ(x)|∇u|p−2∇u logβ(1 + |∇u|)) + ρ(x)M(|∇u|) = f in Ω,

where p > 1, f is a function in L1(Ω) and ρ is a given weight function on Ω.

In the non-degenerate case, the equation (1.1) with f ∈ W−1EM (Ω) was solved in [5]. An
existence theorem has been proved by Benkirane & Elmahi and others [6,8,9] with f ∈W−1EM (Ω)
and f ∈ L1(Ω), respectively. Another work in this direction can be found in [9] in the non-weighted
case. So for our nonlinear operatorA(u) = −div(ρ(x)a(x, u,∇u))+a0(x, u,∇u) with coefficients
which are singular or degenerated the classic ellipticity conditions are violated and one has to change
the classical approach introducing weighted spaces. Note that this type of equations can be applied
in physics. A non-standard example of M(t) which occurs in the mechanics of solids and fluids
is M(t) = t log(1 + t). The use of the truncation operator in (1.1) is justified by the fact that, in
general, the solution does not belong to L∞(Ω) for f ∈ L1(Ω). The aim of this article is to study the
existence of a solution to the problem (1.1) in the setting of weighted Orlicz–Sobolev spaces and L1

data.

This article is organized as follows. In Section 2, we introduce the mathematical preliminaries.
In Section 3, we introduce basic assumptions and prove some main lemmas. Section 4 is devoted to
the proof of our general existence result.

2 Preliminaries

In this section we present some definitions and well-known facts about N -functions and weighted
Orlicz–Sobolev spaces.
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2.1 The N -functions

Let M : R+ → R+ be an N -function, i.e., M is continuous, convex, with M(t) > 0 for t > 0,
M(t)/t→ 0 as t→ 0 and M(t)

t →∞ as t→∞. Equivalently, M admits the representation:

M(t) =

∫ t

0
m(τ) dτ,

where m : R+ → R+ is non-decreasing right continuous, with m(0) = 0, m(t) > 0 for t > 0 and
m(t)→∞ as t→∞. The N -function M conjugate to M is defined by

M(t) =

∫ t

0
m(τ) dτ,

where m : R+ → R+ is given by m(t) = sup {s : m(s) ≤ t}. Clearly, M = M . Moreover, for all
s, t ≥ 0 Young’s inequality st ≤M(t) +M(s) holds.

It is well-known that we can assume that m and m are continuous and strictly increasing. We
will extend the N -functions into even functions on all R.

The N -function M is said to satisfy the ∆2-condition everywhere (resp., near infinity) if there
exists k > 0 (resp., t0 > 0) such that M(2t) ≤ kM(t) for all t ≥ 0 (resp., t ≥ t0).

2.2 Weighted Orlicz–Sobolev spaces

First of all, we shall work with weighted Orlicz spaces in the following sense. Let Ω be a domain in
RN , and let M be an N -function and ρ be a weight function on Ω, i.e., ρ is measurable and positive
a.e. on Ω.

The weighted Orlicz class KM (Ω, ρ) (resp., the weighted Orlicz space LM (Ω, ρ)) is the set of
all (equivalence classes modulo equality a.e. in Ω of) real-valued measurable functions u defined in
Ω and satisfying

mρ(u,M) =

∫
Ω
M(|u(x)|)ρ(x) dx <∞,(

resp., mρ

(u
λ
,M
)

=

∫
Ω
M

(
|u(x)|
λ

)
ρ(x) dx <∞ for some λ > 0

)
.

The weighted Orlicz space LM (Ω, ρ) is a Banach space under the Luxemburg’s norm

‖u‖M,ρ = inf
{
λ > 0 : mρ

(u
λ
,M
)
≤ 1
}
.

The closure in LM (Ω, ρ) of the set of bounded measurable functions with compact support in Ω is
denoted by EM (Ω, ρ). We have

EM (Ω, ρ) ⊂ KM (Ω, ρ) ⊂ LM (Ω, ρ).

The equality LM (Ω, ρ) = EM (Ω, ρ) holds if and only if M satisfies the ∆2-condition for all t or for
t large according to whether Ω has infinite measure or not.
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The dual of EM (Ω, ρ) can be identified with LM (Ω, ρ) by means of the pairing∫
Ω
u(x)v(x)ρ(x) dx,

where u ∈ LM (Ω, ρ) and v ∈ LM (Ω, ρ). The dual norm on LM (Ω, ρ) is equivalent to ‖·‖M,Ω. It
gives rise to the so-called Orlicz norm on LM (Ω, ρ) defined by

‖u‖M,ρ = sup

{∫
Ω
f(x)g(x)ρ(x) dx : mρ(g,M) ≤ 1

}
.

The space LM (Ω, ρ) is reflexive if and only if M and M satisfy the ∆2-condition for all t or for t
large according to whether Ω has infinite measure or not.

We return now to the weighted Orlicz–Sobolev spaces. W 1LM (Ω, ρ) (resp., W 1EM (Ω, ρ))
is the space of all functions u such that u ∈ LM (Ω) (resp., u ∈ EM (Ω)) and its distributional
derivatives up to order 1 lie in LM (Ω, ρ) (resp., in EM (Ω, ρ)). It is a Banach space under the norm

‖u‖1,M,ρ = ‖u‖M + ‖∇u‖M,ρ .

Thus, W 1LM (Ω, ρ) and W 1EM (Ω, ρ) can be identified with subspaces of
∏
LM,ρ = LM ×∏

LM (Ω, ρ). Note that we have the weak topologies σ(
∏
LM,ρ,

∏
EM,ρ) and σ(

∏
LM,ρ,

∏
LM,ρ).

The spaceW 1
0EM (Ω, ρ) (resp.,W 1

0LM (Ω, ρ)) is defined as the closure ofD(Ω) inW 1EM (Ω, ρ)
(resp., W 1LM (Ω, ρ)) in the norm (resp., in the topology σ(

∏
LM,ρ,

∏
EM,ρ)).

Let W−1LM (Ω, ρ) (resp., W−1EM (Ω, ρ)) denote the space of distributions on Ω which can
be written as sums of derivatives of order ≤ 1 of functions in LM (Ω, ρ) (resp., EM (Ω, ρ)). It is a
Banach space under the usual quotient norm (see [4]). If the open set Ω has the segment property,
then the space C∞0 (Ω) is dense in W 1

0LM (Ω) for the modular convergence and thus for the topology
σ(
∏
LM ,

∏
LM ).

3 Basic assumptions and fundamental lemmas

Let Ω ⊂ RN be a bounded domain, M,P be two N -functions such that P � M , M,P be the
complementary functions of M,P , respectively, A : D(A) ⊂W 1

0LM (Ω, ρ)→W−1LM (Ωρ) be a
mapping (not everywhere defined) given by A(u) = −div(ρ(x)a(x, u,∇u)) + a0(x, u,∇u), where
a : Ω× R× RN → RN and a0 : Ω× R× RN → R are Carathéodory’s functions. The following
lemmas will be applied to the truncation operators and concern operators of the Nemytskii type in
Orlicz spaces.

Lemma 1 Let fn, f ∈ L1(Ω) be such that:

1. fn ≥ 0 a.e. in Ω;

2. fn → f a.e. in Ω;

3.
∫

Ω fn(x) dx→
∫

Ω fn(x) dx.

Then fn → f strongly in L1(Ω).
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Lemma 2 Let F : R→ R be uniformly Lipschitzian with F (0) = 0. Let M be an N -function and
let u ∈ W 1LM (Ω, ρ) (resp., W 1EM (Ω, ρ)). Then F (u) ∈ W 1LM (Ω, ρ) (resp., W 1EM (Ω, ρ)).
Moreover, if the set of discontinuity points of F ′ is finite, then

∂

∂xi
F (u) =

{
F ′(u) ∂u∂xi a.e. in {x ∈ Ω : u(x) /∈ D},
0 a.e. in {x ∈ Ω : u(x) ∈ D}.

We will also use the following technical lemmas.

Lemma 3 If a sequence un converges a.e. to u and if un remains bounded in LM (Ω), then u ∈
LM (Ω) and un → u for σ(LM (Ω), EM (Ω)).

Lemma 4 If a sequence un converges a.e. to u and if un remains bounded in LM (Ω, ρ), then
u ∈ LM (Ω, ρ) and un → u for σ(LM (Ω, ρ), EM (Ω, ρ)).

Lemma 5 Let Ω be an open subset of RN with finite measure. Let M,P and Q be N-functions such
that Q� P , and let F be a Carathéodory function such that for a.e. x ∈ Ω and all s ∈ R:

|F (x, s)| ≤ c(x) + k1P
−1M(k2|s|),

where k1, k2 are real constants and c(x) ∈ EQ(Ω). Then the Nemytskii operator NF defined by
NF (u)(x) = F (x, u(x)) is strongly continuous from P (EM (Ω), 1

k2
) = {u ∈ LM : d(u,EM (Ω)) <

1
k2
} into EQ(Ω).

3.1 Compactness results

Let Ω be a bounded open subset of RN with locally Lipschitzian boundary, ρ a weight function, and
M an N -function such that the following assumptions (H1)–(H3) are satisfied with some real s > 0:

(H1) (M(t))
s

s+1 is an N -function and ρ−s ∈ L1(Ω);

(H2)
∫ ∞

1

t

M(t)
1+ s

N(s+1)

dM(t) =∞;

(H3) lim
t→∞

1

M−1(t)

∫ t
s+1
s

0

M−1(u)

u
1+ s

N(s+1)

du = 0.

Remark 1 In the particular case where M(t) = tp

p (1 < p <∞) the first part of (H1) is satisfied if
s > 1

p−1 .

Theorem 1 (see [2, Theorem 9-5]) Let Ω be a bounded open subset of RN with locally Lipschitzian
boundary and M an N -function. Suppose that the assumptions (H1)–(H3) are satisfied. Then we
have the following compact injection: W 1LM (Ω, ρ) ↪→↪→ EM .
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Theorem 2 (Weighted Poincaré inequality) Let Ω be a bounded open subset of RN with locally
Lipschitzian boundary, ρ a weight function, and M an N -function. If u ∈W 1

0LM (Ω), then

‖u‖M ≤ c‖∇u‖M,ρ,

where c is a positive constant, which implies that ‖∇u‖M,ρ and ‖u‖1,M are equivalent norms on
W 1

0LM,ρ.

Proof. Under the assumptions (H1)–(H3), the Sobolev conjugate N -function M∗s of Ms is well-
defined by

M∗−1
s =

∫ s

0

M−1(t)

t1+ 1
N

dt

and we have W 1
0LMs ⊂ LM∗s . And since M �M∗s , we have LM∗s ⊂ LM . Hence

‖u‖M ≤ c1‖u‖M∗s ≤ c2‖u‖1,Ms ,

where c1 and c2 are two positive constants. Then, by using the Poincaré inequality in the non-weighted
Orlicz–Sobolev space, there exists a positive constant c′ such that

‖u‖1,Ms ≤ c′‖∇u‖Ms .

We will show that
‖∇u‖Ms ≤ c‖∇u‖M,ρ.

For that we have

‖v‖Ms ≤
∫

Ω
Ms(v(x)) dx+ 1 =

∫
Ω
Ms(v(x))

1

ρ(x)
ρ(x) dx+ 1

≤
∫

Ω
S(Ms(v(x)))ρ(x) dx+

∫
Ω

1

ρ(x)
ρ(x) dx+ 2

=

∫
Ω
M(v(x))ρ(x) dx+

∫
Ω
ρ−s(x) dx+ 1,

which implies that
‖v‖Ms ≤ c‖v‖M,ρ

for some positive constant c. In fact, if this is not true, then there exists a sequence vn such that
‖vn‖Ms →∞ and for n large, ‖vn‖M,ρ ≤ 1. Hence, for n sufficiently large we get∫

Ω
M(vn(x))ρ(x) dx ≤ ‖vn‖M,ρ ≤ 1.

Then

‖vn‖Ms ≤
∫

Ω
M(v(x))ρ(x) dx+

∫
Ω
ρ−s(x) dx+ 1

≤ ‖vn‖M,ρ +

∫
Ω
ρ−s(x) dx+ 1,

which is a contradiction, since the left hand-side tends to infinity while the right hand-side is bounded.
Finally, by taking v = ∇u, we conclude the result. �
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4 Main results

4.1 Statement of the problem

We begin by introducing some imposed conditions and the formulation of our problem. Let Ω ⊂ RN
be a bounded domain, M,P be two N -functions such that P � M , M,P be the complementary
functions of M,P , respectively, and let A : D(A) ⊂W 1

0LM (Ω, ρ)→W−1LM (Ωρ) be a mapping
(not everywhere defined) given by A(u) = −div(ρ(x)a(x, u,∇u)) + a0(x, u,∇u), where a : Ω×
R× RN → RN and a0 : Ω× R× RN → R are Carathéodory’s functions satisfying for a.e. x ∈ Ω
and all s ∈ R, ξ, η ∈ RN with ξ 6= η the following conditions:

|a0(x, s, ξ)| ≤ K0[g0(x) +M
−1
M(α2s) +M

−1
(ρ(x)P (α1|ξ|))], (4.1)

|a(x, s, ξ)| ≤ C0(x) +K1P
−1

(ρ−1M(α2s)) +K2M
−1
M(α1|ξ|), (4.2)

[a(x, s, ξ)− a(x, s, η)][ξ − η] > 0, (4.3)

a0(x, s, ξ)s+ ρ(x)a(x, s, ξ)ξ ≥ λ0[M(λ1s) + ρ(x)M(λ2|ξ|)], (4.4)

where α1, α2,K0,K1,K2, λ0, λ1, λ2 > 0. Let Tk be the truncation operator at height k ≥ 0 defined
by the formula

Tk(s) = max(−k,min(k, s)) for all s ∈ R and for all k ≥ 0.

And consider the following nonlinear elliptic problem with Dirichlet boundary condition

A(u) + g(x, u,∇u) = f in Ω

u = 0 on ∂Ω,
(4.5)

where g : Ω × R × RN → R is a Carathéodory’s function which for a.e. x ∈ Ω and for all s ∈ R
and all ξ ∈ RN satisfies

(G1) the sign condition: g(x, s, ξ)s ≥ 0;

(G2) the growth condition: |g(x, s, ξ)| ≤ b(|s|)(c(x) + ρ(x)M(λ2 |ξ|));

(G3) the coercivity condition: |g(x, s, ξ)| ≥ βρ(x)M
( |ξ|
λ3

)
for |s| ≥ γ,

where b : R+ → R+ is a continuous non-decreasing function and c is a given non-negative function
in L1.

Finally, we assume that
f ∈ L1(Ω). (4.6)

Let us first define the entropy solution of our problem.

Definition 1 An entropy solution of the problem (4.5) is a measurable function u ∈ W 1
0LM (Ω, ρ)

such that∫
Ω
a(x, u,∇u)∇Tk(ϕ− u)ρ(x) dx+

∫
Ω
a0(x, u,∇u)Tk(ϕ− u) dx

+

∫
Ω
g(x, u,∇u)Tk(ϕ− u) dx =

∫
Ω
fTk(ϕ− u) dx

for all k ≥ 0 and ϕ ∈W 1
0EM (Ω, ρ) ∩ L∞(Ω).
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4.2 Existence theorem

Let us prove the following existence theorem.

Theorem 3 Let Ω be a bounded open subset of RN with locally Lipschitzian boundary. Moreover,
assume that (4.1)–(4.4), (G1) and (G2) hold, and that f ∈ L1(Ω). Then there exists at least one
entropy solution of the problem (4.5).

In order to prove this existence result we proceed in several steps. In the first one we use the
pseudo-monotonicity to prove an existence result for a variational approximation problem, before we
use some tools of compactness to pass to the limit. For this let us show the following intermediate
result.

Theorem 4 Let Ω be a bounded open subset of RN with locally Lipschitzian boundary and let M
be an N -function. Suppose that the assumptions (4.1)–(4.4) are satisfied. Let (un) be a sequence
such that

(i) a(x, Tk(un),∇Tk(un)) remains bounded in (LM (Ω, ρ))N ;

(ii)
∫

Ωr

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x) dx→ 0;

(iii) un ⇀ u weakly in W 1
0LM (Ω, ρ) for σ

(∏
LM,ρ,

∏
EM,ρ

)
;

where Ωr = {x ∈ Ω : |∇un| ≤ r} and χr denote the characteristic functions of the sets Ωr. Then

∇un → ∇u a.e. in Ω.

Proof. Fix r > 0 and let s > r. By the monotonicity condition (4.3) we have∫
Ωr

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x) dx ≥ 0, (4.7)∫
Ωs

[a(x, un,∇Tk(un))− a(x, un,∇u)][∇Tk(un)−∇Tk(u)]ρ(x) dx ≥ 0. (4.8)

Then ∫
Ω

[a(x, un,∇Tk(un))− a(x, un, χs∇Tk(u))][Tk(un)− χs∇Tk(u)]ρ(x) dx ≥ 0, (4.9)

which with the condition (iii) implies that∫
Ω

[a(x, un, Tk(un))− a(x, un, χs∇Tk(u))][Tk(un)− χs∇Tk(u)]ρ(x) dx→ 0.

Passing to a subsequence, we have

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x)→ 0
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a.e. in Ωr, for a subsequence still denoted by un. Fix x ∈ Ω\R with |R| = 0. By (4.1) and (4.3) one
has

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x) ≥

≥ λ0M(λ |∇Tk(un)|)ρ(x)− C3

[
1 + |∇Tk(un)|+M

−1
M(α1 |∇Tk(un)|)

]
+ C4

(4.10)

for some positive constants C3 and C4, which implies that∇Tk(un) is bounded in RN .

Indeed, suppose that there exists a subsequence denoted again by ∇Tk(un(x)) such that
∇Tk(un(x))→∞ as n→∞. Writing (4.10) in the form

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x) ≥

≤M(λ |∇un|)

[
λ0ρ(x)− C3

(
1 + |∇Tk(un)|
M(λ |∇Tk(un)|)

+
M
−1
M(c1 |∇Tk(un)|

M(λ |∇Tk(un)|)

)]
+ C4,

yields a contradiction, since the right hand-side converges to infinity while the left hand-side tends to
zero as n→∞.

Then, for a subsequence unp(x), we have ∇Tk(unp)(x)→ ξ ∈ RN , and

[a(x, unp ,∇Tk(unp))− a(x, unp ,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x)

tends to [a(x, u, ξ)− a(x, u,∇Tk(u))][ξ −∇Tk(u)]ρ(x) as np →∞. Hence

[a(x, u, ξ)− a(x, u,∇Tk(u))][ξ −∇Tk(u)]ρ(x) = 0.

Consequently, we get that ∇Tk(u) = ξ, and thus ∇Tk(un(x)) → ∇Tk(u(x)). Since n and k are
arbitrary we can construct a subsequence such that

∇un → ∇u a.e. in Ω. (4.11)

This completes the proof. �

4.3 Proof of the existence Theorem 3

As already mentioned, we will divide the proof of Theorem 3 into several steps.

Step 1. Variational approximated problem

Let fn be a smooth function which converges to f ∈ L1(Ω) such that ‖fn‖L1(Ω) ≤ c0. And let us
define

gn(x, s, ξ) =
g(x, s, ξ)

1 + 1
ng(x, s, ξ)

.

We consider the approximated problems

un ∈W 1
0LM (Ω,Ω),

− div(ρ(x)a(x, un,∇un)) + a0(x, un,∇un) + gn(x, un,∇un) = fn.
(4.12)
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For a fixed n let us define the operator Gn by

〈Gnu, v〉 =

∫
Ω
gn(x, un,∇un)v dx.

For our purposes, we can show as in [3] that the operator Tn = A+Gn is finitely continuous,
pseudo-monotone and coercive, and by using the theory of pseudo-monotone operators (see [11, 12])
the problem (4.5) has at least one solution un in W 1

0LM (Ω, ρ).

Step 2. A priori estimate

For k > 0, by taking Tk(un) as a test function in (4.12), one has∫
Ω
a(x, un,∇Tk(un))∇Tk(un)ρ(x) dx+

∫
Ω
a0(x, un,∇un)Tk(un) dx

+

∫
Ω
g(x, un,∇un)Tk(un) dx = 〈fn, Tk(un)〉.

Since un and Tk(un) have the same sign, by the sign condition (G1) we have

g(x, un,∇un)Tk(un) ≥ 0.

In view of the degenerate ellipticity condition and the fact that

‖fn‖L1(Ω) ≤ c0,

we get ∫
{|un|<k}

M(λ2|∇Tk(un)|)ρ(x) dx+

∫
{|un|<k}

M(λ1|un|) dx

+

∫
{|un|>k}

|g(x, un,∇un)|dx ≤ c0k

λ0
.

By the condition (G3) we deduce that

λ0

∫
{|un|<k}

M(λ2|∇Tk(un)|)ρ(x) dx+ βk

∫
{|un|>k}

M

(
∇|un|
λ3

)
dx ≤ c0k. (4.13)

Therefore ∫
Ω
M

(
|∇un|
λ

)
ρ(x) dx ≤ C ′, (4.14)

where λ = max( 1
λ2
, λ3) and C ′ = c0k

min(λ0,βk) .

Thanks to Theorem 2, un is bounded in W 1
0LM (Ω, ρ). Then by Lemma 3, there exists some

measurable function u such that

un → u almost everywhere in Ω. (4.15)

Then
un ⇀ u weakly in W 1

0LM (Ω, ρ) for σ
(∏

LM,ρ,
∏
EM,ρ

)
. (4.16)

And by Theorem 1 we deduce that

un → u strongly in EM (Ω). (4.17)
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Step 3. Boundedness of a(x, un,∇Tk(un)) and a0(x, un,∇un)

In this step we will shows that a(x, un,∇Tk(un)) remains bounded in (LM (Ω, ρ))N . We will use
the Orlicz norm. For that let ψ ∈ (LM (Ω))N with ‖ψ‖M ≤ 1. In fact, by the monotonicity condition
(4.3) we have ∫

Ω
[a(x, un,∇Tk(un))− a(x, un, ψ)][∇Tk(un)− ψ]ρ(x) dx ≥ 0.

So that ∫
Ω
a(x, un,∇Tk(un))ψρ(x) dx ≤

∫
Ω
a(x, un,∇Tk(un))∇Tk(un)ρ(x) dx

−
∫

Ω
a(x, un, ψ)∇Tk(un)ρ(x) dx

+

∫
Ω
a(x, un, ψ)ψρ(x) dx.

By (4.7) we have ∫
Ω
a(x, un,∇Tk(un))∇Tk(un)ρ(x) dx ≤ c0k.

To estimate the second and third term we use Young’s inequality. Hence∫
Ω
a(x, un,∇Tk(un))ψρ(x) dx ≤c0k + 2

∫
Ω
M

(
|a(x, un, ψ|

r

)
ρ(x) dx

+

∫
Ω
M(r|∇Tk(un)|)ρ(x) dx+

∫
Ω
M(r|ψ|)ρ(x) dx,

where r > 0. Using the growth condition (4.2) and the fact that P �M we conclude for r large and
ε small that∫

Ω
M

(
|a(x, un, ψ|)

r

)
ρ(x) dx ≤1

r

∫
Ω
M(C0(x))ρ(x) dx+

εK1

r

∫
Ω
M(α2Tk(un)) dx

+
K2

r

∫
Ω
M(α1|ψ|) dx+K ′ε

for some positive constantKε. Since un is bounded inW 1
0LM (Ω, ρ) and ψ is bounded in (LM (Ω))N ,

we get
∫

ΩM(|a(x, un, ψ)|)ρ(x) dx ≤ Ck for all ψ ∈ (LM (Ω, ))N with ‖ψ‖M, ≤ 1. Therefore, we
deduce that a(x, un,∇Tk(un)) remains bounded in (LM (Ω, ρ))N .

Now, let us prove that a0(x, un,∇un) is bounded in (LM (Ω)). First, using the growth condi-
tion (4.1) it follows that for λ large∫

Ω
M

(
|a0(x, un,∇un|

λ

)
dx ≤1

2

∫
Ω
M

(
2

λ

)
K0|g0(x)| dx

+
K0

λ

∫
Ω
M(α2un) dx

+
K0

λ

∫
Ω
P (α1|∇un|)ρ(x) dx.
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Since P �M , for λ large and ε small we get∫
Ω
M

(
a(x, un,∇un)

λ

)
dx ≤1

2

∫
Ω
M

(
2

λ

)
K0|g0(x)|dx+

K0

λ

∫
Ω
M(α2un) dx

+
K0

λ

∫
Ω
M(ε|∇un|)ρ(x) dx+

kε
λ
≤ 1

for some positive constant kε, which implies that a0(x, un,∇un) is bounded in LM (Ω).

Step 4. Almost everywhere convergence of the gradient

In this step we prove that∇un → ∇u a.e. in Ω for a subsequence.

Let ϕ(s) = seγs
2

and γ = ( b(k)
λ0

)2. It is well-known that

ϕ
′
(s)− b(k)

λ0
|ϕ(s)| > 1

2
for all s ∈ R

(see [13]). For k > 0 and fixed n we take vn = ϕγ(zn) with zn = Tk(un)− Tk(u) as a test function
in (4.12). One has

〈Bun, vn〉+

∫
Ω
g(x, un,∇un)vn dx = 〈fn, vn〉 −

∫
Ω
a0(x, un,∇un)vn dx, (4.18)

where
〈Bun, vn〉 =

∫
Ω
a(x, un,∇un)[∇Tk(un)−∇Tk(u)]ϕ′(zn)ρ(x) dx.

Since vn ∈ W 1
0EM (Ω, ρ) ∩ L∞(Ω), and vn ⇀ 0 weakly* in L∞(Ω), and fn → f

strongly in L1(Ω), and a0(x, un,∇(un)) is bounded in (LM (Ω, ρ))N , then 〈fn, vn〉 → 0 and∫
Ω a0(x, un,∇un)vn dx→ 0.

We can see that Tk(un)− Tk(u) and u has the same sign on {x ∈ Ω : |un(x)| > k}. Then∫
{x∈Ω:|un(x)|>k}

g(x, un,∇un)vn dx ≥ 0.

One has
〈Bun, vn〉+

∫
{x∈Ω:|un(x)|≤k}

g(x, un,∇un)vn dx ≤ ε1(n), (4.19)

where in the sequel εi(n), i = 1, 2, . . ., are sequences of real numbers which converge to zero as n
tends to infinity.

Let Ωr = {x ∈ Ω : |∇Tk(un)| ≤ r} and let χr denote the characteristic functions of the sets
Ωr. We have Ωr ⊂ Ωr+1 and |Ωr\Ωr+1| → 0 as r → +∞. Fix r > 0 and let s > r. By the
monotonicity condition (4.3) we have∫

Ωr

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x) dx ≥ 0, (4.20)∫
Ωs

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x) dx ≥ 0. (4.21)
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Then∫
Ω

[a(x, un,∇Tk(un))− a(x, un, χs∇Tk(u))][∇Tk(un)− χs∇Tk(u)]ρ(x) dx ≥ 0. (4.22)

On the other hand we have

〈Bun, vn〉 =

∫
Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]ρ(x) dx

−
∫

Ω
[a(x, un,∇un)− a(x, un,∇Tk(un)]∇Tk(u)ρ(x) dx

−
∫

Ω
a(x, un,∇Tk(un))∇Tk(u)χΩ\Ωs

ρ(x) dx

+

∫
Ω
a(x, un,∇Tk(un)χs)[∇Tk(un)−∇Tk(u)χs]ρ(x) dx,

which can be written as

〈Bun, vn〉 = In − I1
n − I2

n + I3
n, (4.23)

where

In =

∫
Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]ρ(x) dx.

I1
n =

∫
Ω

[a(x, un,∇un)− a(x, un,∇Tk(un)]∇Tk(u)ρ(x) dx.

I2
n =

∫
Ω
a(x, un,∇Tk(un))∇Tk(u)χΩ\Ωs

ρ(x) dx.

I3
n =

∫
Ω
a(x, un,∇Tk(un)χs)[∇Tk(un)−∇Tk(u)χs]ρ(x) dx.

Now, we will use the following lemma which is proved in the Appendix.

Lemma 6 For the integrals I1
n, I

2
n, I

3
n defined above we have:

(i) I1
n → 0;

(ii) I2
n →

∫
Ω\Ωs

h∇Tk(u)ρ(x) dx;

(iii) I3
n →

∫
Ω\Ωs

a(x, u, 0)∇Tk(u)ρ(x) dx.

Using (4.23) and Lemma 6 we get

〈Bun, vn〉 = In +

∫
Ω\Ωs

(h− a(x, u, 0))∇Tk(u)ρ(x) dx+ ε2(n). (4.24)
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On the other hand, thanks to the growth condition (G2) we have∣∣∣∣∣
∫
{x∈Ω:|un(x)|≤k}

gn(x, un,∇un)vn dx

∣∣∣∣∣
≤
∫
{x∈Ω:|un(x)|≤k}

b(k) (c(x) +M(λ2 |∇un|)ρ(x)) |vn| dx

≤ b(k)

∫
Ω
c(x) |vn| dx+ b(k)

∫
Ω
M(λ2 |∇Tkun|) |vn| ρ(x) dx

≤ b(k)

∫
Ω
M(λ2 |∇Tkun|) |vn| ρ(x) dx+ ε3(n).

And by the coercivity condition (4.4) we can see that

λ0

∫
Ω
M(λ2 |∇Tkun|) |vn| ρ(x) dx ≤

∫
Ω
a(x, un,∇Tk(un))∇Tk(un) |vn| ρ(x) dx

+

∫
Ω
a0(x, un,∇Tk(un))Tk(un) |vn| ρ(x) dx.

Hence we can estimate∣∣∣∣∣
∫
{x∈Ω:|un(x)|≤k}

gn(x, un,∇un)vn dx

∣∣∣∣∣
≤ b(k)

λ0

∫
Ω
a(x, un,∇Tk(un))∇Tk(u)χs |vn| ρ(x) dx

+
b(k)

λ0

∫
Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)] [∇Tk(un)−∇Tk(u)χs] |vn| ρ(x) dx

+
b(k)

λ0

∫
Ω
a(x, un,∇Tk(u)χs) [∇Tk(un)−∇Tk(u)χs] |vn| ρ(x) dx+ ε4(n)

+
b(k)

λ0

∫
Ω
a0(x, un,∇Tk(un))Tk(un) |vn| ρ(x) dx.

The first term on the right-hand side above tends to 0, since a(x, un,∇Tk(un)) is bounded in
(LM (Ω, ρ))N and ∇Tk(u)χs |vn| ρ(x) → 0 a.e. in Ω. We have that a(x, un,∇Tk(un)) |vn| ρ(x)
tends to 0 in (EM (Ω, ρ))N and that ∇Tk(un)−∇Tk(u)χs is bounded in (LM (Ω, ρ))N . Then the
third term tends to 0. The last term tends to 0 as above. Hence we get∣∣∣∣∣

∫
{x∈Ω:|un(x)|≤k}

gn(x, un,∇un)vn dx

∣∣∣∣∣
≤ ε5(n) +

kb(k)

λ0

∫
Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)]×

× [∇Tk(un)−∇Tk(u)χs] |vn| ρ(x) dx.

(4.25)

By (4.24) and (4.25) we deduce that∫
Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)]×

×[∇Tk(un)−∇Tk(u)χs]

(
ϕ′(zn)− b(k)

λ0

)
|ϕ(zn)|ρ(x) dx

≤
∫

Ω\Ωs

(h− a(x, u, 0))∇Tk(u)ρ(x) + ε6(n).
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Since

ϕ′(zn)− b(k)

λ0
|ϕ(zn)| ≥ 1

2
,

we obtain ∫
Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]

≤ 2ε6(n) + 2

∫
Ω\Ωs

(h− a(x, u, 0))∇Tk(u)ρ(x).

This implies that∫
Ωr

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]

≤ 2ε6(n) + 2

∫
Ω\Ωs

(h− a(x, u, 0))∇Tk(u)ρ(x).

Finally, by passing to the limit with n and letting s→∞, since meas(Ω\Ωs)→ 0, we get∫
Ωr

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x) dx→ 0. (4.26)

So, by Theorem 4, we get
∇un → ∇u a.e. in Ω. (4.27)

Step 5. Strong convergence of gn(x, un,∇un)

In this step we prove that

gn(x, un,∇un)→ g(x, u,∇u) strongly in L1(Ω).

To this purpose let us show that gn(x, un,∇un) is equi-integrable. First, we take Tl+1(un)− Tl(un)
as a test function in (4.12) and we get∫

{|un|>l+1}
|gn(x, un,∇un)| dx ≤

∫
{|un|>l}

|fn(x)| dx.

Let ε be fixed. Then there exists lε ≥ 1 such that∫
{|un>l+1|}

|gn(x, un,∇un)| dx ≤ ε

2
. (4.28)

Let E be a measurable subset of Ω. Then we have∫
E
|gn(x, un,∇un)| dx ≤

∫
E
b(lε)(c(x) +Kρ(x)M(λ2∇Tl(ε)(un))) dx

+

∫
{|un|>l(ε)}

|gn(x, un,∇un)|dx.

In view of (4.17) there exists η(ε) such that∫
E
b(lε)(c(x) +Kρ(x)M(λ2∇Tl(ε)(un))) dx ≤ ε

2
(4.29)
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for all E such that meas(E) < η(ε).

Finally, by combining (4.28) and (4.29) one has∫
E
|gn(x, un,∇un)|dx < ε

for all E such that meas(E) < η(ε). And thanks to Vitali’s theorem we conclude that

gn(x, un,∇un)→ g(x, u,∇u) strongly in L1(Ω). (4.30)

Step 6. Passage to the limit

Going back to the approximate problems (4.12) and taking v ∈ D(Ω) as a test function we have∫
Ω
a(x, u,∇u)∇vρ(x) dx+

∫
Ω
a0(x, u,∇u)v dx+

∫
Ω
g(x, u,∇u)v dx = 〈f, v〉

for all v ∈W 1
0EM (Ω, ρ) ∩ L∞(Ω). We have

gn(x, un,∇un)→ g(x, u,∇u) strongly in L1(Ω).

Moreover, by (4.17) and (4.27) we deduce that a(x, un,∇un) → a(x, u,∇u) a.e. in Ω and
a0(x, un,∇un)→ a0(x, u,∇u) a.e. in Ω. Moreover, Lemmas 3 and 4 imply that a(x, un,∇un) ⇀
a(x, u,∇u) weakly in (LM (Ω, ρ))N for σ(

∏
LM (Ω, ρ),

∏
EM (Ω, ρ)), and a0(x, un,∇un) →

a0(x, u,∇u) weakly in (LM (Ω)) for σ(LM (Ω), EM (Ω)). On the other hand, fn → f strongly
in L1(Ω).

Finally, by using (4.27) and passing to the limit in the sequence of approximate problems (4.12),
we obtain the existence result.

5 Appendix – the proof of Lemma 6

(i) First, we can write

I1
n =

∫
Ω

[a(x, un,∇(un))− a(x, u, 0)]χGnχs∇Tk(u)ρ(x) dx,

where Gn = {x ∈ Ω : |un(x))| > k}. We have

M(|χGnχs∇Tk(u)|)ρ(x) ≤M(|∇Tk(u)χs|)ρ(x) ∈ L1(Ω).

And we have un(x) → u(x) a.e. in Ω, hence if |u(x)| < k, then for n large |un(x)| < k, which
implies that

|∇Tk(u)|χGnχs → 0 a.e. in Ω.

By the Lebesgue theorem we deduce that

M(|∇Tk(u)|χGnχs)ρ(x)→ 0.

Thus, χsχGn∇Tk(u) → 0 strongly in (EM (Ω, ρ))N and since a(x, un,∇(un)) and a(x, u, 0) are
bounded in (LM (Ω, ρ))N , we see that I1

n → 0.
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(ii) We have that a(x, un,∇Tk(un)) is bounded in (LM (Ω, ρ))N . Then there exist h ∈ LM (Ω, ρ)N

and a subsequence, also denoted by a(x, un,∇Tk((un))), such that a(x, un,∇Tk((un))) ⇀ h
weakly in (LM (Ω, ρ))N . Passing to the limit in n, yields

I2
n →

∫
Ω\Ωs

h∇Tk(u)ρ(x) dx.

(iii) By (4.17) we have that∇Tk(un) ⇀ ∇Tk(u) in (LM (Ω, ρ))N for σ(
∏
LM (Ω, ρ),

∏
EM (Ω, ρ)).

Therefore, a(x, un,∇Tk(un)χs)→ a(x, un,∇Tk(u)χs) strongly in (EM (Ω, ρ))N . Then

I3
n →

∫
Ω
a(x, u,∇Tk(u)χs)[∇Tk(u)−∇Tk(u)χs]ρ(x) dx,

which shows our claim and ends the proof of Lemma 6.
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