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Abstract. This paper is concerned with the existence and stability of pseudo almost periodic solutions
to a hematopoiesis model x′(t) = −a(t)x(t) +

∑k
i=1

bi(t)
1+xn(t−τi(t)) , t ∈ R. We consider the case of

a being pseudo almost periodic without the assumption of inft∈R a(t) > 0.
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1 Introduction

In [8], Mackey and Glass proposed the following nonlinear delay differential equation

h′(t) = −αh(t) +
β

1 + hn(t− τ)
(1.1)

as an appropriate model of hematopoiesis that describes the process of production of all types of
blood cells generated by a remarkable self-regulated system that is responsive to the demands put
upon it. In medical terms, h(t) denotes the density of mature cells in blood circulation at time t and τ
is the time delay between the production of immature cells in the bone marrow and their maturation
for release in circulating bloodstream. It is assumed that the cells are lost from the circulation at a
rate α, and the flux of the cells into the circulation from the stem cell compartment depends on the
density of mature cells at the previous time t− τ .

∗e-mail address: dinghs@mail.ustc.edu.cn

c© 2016 Journal of Nonlinear Evolution Equations and Applications, JNEEA.com



26 Xin Chen, Hui-Sheng Ding, J. Nonl. Evol. Equ. Appl. 2016 (2016) 25–36

In this paper, we consider the following hematopoiesis model:

x′(t) = −a(t)x(t) +
k∑
i=1

bi(t)

1 + xn(t− τi(t))
, t ∈ R, (1.2)

where n > 0, k is a positive integer, a : R→ R is continuous, and bi, τi : R→ R+ are all continuous
functions for i = 1, 2, . . . , k.

Recently, the existence of almost periodic solutions or pseudo almost periodic solutions for
equation (1.2) and its variants have attracted much attention (see, e.g., [1, 3, 6, 7, 9, 12, 13, 14] and
references therein). Stimulated by these works, we aim to make further study on this topic. As one
will see, there are two differences of our work from many earlier works on almost periodic type
solutions to equation (1.2). The first difference is that we do not assume that inft∈R a(t) > 0 (we
even do not assume that a is non-negative), which is assumed in many earlier results. In fact, this
idea is stimulated by the interesting work [10], where the author Shao replaced the usual assumption
inft∈R a(t) > 0 with some other assumptions, which allow a(t) to be negative for some t ∈ R. In
this paper, we simplify the assumptions on a in [10] to M(a) := limT→+∞

1
T

∫ T
0 a(t) dt > 0. The

second difference is that we investigate the existence and stability of pseudo almost periodic solutions
to equation (1.2) with a(t) being pseudo almost periodic. In fact, to the best of our knowledge, it
seems that until now there is no result concerning pseudo almost periodic solutions to equation (1.2)
with a(t) being pseudo almost periodic. So, we think it will be of interest for some colleagues to
investigate the existence and stability of pseudo almost periodic solutions to equation (1.2) with a(t)
being pseudo almost periodic. That is the main motivation of this paper.

Throughout the rest of this paper, for every bounded function f : R→ R, we denote

f+ = sup
t∈R

f(t), f− = inf
t∈R

f(t),

where R is the set of real numbers and R+ is the set of non-negative real numbers. We let τ =
max1≤i≤k τ

+
i .

Next, let us recall some definitions and basic properties of almost periodic functions and pseudo
almost periodic functions. For more details, we refer the reader to [4, 5, 11].

Definition 1 A set E ⊂ R is called relatively dense if there exists a number l > 0 such that

[a, a+ l] ∩ E 6= ∅

for every a ∈ R.

Definition 2 A continuous function f : R→ R is called almost periodic if for every ε > 0 the set

Pε :=

{
τ ∈ R : sup

t∈R
|f(t+ τ)− f(t)| < ε

}
is relatively dense. We denote the set of all such functions by AP (R,R).

Recall that for every f ∈ AP (R,R), the limit

lim
T→+∞

1

T

∫ T

0
f(t) dt
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exists. Throughout the rest of this paper, we denote

M(f) = lim
T→+∞

1

T

∫ T

0
f(t) dt, f ∈ AP (R,R).

Also, by PAP0(R,R) we denote the set of all bounded and continuous functions f : R→ R with

lim
T→+∞

1

2T

∫ T

−T
|f(t)| dt = 0.

Definition 3 A bounded and continuous function f : R → R is called pseudo almost periodic if
there exist g ∈ AP (R,R) and h ∈ PAP0(R,R) such that

f(t) = g(t) + h(t), t ∈ R.

We denote the set of all such functions by PAP (R,R). Moreover, we denote by PAP (R,R+) the
set of all non-negative pseudo almost periodic functions from R to R.

Definition 4 A bounded and continuous function f : R→ R is called ergodic if the limit

lim
T→+∞

1

2T

∫ T

−T
f(t+ s) ds

exists uniformly with respect to t ∈ R.

Lemma 1 Let f, g ∈ PAP (R,R). Then the following assertions hold:

(a) PAP (R,R) is a Banach space under the norm ‖f‖ = supt∈R |f(t)|;

(b) f · g ∈ PAP (R,R);

(c) f/g ∈ PAP (R,R) provided that inft∈R |g(t)| > 0.

2 Main results

We first present some lemmas, which are of importance in proving our main theorems.

Lemma 2 Let a ∈ PAP (R,R) be ergodic with M(a) > 0. Then for every α ∈ (0,M(a)), there
exists T0 > 0 such that for all s, t ∈ R with s ≤ t, there holds

a+(s− t) ≤
∫ s

t
a(u) du ≤ α(T0 + s− t).

Proof. It is clear that

a+(s− t) ≤
∫ s

t
a(u) du.

The second inequality has been proved in [2]. For the reader’s convenience, we give the proof here.
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Since a ∈ PAP (R,R) is ergodic with M(a) > α > 0, it follows from [11, p. 208, Lemma 1.5]
that there exists T > 0 such that ∫ s

t
a(u) du < α(s− t)

for all s, t ∈ R with s− t < −T . On the other hand, we have∫ s

t
a(u) du ≤ ‖a‖ · T ≤ ‖a‖ · T + α(T + s− t) = α

[
T ·
(
‖a‖
α

+ 1

)
+ s− t

]
for all s, t ∈ R with −T ≤ s− t ≤ 0. Then, taking T0 = T ·

(
‖a‖
α + 1

)
, the conclusion follows. �

Lemma 3 ([11, p. 214, Lemma 1.9]) Let a ∈ PAP (R,R) be ergodic with M(a) > 0 and f ∈
PAP (R,R). Then the equation

x′(t) = −a(t)x(t) + f(t) (2.1)

has a unique pseudo almost periodic solution x(t), and

x(t) =

∫ t

−∞
e−

∫ t
s a(r) drf(s) ds. (2.2)

The following lemma is a direct corollary of [11, Theorem 5.11].

Lemma 4 Let x ∈ PAP (R,R) be uniformly continuous on R and let τ ∈ PAP (R,R). Then
x(· − τ(·)) ∈ PAP (R,R).

Let x(t, ϕ) be the solution of equation (1.2) with the initial condition x(t) = ϕ(t), t ∈ [−τ, 0],
and by [0, ηϕ) denote the (right) maximal interval of existence of x(t, ϕ).

Lemma 5 Let a ∈ PAP (R,R) be ergodic with M(a) > α > 0 and let inft∈[−τ,0] ϕ(t) ≥ 0. Then,
ηϕ = +∞ and x(t, ϕ) is non-negative on [0,+∞).

Proof. For simplicity, we denote x(t) = x(t, ϕ) if there is no confusion. From (1.2), we have

x(t) = e−
∫ t
0 a(u) dux(0) +

∫ t

0
e−

∫ t
s a(u) du

k∑
i=1

bi(s)

1 + xn(s− τi(s))
ds.

In view of the fact that inft∈[−τ,0] ϕ(t) ≥ 0, we obtain that x(t) is non-negative on [0, ηϕ). It suffices
to show that x(t) is bounded on [0, ηϕ).

It follows from Lemma 2 that

|x(t)| ≤ |e−
∫ t
0 a(u) dux(0)|+

∣∣∣∣∫ t

0
e−

∫ t
s a(u) du

k∑
i=1

bi(s)

1 + xn(s− τi(s))
ds

∣∣∣∣
≤ eαT0e−αtx(0) +

∫ t

0
eαT0e−α(t−s)

k∑
i=1

b+i ds

= eαT0e−αtx(0) +
1

α
· eαT0

k∑
i=1

b+i (1− e−αt)

≤ eαT0x(0) +
1

α
· eαT0

k∑
i=1

b+i , t ∈ [0, ηϕ).
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The conclusion then follows. �

Lemma 6 Let a ∈ PAP (R,R) be ergodic with M(a) > α > 0 and let inft∈[−τ,0] ϕ(t) ≥ 0.
Suppose that there exist two positive constants κ and M such that

M > κ, −αM + eαT0
k∑
i=1

b+i < 0, −a+κ+
k∑
i=1

b−i
1 +Mn

> 0,

where T0 is defined in Lemma 2. Then there exists tϕ > 0 such that κ < x(t) = x(t, ϕ) < M for all
t ≥ tϕ.

Proof. Letting p = αM − eαT0
∑k

i=1 b
+
i , by Lemma 2 and Lemma 5, we have

x(t) = e−
∫ t
0 a(u) dux(0) +

∫ t

0
e−

∫ t
s a(u) du

k∑
i=1

bi(s)

1 + xn(s− τi(s))
ds

≤ eαT0e−αtx(0) +

∫ t

0
eαT0e−α(t−s)

k∑
i=1

b+i ds

= eαT0e−αtx(0) +

∫ t

0
(αM − p)e−α(t−s) ds

= eαT0e−αtx(0) +
(
M − p

α

)
(1− e−αt)

:= A(t), t ∈ [0,+∞),

Noting that limt→+∞A(t) = M − p
α < M , we know that there exists t0 ∈ [0,+∞) such that

0 ≤ x(t) < M for all t ∈ [t0,+∞). (2.3)

Letting q = a+ − κ+
∑k

i=1
b−i

1+Mn , again by Lemma 2 and Lemma 5, we have

x(t) = e
−

∫ t
t0+τ

a(u) du
x(t0 + τ) +

∫ t

t0+τ
e−

∫ t
s a(u) du

k∑
i=1

bi(s)

1 + xn(s− τi(s))
ds

≥ e−
∫ t
t0+τ

a+ du
x(t0 + τ) +

∫ t

t0+τ
e−

∫ t
s a

+ du
k∑
i=1

b−i
1 +Mn

ds

= e
−

∫ t
t0+τ

a+ du
x(t0 + τ) +

∫ t

t0+τ
(a+κ+ q)e−a

+(t−s) ds

= e
−

∫ t
t0+τ

a+ du
x(t0 + τ) +

(
κ+

q

a+

)(
1− ea+(t0+τ−t)

)
:= B(t), t ∈ [t0 + τ,+∞),

which, together with the fact that limt→+∞B(t) = κ+ q
a+

> κ, implies that there exists tϕ > t0 +τ
such that κ < x(t) < M for all t ≥ tϕ. �

Before presenting our existence theorem, we list some assumptions:
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(H0) a ∈ PAP (R,R) is ergodic with M(a) > 0, and bi, τi ∈ PAP (R,R+) with b−i > 0 for all
i = 1, 2, . . . , k.

(H1) There exist α ∈ (0,M(a)) and two positive constants M,κ > 0 such that

M > κ, −αM + eαT0
k∑
i=1

b+i < 0, −a+κ+

k∑
i=1

b−i
1 +Mn

> 0,

where T0 is defined in Lemma 2.

(H2) eαT0
∑k
i=1 b

+
i

α < 4κ
n .

Theorem 1 Under the assumptions (H0)–(H2) equation (1.2) has a unique pseudo almost periodic
solution in

Ω = {ϕ ∈ PAP (R,R) is uniformly continuous on R : κ ≤ ϕ(t) ≤M,∀t ∈ R}.

Proof. Fix ϕ ∈ Ω. Let us consider the following differential equation

x′(t) = −a(t)x(t) +

k∑
i=1

bi(t)

1 + ϕn(t− τi(t))
. (2.4)

It follows from Lemma 4 that ϕ(· − τi(·)) ∈ PAP (R,R). Then, by Lemma 1, we infer that

k∑
i=1

bi(·)
1 + ϕn(· − τi(·))

∈ PAP (R,R).

By Lemma 3, equation (2.4) has a unique pseudo almost periodic solution given by

xϕ(t) =

∫ t

−∞
e−

∫ t
s a(r) dr

k∑
i=1

bi(s)

1 + ϕn(s− τi(s))
ds, t ∈ R. (2.5)

Now we define a mapping T on Ω by

(Tϕ)(t) = xϕ(t), ϕ ∈ Ω, t ∈ R.

Next, we show that T (Ω) ⊂ Ω. For every t ∈ R and ϕ ∈ Ω, by Lemma 2, we have

(Tϕ)(t) = xϕ(t)

=

∫ t

−∞
e−

∫ t
s a(r) dr

k∑
i=1

bi(s)

1 + ϕn(s− τi(s))
ds

≤
∫ t

−∞
e−

∫ t
s a(r) dr

k∑
i=1

bi(s) ds

≤
∫ t

−∞
eαT0e−α(t−s)

k∑
i=1

b+i ds

≤
∫ t

−∞
αMe−α(t−s) ds

= M.
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Moreover, for every t ∈ R and ϕ ∈ Ω, we have

(Tϕ)(t) = xϕ(t)

=

∫ t

−∞
e−

∫ t
s a(r) dr

k∑
i=1

bi(s)

1 + ϕn(s− τi(s))
ds

≥
∫ t

−∞
e−

∫ t
s a(r) dr

k∑
i=1

bi(s)

1 +Mn
ds

≥
∫ t

−∞
e−a

+(t−s)
k∑
i=1

b−i
1 +Mn

ds

≥
∫ t

−∞
a+κe−a

+(t−s) ds

= κ.

On the other hand, it is not difficult to see that (xϕ(t))′ is bounded for all t ∈ R. Therefore,
xϕ(t) ∈ PAP (R,R) is uniformly continuous on R. Thus, T is a self-mapping from Ω to Ω.

Next, let us show that T is a contraction mapping. By a direct calculation, one can show that∣∣∣∣ 1

1 + xn
− 1

1 + yn

∣∣∣∣ ≤ n

4κ
· |x− y| (2.6)

for all x, y ≥ κ. By using (2.6) and Lemma 2, we conclude for every ϕ,ψ ∈ Ω,

||Tϕ− Tψ|| = sup
t∈R
|(Tϕ)(t)− (Tψ)(t)|

= sup
t∈R

∣∣∣∣∣
∫ t

−∞
e−

∫ t
s a(r) dr

k∑
i=1

bi(s)

[
1

1 + ϕn(s− τi(s))
− 1

1 + ψn(s− τi(s))

]
ds

∣∣∣∣∣
≤ sup

t∈R

∫ t

−∞
e−

∫ t
s a(r) dr

k∑
i=1

bi(s) ·
n

4κ
· |ϕ(s− τi(s))− ψ(s− τi(s))|ds

≤
n
∑k

i=1 b
+
i

4κ
· ||ϕ− ψ|| · sup

t∈R

∫ t

−∞
e−

∫ t
s a(r) dr ds

≤
neαT0

∑k
i=1 b

+
i

α · 4κ
· ||ϕ− ψ||.

By (H2), T is a contraction. Thus, T has a unique fixed point in Ω, i.e., equation (1.2) has a
unique pseudo almost periodic solution in Ω. �

Remark 1 Compared with most earlier results concerning almost periodic solutions to equa-
tion (1.2), in Theorem 1 we do not assume that a− > 0 (see also Remark 2).

Next, let us study the exponential stability of the pseudo almost periodic solution of (1.2).

Theorem 2 Suppose that (H0)–(H2) are satisfied, x(t) is the unique pseudo almost periodic solution
of (1.2) in Ω, and y(t) = y(t, ϕ) is an arbitrary solution of (1.2) with inft∈[−τ,0] ϕ(t) ≥ 0. Then,
y(t) converges exponentially to x(t) as t→ +∞.
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Proof. By (H2), there holds

eαT0
∑k

i=1 b
+
i

α
<

4κ

n
.

Thus, there exists λ ∈ (0, α) such that

λ− α+ eαT0
k∑
i=1

b+i ·
n

4κ
eλτ < 0. (2.7)

According to Lemma 6, there exists tϕ > 0 such that

κ < y(t) < M for all t ≥ tϕ. (2.8)

Let

t1 = tϕ + τ, E = sup
t∈[−τ,t1]

|x(t)− y(t)|, z(t) = x(t)− y(t);

we claim that for every ε > 0 there holds

|z(t)| ≤ (eαT0 + 1)(E + ε)eλt1e−λt, t ∈ [−τ,+∞). (2.9)

It is obvious that

|z(t1)| < E + ε, |z(t)| < (eαT0 + 1)(E + ε)eλt1e−λt, t ∈ [−τ, t1].

It suffices to prove that

|z(t)| ≤ (eαT0 + 1)(E + ε)eλt1e−λt, t ∈ (t1,+∞).

Otherwise, for some ε > 0,

{t > t1 : |z(t)| > (eαT0 + 1)(E + ε)eλt1e−λt} 6= ∅.

Let

t2 = inf{t > t1 : |z(t)| > (eαT0 + 1)(E + ε)eλt1e−λt}.

Then, t2 > t1 and

|z(t2)| = (eαT0 + 1)(E + ε)eλt1e−λt2 , |z(t)| ≤ (eαT0 + 1)(E + ε)eλt1e−λt, t ∈ [−τ, t2).
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Combining this with (2.6), (2.7), (2.8) and Lemma 2, we conclude that

|z(t2)| =
∣∣∣∣e− ∫ t2

t1
a(u) duz(t1)

+

∫ t2

t1

e−
∫ t2
s a(u) du ·

k∑
i=1

bi(s) ·
[

1

1 + xn(s− τi(s))
− 1

1 + yn(s− τi(s))

]
ds

∣∣∣∣
≤ eαT0e−α(t2−t1)|z(t1)|+

∫ t2

t1

eαT0e−α(t2−s) ·
k∑
i=1

b+i
n

4κ
|z(s− τi(s))|ds

≤ eαT0e−α(t2−t1)(E + ε)

+
n

4κ
eαT0

∫ t2

t1

e−α(t2−s)
k∑
i=1

b+i · (e
αT0 + 1)(E + ε)eλt1e−λ(s−τi(s)) ds

≤ eαT0e−α(t2−t1)(E + ε)

+
n

4κ
eαT0eλτ

∫ t2

t1

e−α(t2−s)
k∑
i=1

b+i · (e
αT0 + 1)(E + ε)eλt1e−λs ds

≤ (eαT0 + 1)(E + ε)eλt1e−λt2
[

eαT0

eαT0 + 1
e(α−λ)(t1−t2)

+

∫ t2

t1

n

4κ
eαT0eλτ

k∑
i=1

b+i · e
−α(t2−s)eλ(t2−s) ds

]
≤ (eαT0 + 1)(E + ε)eλt1e−λt2

[
eαT0

eαT0 + 1
e(α−λ)(t1−t2) +

∫ t2

t1

(α− λ)e(α−λ)(s−t2) ds

]
= (eαT0 + 1)(E + ε)eλt1e−λt2

[
eαT0

eαT0 + 1
e(α−λ)(t1−t2) + 1− e(α−λ)(t1−t2)

]
= (eαT0 + 1)(E + ε)eλt1e−λt2

[
1− e(α−λ)(t1−t2)

(
1− eαT0

eαT0 + 1

)]
< (eαT0 + 1)(E + ε)eλt1e−λt2 ,

which is a contradiction. Thus, for every ε > 0, (2.9) holds. By the arbitrariness of ε, we conclude
that

|z(t)| ≤ (eαT0 + 1)Eeλt1e−λt, t ∈ [−τ,+∞).

This completes the proof. �

Next, we give two examples to illustrate our main results.

First, we give the definition of an important function ω(t). For n = 1, 2, . . . and 0 ≤ i < n,
let a1 = 0, an+1 = an + n+ n2 and intervals Iin = [an + i, an + i+ 1]. Choose a non-negative,
continuous function g on [0, 1] such that g(0) = g(1) = 0 and

∫ 1

0
g(t) dt = 1.
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Define the function ω on R by

ω(t) =


g[t− (an + i)], t ∈ Iin for some n and even i,
−g[t− (an + i)], t ∈ Iin for some n and odd i,
0, t ∈ R+ \

⋃
{Iin : n = 1, 2, . . . , 0 ≤ i < n},

ω(−t), t < 0.

From [11, p. 211, Example 1.7], we know that ω ∈ PAP0(R,R) is ergodic. Moreover, ω /∈
C0(R,R). Let µ(t) = ω(t)

‖g‖ , t ∈ R, which will be used in the following examples.

Example 1 Let n = k = 1, a(t) = 1 + sin 20t+sin 20πt
2 + 1

10µ(t), and

b1(t) =
30 + sin2 t+ sin2

√
2t

100
, τ1(t) = cos2 t+ cos2

√
2t+

1

1 + t2
.

It is easy to see that (H0) holds. For all t, s ∈ R with s ≤ t, we have∫ s

t
a(u) du ≤ (s− t) +

1

40
·
(

2 +
2

π

)
+

1

10
(t− s) ≤ 9

10

[
(s− t) +

1

12

]
.

So, we can choose α = 9
10 and T0 = 1

12 . By a direct calculation, we can see that

eαT0 = e
3
40 , b+1 =

32

100
, b−1 =

30

100
, a+ = 2.1.

Let κ = 0.1, M = 0.4. We have

−αM + eαT0
k∑
i=1

b+i = −0.0151 < 0, −a+κ+

k∑
i=1

b−i
1 +Mn

= 0.0043 > 0,

which yields that (H1) holds. Moreover,

eαT0
∑k

i=1 b
+
i

α
= 0.3832 < 0.4 =

4κ

n
,

which means that (H2) holds. Thus, by Theorem 1 and Theorem 2, equation (1.2) has a unique
pseudo almost periodic solution x(t) in Ω, and x(t) is exponentially stable.

Example 2 Let n = k = 2, a(t) = 10 +
(
sin 3

ln 1.05 t+ sin 3π
ln 1.05 t

)
+ 1

10µ(t),

b1(t) =
7 + sin2 t+ sin2

√
2t

10
, b2(t) =

7 + cos2 t+ cos2
√

2t

10

and
τ1(t) = cos2 t+ cos2

√
2t+ e−t

2
, τ2(t) = sin2 t+ sin2

√
2t+ e−t

2
.

It is easy to see that (H0) holds. For all t, s ∈ R with s ≤ t, we have∫ s

t
a(u) du ≤ 10(s− t) +

ln 1.05

3

(
2 +

2

π

)
+

1

10
(t− s) ≤ 9.9(s− t) + ln 1.05

= 9.9
[
(s− t) +

1

9.9
ln 1.05

]
.
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So, we can choose α = 9.9 and T0 = 1
9.9 ln 1.05. By a direct calculation, we see that

eαT0 = 1.05, b+1 = b+2 = 0.9, b−1 = b−2 = 0.7, a+ = 12.1.

Let κ = 0.1, M = 0.2; thus, we have

−αM + eαT0
k∑
i=1

b+i = −0.09 < 0, −a+κ+
k∑
i=1

b−i
1 +Mn

= 0.1362 > 0,

which yields that (H1) holds. Moreover,

eαT0
∑k

i=1 b
+
i

α
= 0.1910 < 0.2 =

4κ

n
,

which means that (H2) holds. Thus, by Theorem 1 and Theorem 2, equation (1.2) has a unique
pseudo almost periodic solution x(t) in Ω, and x(t) is exponentially stable.

Remark 2 It is easy to see that a− < 0 in Example 1. So, many earlier results, which require
a− > 0, cannot be applied to Example 1.
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