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Abstract. This paper deals with the problem of unsteady, laminar forced convective heat and mass
transfer flow of a viscous incompressible fluid with thermophoresis due to a porous rotating disk in the
presence of partial slip and magnetic field. The numerical simulation is carried out for the solution of
nonlinear partial differential equations by applying Nachtsheim–Swigert shooting iteration technique
along with sixth-order Runge–Kutta iteration scheme. Comparison with previously published work
for the steady case is performed and results are found to be in excellent agreement. The effects
of the model parameters on the dimensionless velocity (radial, tangential and axial), temperature,
and concentration fields are displayed graphically. The local skin-friction coefficient (radial and
tangential) and the local Nusselt number are also calculated and tabulated. The obtained results show
that the axial thermophoretic velocity is increased with the increasing values of the thermophoretic
coefficient and the thermophoresis parameter. The results also show that the applied magnetic field
and the slip parameter strongly control the flow, heat and mass transfer characteristics.
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1 Introduction

Thermophoresis, the motion of suspended particles in a fluid induced by a temperature gradient,
is of practical importance in a variety of industrial and engineering applications including aerosol
collection (thermal precipitators), nuclear reactor safety, gas cleaning, corrosion of heat exchangers,
and micro contamination control. Thermophoresis phenomenon is observed when mixtures of two or
more types of movable particles (particles able to move) are subjected to the temperature gradient
and the different types of particles respond differently. A common example that may be observed by
the naked eye with good lighting is when the hot rod of an electric heater is surrounded by tobacco
smoke: the smoke goes away from the immediate vicinity of the hot rod. As the small particles
of air nearest the hot rod are heated, they create a fast flow away from the rod, in the direction of
decreasing temperature. They have acquired higher kinetic energy with their higher temperature.
When they collide with the large, slower-moving particles of the tobacco smoke they push the latter
away from the rod. The force that has pushed the smoke particles away from the rod is an example
of a thermophoretic force. So, the velocity acquired by the particles is called the thermophoretic
velocity and the force experienced by the suspended particles due to the temperature gradient is
known as the thermophoretic force.

Thermophoresis in laminar flow over a horizontal flat plate has been studied theoretically by
Goren [19]. He observed that the deposition on cold plate and particle free layer thickness in hot
plate case. Talbot et al. [43] analyzed the effects of thermophoresis of particles in a heated boundary
layer. Mills et al. [27] studied thermophoresis on aerosol particle deposition. They also observed this
phenomenon in laminar boundary layer on a flat plate. Thermophoresis in a free convection flow
on a cold vertical flat surface was analyzed by Epstein et al. [15]. Garg and Jayaraj [17] studied the
numerical calculation for thermophoretic deposition of a laminar slot jet on an inclined plate. In their
analysis they used hot, cold and adiabatic wall. The thermophoretic transport of aerosol particles
through a forced convection laminar boundary layer in cross flow over a cylinder was studied by
Garg and Jayaraj [18]. Jia et al. [23] investigated numerically the interaction between radiation and
thermophoresis in forced convection laminar boundary layer flow. The effect of the thermophoresis
on submicron particle deposition from a laminar forced convection boundary layer over an isothermal
cylinder was investigated by Chiou and Cleaver [10] whereas Chiou [11] analyzed the effect of
thermophoresis on submicron particle deposition from a forced convective boundary layer flow on
to an isothermal moving plate through similarity analysis. Thermophoresis in natural convection
with variable properties for a laminar flow over a cold vertical flat plate has been studied by Jayaraj
et al. [22]. Tsai [44] found an approach for determining the influence of suction in the wall and
thermophoresis on an aerosol particle deposition. For a cold plate he noticed that concentration
of the particles at the wall increases with the decrease of the Prandtl number. The problem of
steady, two-dimensional, laminar, hydrodynamic flow with heat and mass transfer over a semi-infinite
permeable flat surface in the presence of the thermophoresis and heat generation was studied by
Chamkha and Issa [8]. In their analysis, they found that as the thermophoretic parameter increases,
the surface mass flux increases. Chamkha et al. [9] studied the effect of thermophoresis particle
deposition in free convection boundary layer from a vertical flat plate embedded in a porous medium.
Their numerical results showed that the mean deposition effect of the wavy plate is greater than the
plate. Mixed convection heat and mass transfer flow along an isothermal vertical flat plate embedded
in a fluid-saturated porous medium and the effects of viscous dissipation and thermophoresis in both
aiding and opposing flows studied by Seddeek [41]. The effect of thermophoresis particle deposition
in a free convection boundary layer flow over a horizontal flat plate embedded in a porous medium
was studied by Postelnicu [31]. Bakier and Mansour [5] studied numerically the combined effects
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of magnetic field and thermophoresis particle deposition in free convection boundary layer along
a vertical flat plate embedded in a porous medium. Duwairi and Damesh [14] analyzed the effects
of thermophoresis particle deposition on mixed convection flow along a vertical surface placed in
a porous medium. Damesh et al. [13] studied non-similar solution of magnetohydrodynamic and
thermophoretic particle deposition on mixed convection problem in a porous medium along a vertical
surface with variable wall temperature. Having practical importance of thermophoresis phenomenon
Alam et al. [2] studied thermophoretic particle deposition on two-dimensional hydromagnetic
heat and mass transfer flow over an inclined flat plate with various flow conditions. Rahman and
Postelnicu [34] studied the effect of thermophoresis on steady forced convective laminar flow of a
viscous incompressible fluid over a rotating disk. Rahman et al. [33] studied the thermophoresis
particle deposition on unsteady two-dimensional forced convective heat and mass transfer flow along
a wedge with variable viscosity and variable Prandtl number whereas Postelnicu [32] studied the
thermophoresis particle deposition in natural convection over inclined surface in porous medium.

Rotating disk flows along with heat transfer is one of the classical problems of fluid mechanics,
which has both theoretical and practical values. Flow due to a rotating disk is encountered in many
industrial devices, geothermal and geophysical systems. The importance of heat transfer from a
rotating body can be found in various types of machinery, for example computer disk drives and
gas turbine rotors. The first solution to the classical problem of rotating disk flow was obtained by
Karman [24]. The results of Karman [24] were further improved by Cochran [12]. Bödewadt [7]
studied the flow over a stationary disk and the fluid at infinity rotates with a uniform angular velocity.
He noticed that suction essentially decreases both the radial and tangential components of the velocity
but increases the axial flow towards the disk at infinity. Wagner [45], and Millsaps and Pohlhausen
[28] found that the heat transfer from a disk having uniform surface temperature was different from
that of the isothermal surroundings. Maleque and Sattar [25] investigated the influence of variable
properties on the physical quantities of the rotating disk problem by obtaining a self-similar solution
of the Navier-Stokes equations along with the energy equation. Attia [4] investigated the steady
flow and heat transfer over a rotating disk in a porous medium. Zueco and Rubio [47] analyzed the
network method to study magnetohydrodynamic flow and heat transfer over a rotating disk.

The no-slip boundary condition is known as the main manifestation of the Navier-Stokes theory
of fluid dynamics. In certain situations, the assumption of no-slip boundary condition does no longer
apply. When fluid flows in micro electrical mechanical systems (MEMS), the no-slip condition at
the solid fluid interface is no longer applicable. A slip flow model more accurately describes the
non-equilibrium near the interface. A partial slip may occur on a stationary and moving boundary
when the fluid is particulate such as emulsions, suspensions, foams, and polymer solutions. Sparrow
et al. [42] studied the flow of Newtonian fluid due to the rotation of a porous-surfaced disk with a set
of linear slip-flow conditions. A substantial reduction in torque then occurred as a result of surface
slip. Miklavčič and Wang [26] further revisited the problem of Sparrow et al. [42] and pointed out
that the slip flow boundary conditions could also be used for slightly rarefied gases or for flow over
grooved surfaces. Arikoglu and Ozkol [3] studied MHD slip flow over a rotating disk with heat
transfer. It is observed that both the slip factor and the magnetic flux decreases the velocity in all
directions and thicken the thermal boundary layer. Osalusi et al. [30] studied thermal-diffusion
and diffusion-thermo effects on MHD slip flow due to a rotating disk. Rahman and Sattar [37] and
Rahman [36, 38] studied thermophoretic particle deposition over a rapidly rotating permeable disk
with variable fluid properties in the presence of partial slip, magnetic field, thermal-diffusion and
diffusion-thermo effects. Also, the effects of magnetic field and slip parameter can be found in the
notable works of Rahman and Eltayeb [35], Hakeem et al. [20, 21] and Ganga et al. [16].
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The objective of the present paper is to investigate the effects of thermophoresis on unsteady
hydromagnetic forced convective heat and mass transfer flow over a cold rapidly rotating permeable
disk in the presence of partial slip and magnetic field. Using similarity transformations, the gov-
erning equations for flow, heat and mass transfer have been transformed into a system of ordinary
differential equations which are then solved numerically applying Nachtsheim–Swigert shooting
iteration technique with sixth-order Runge–Kutta integration scheme. To the best of the author’s
knowledge no research has come out considering the above-stated model and flow conditions.

2 Governing equations of the flow

In a non-rotating cylindrical polar frame of reference (r, ϕ, z), where z is the vertical axis in the
cylindrical coordinates system with r and ϕ as the radial and tangential axes respectively, let us
consider a disk which rotates with constant angular velocity Ω about the z axis. The disk is placed
at z = 0, and a viscous incompressible Newtonian and electrically conducting fluid occupies the
region z > 0. An external uniform magnetic field is applied perpendicular to the surface (i.e. in
the z direction) of the disk and has a constant magnetic flux density (or, applied magnetic field) B0

everywhere in the fluid. The assumption is valid only when the magnetic Reynolds number is very
small. A uniform suction or injection through the disk is considered. The flow configurations and
geometrical coordinates are shown in Fig. 1. The components of the flow velocity q are (u, v, w) in

Figure 1: Flow configurations and coordinate system.

the direction of increasing (r, ϕ, z) respectively. The surface of the rotating disk is maintained at a
uniform temperature Tw and far away from the wall, the free stream temperature is T∞ (T∞ > Tw).
The species concentration at the surface is maintained uniform at Cw, which is taken to be zero
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and that of the ambient fluid is assumed to be C∞. At t < 0 the fluid is at rest and at constant
temperature and concentration and the disk does not rotate. At t = 0 the disk is instantaneously put
into a motion (impulsively accelerated) at constant angular velocity. Only because of this the flow is
actually transient during a very small time interval before reaching to the well-known steady-state.
The effects of thermophoresis are being taken into account to help in the understanding of the mass
deposition variation on the surface. We further assume that (i) the mass flux of particles is sufficiently
small so that the main stream velocity and temperature fields are not affected by the thermo physical
processes experienced by the relatively small number of particles, (ii) when particles hit the disk
surface, they will be absorbed by it and none will be bounced back, (iii) due to the boundary layer
behavior the temperature gradient in the z direction is much larger than that in the r direction and
hence only the thermophoretic velocity component which is normal to the surface is of importance,
(iv) the fluid has constant kinematic viscosity and thermal diffusivity, (v) the particle diffusivity is
assumed to be constant, and the concentration of particles is sufficiently dilute to assume that particle
coagulation in the boundary layer is negligible and (vi) the flow is unsteady and axially symmetric.

Under the above-stated assumptions, the continuity, momentum, energy and particle concentration
equations can be written as (see also Rahman and Postelnicu [34]):
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where the variables and related quantities are defined in the nomenclature. The thermophoretic
velocities UT and WT which appear in equation (2.6), can be written as (see also Rahman and
Postelnicu [34])

UT = −κν
T

∂T

∂r
, WT = −κν

T

∂T

∂z
, (2.7)

where κ is the thermophoretic coefficient which ranges in value from 0.2 to 1.2 as indicated by
Batchelor and Shen [6] and is defined from the theory of Talbot et al. [43] by

κ =
2Cs(λg/λp + CtKn)[1 +Kn(C1 + C2e

−C3/Kn)]

(1 + 3CmKn)(1 + 2λg/λp + 2CtKn)
, (2.8)

where C1, C2, C3, Cm, Cs, Ct are constants, λg and λp are the thermal conductivities of the fluid
and diffused particles, respectively, and Kn = 2λ

dp
, the Knudsen number, is the ratio of mean free

path of gas molecules to particle diameter.
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If mean free path of the fluid particles is comparable to the characteristics dimensions of the flow
field domain the assumption of continuum media no longer valid as a consequence Navier–Stokes
equations breaks down. In the range of 0.1 < Kn < 10 the higher order continuum equation should
be used. For the range of 0.001 < Kn < 0.10, the no-slip boundary condition cannot be used and
should be replaced with Ut = λ∗

(
2−ζ
ζ

)
∂u
∂z , where Ut is the target velocity, ζ is the target momentum

accommodation coefficient and λ∗ is the mean free path. For Kn < 0.001, the no-slip boundary
condition is valid, therefore the velocity at the surface is equal to zero. In this study the slip and the
no-slip regimes of the Knudsen number that lies in the range 0 < Kn < 0.1 are considered.

2.1 Boundary conditions

(i) On the surface of the disk (z = 0):

u = Ut, v = Ωr + Ut, w = ww, p = 0, T = Tw, C = Cw = 0 at z = 0. (2.9)

(ii) Matching with the quiescent free stream (z →∞):

u = 0, v = 0, p→ p∞, T → T∞, C → C∞ as z →∞. (2.10)

2.2 Dimensionless governing equations

To obtain the similarity solutions of the governing equations (2.1)–(2.6) along with the boundary
conditions (2.9)–(2.10) we introduce the following similarity transformations:

η =
z

δ
, u = ΩrF (η), v = ΩrG(η), w =

ν

δ
H(η),

p = −ρνΩP (η), θ(η) =
T∞ − T
T∞ − Tw

, φ(η) =
C

C∞
,

(2.11)

where δ is a scale factor and is a function of time as δ = δ(t) which follows from Sattar and Hossain
[39] and Rahman et al. [33].

Substituting (2.11) into equations (2.1)–(2.6), we obtain the following differential equations:

H ′ + 2RF = 0, (2.12)

F ′′ −HF ′ −R(F 2 −G2) + ληF ′ −MF = 0, (2.13)

G′′ −HG′ − 2RFG+ ληG′ −MG = 0, (2.14)

H ′′ −HH ′ +RP ′ + ληH ′ = 0, (2.15)

θ′′ − PrHθ′ + Prληθ′ = 0, (2.16)

φ′′ − ScHφ′ − κScNt(1−Ntθ)
−1(θ′′φ+ θ′φ′) + Scληφ′ = 0, (2.17)

with the transformed boundary conditions as

F = εF ′, G = 1 + εG′, H = ws, P = 0, θ = 1, φ = 0 at η = 0, (2.18)

F = 0, G = 0, θ = 0, φ = 1 as η →∞. (2.19)
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where ε = λ
δ (2−ζ

ζ ) is the slip parameter and ws = wwδ
ν represents uniform suction (ws < 0) or

injection (ws > 0) velocity at the surface of the disk. The dimensionless parameters introduced
in the above equations are: R = Ωδ2

ν is the rotational parameter, λ = δ
ν

dδ
dt is the unsteadiness

parameter, Pr = ν
α is the Prandtl number, Nt = T∞−Tw

T∞
is the thermophoresis parameter, Sc = ν

D

is the Schmidt number and M =
σB2

0δ
2

ρν is the magnetic field parameter. Also in the equations
(2.12)–(2.18), primes denote differentiation with respect to the similarity variable η.

It is good to mention that integrating the unsteady relation λ = δ
ν

dδ
dt , we obtain δ =

√
2λνt.

A choice of λ = 2 provides δ = 2
√
νt, which exactly coincides with the length scale δ(t) for various

unsteady parallel flow considered by Schlichting [40]. The above-defined characteristic length scale
physically related to the boundary layer thickness that can be found in the book by Schlichting [40].

3 Important physical parameters

The quantities of physical interest are the skin-friction coefficient, the Nusselt number, the ther-
mophoretic velocity, the thermophoretic particle deposition velocity and the Stanton number which
are obtained from the following expressions. The radial shear stress τr and tangential shear stress τt
are defined by

τr =

[
µ
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+
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)]
z=0
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δ
F ′(η), (3.1)

τt =

[
µ

(
∂v

∂z
+

1

r

∂w

∂φ

)]
z=0

=
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δ
G′(η). (3.2)

Hence the skin-frictions (Cf = τ/ρΩ2r2) along the radial and tangential directions are obtained as

CfrRe = F ′(0), (3.3)

CftRe = G′(0), (3.4)

where Re = Ωrδ
ν is the rotational Reynolds number.

The rate of heat transfer from the disk surface to the fluid is computed by the application of
Fourier’s law as given below

qw = −k∂T
∂z z=0

= −kT∞ − Tw
δ

θ′(0). (3.5)

Hence the Nusselt number is obtained as

Nu =
δqw

k(T∞ − Tw)
= −θ′(0). (3.6)

Thermophoretic velocities at the surface of the disk along the radial and axial directions are evaluated
as

UT |z=0, WT |z=0 = −ν
δ

κNt

1−Nt
θ′(0). (3.7)

Therefore a non-dimensional axial thermophoretic velocity can be written as

W ∗T = − κNt

1−Nt
θ′(0). (3.8)



8 M. S. Alam et al., J. Nonl. Evol. Equ. Appl. 2016 (2016) 1–24

Thermophoretic particle deposition velocity at the surface of the disk is evaluated by

Vd =

(
Jd
C∞

)
z=0

= −D
δ
φ′(0), where Jw = −D

(
∂C

∂z

)
z=0

= −DC∞
δ

φ′(0). (3.9)

Therefore non-dimensional thermophoretic particle deposition velocity is evaluated as

V ∗d =
Vdδ

ν
= − 1

Sc
φ′(0). (3.10)

The negative sign in equation (3.10) represents that particle deposition will take place at the surface
of the disk from the hotter region to the colder region, i.e. from the fluid to the disk along the inward
axial direction. Now the local Stanton number is defined as

St = − Jwδ

C∞ν
φ′(0). (3.11)

Comparing (3.10) and (3.11) we find that

St = −V ∗d . (3.12)

4 Method of solutions

The set of equations (2.12)–(2.17) are highly non-linear and coupled and therefore the system cannot
be solved analytically. We dropped equation (2.15) from the system as it can be used for calculating
pressure once F and H are known from the rest of the equations. Therefore, the equations (2.12)–
(2.14) and (2.16)–(2.17) with boundary conditions (2.18)–(2.19) have been solved numerically by
using sixth order Runge–Kutta method along with Nachtsheim–Swigert [29] shooting iteration
technique (for detailed discussion of the method see Alam et al. [1]) with ws, R, λ, Pr, κ , Nt, ε,
Sc and M as prescribed parameters. A step size of ∆η = 0.01 was selected to be satisfactory for a
convergence criterion of 10−6 in all cases. The value of η∞ was found to each iteration loop by the
statement η∞ = η∞ + ∆η . The maximum value of η∞ to each group of parameters ws, R, λ, Pr,
κ , Nt, ε, Sc and M determined when the value of the unknown boundary conditions at η = 0 does
not change to a successful loop with an error less than 10−6.

4.1 Testing of the code

When λ = 0 (i.e. for steady case), R = 1, M = 0, ws = 0, ε = 0 and in the absence of heat and
mass transfer, the present problem coincides with those of White [46] . To assess the accuracy of the
present code, we have calculated the values of F , G and −H for different values of η in the absence
of heat and mass transfer.

Table 1 presents a comparison of the data obtained in the present work and those obtained by
White [46]. It is clearly observed that very good agreement between the results exists. This lends
confidence in the present numerical method.

5 Results and discussion

In order to investigate the effects of the pertinent parameters such as suction/injection parameter ws,
slip parameter ε, magnetic field parameter M , rotational parameter R, unsteadiness parameter λ,
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Prandtl number Pr, thermophoretic coefficient κ, thermophoresis parameter Nt and Schmidt number
Sc on the flow, heat and mass transfer characteristics are presented graphically as well as in tabular
form. For the present investigation we considered our working fluid as air (Pr = 0.71) and the
species is carbon dioxide (Sc = 0.94). The default values of the other parameters throughout the
simulation are considered as ε = 1.0, ws = 0.6, R = 1.0, λ = 0.5, Nt = 0.5, κ = 0.5 and M = 0.5
unless otherwise specified.

The effects of the suction (or injection) parameter (ws) on the radial, tangential, and axial velocity
profile are shown in Figs. 2(a)–(e) respectively. From Figs. 2(a)–(b) we see that radial and tangential
velocity profile decrease very rapidly as the suction velocity (ws < 0) increases. The maximum of
the radial velocity profiles moves toward the surface of the disk. It is also apparent that the thickness
of the boundary layer decreases as the suction velocity increases. In Fig. 2(c) we observe that for
strong suction, inward axial velocity is nearly constant. The effect of the suction parameter on the
thermal boundary layer is found to be similar to those of the radial and tangential velocity boundary
layers, which is shown in Fig. 2(d). The effects of suction parameter on the concentration field are
displayed in Fig. 2(e), which shows that the concentration increases as the suction parameter ws
increases. An opposite effect is found for the case of fluid injection (ws > 0).

The effect of the slip parameter ε on the non-dimensional velocity, temperature and concentration
profiles are presented. From Fig. 3(a) we see that boundary layer decreases very rapidly with the
increase of the slip parameter. Fig. 3(b) indicates that for large values of ε, i.e. ε→∞, the rotating
disk does not cause rotation of the fluid particles. Because in this range of ε the flow becomes
entirely potential, there will be no motion in the fluid. This can be further explained as follows: the
centrifugal force acting on the rotating disk will throw out the fluid that sticks to it. On the other hand
the flow in the axial direction will come forward to compensate for this thrown fluid. But increasing
the slip on the surface of the disk reduces the amount of fluid that can stick on it; as a consequence
the efficiency of the rotating disk is reduced substantially and is unable to transfer its circumferential
momentum to the fluid particles. A reduction in the circumferential velocity results in a reduction in
the centrifugal force which in turn decreases the inward axial velocity substantially as can be seen
from Fig. 3(c). From Fig. 3(d) it is noticed that thermal boundary layer increases as slip parameter
increases. Fig. 3(e) shows a decreasing effect of ε on the concentration boundary layer.

In Figs. 4(a)–(e), the influence of the unsteadiness parameter λ on the dimensionless radial,
tangential, inward axial velocity, temperature and concentration profiles across the boundary layer
have been displayed, respectively. From these figures we observe that the radial, tangential, inward
axial velocity and temperature profiles decrease whereas concentration profiles increases with an
increasing values of the unsteadiness parameter.

The effects of rotational parameter R on the dimensionless radial, tangential, inward axial
velocity, temperature and concentration profiles have been shown in Figs. 5(a)–(e) respectively. From
these figures we observe that the radial, inward axial velocity and concentration profiles increase
whereas both the tangential velocity and temperature profiles decrease with increasing values of the
rotational parameter.

Figs. 6(a)–(e) show the effect of the magnetic field on the dimensionless radial, tangential,
inward axial velocity, temperature and concentration profiles. Radial, tangential and axial velocity
decelerate as M increases as shown in Figs. 6(a), 6(b) and 6(c). A drag-like force called Lorentz
force is generally created due to the introduction of the magnetic field which has the tendency to
decelerate the flow around the disk at the expense of increasing its temperature as shown in Fig. 6(d).
It can further be mentioned that the thicknesses of the concentration boundary layer decreases with
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the increase of the strength of the applied magnetic field which is shown in Fig. 6(e).

Figs. 7(a)–(b) show typical concentration profiles across the boundary layer for various values of
the Schmidt number Sc. An increasing Schmidt number thickens the concentration boundary layer.
Fig. 7(a) plotted for some values of Sc, shows that concentration profile increases with the increase
of the Schmidt number. Fig. 7(b) plotted for large values of Sc, shows that increase of these profiles
is very steep for large Schmidt numbers. From the physical point of view, for smaller values of the
Schmidt number, Brownian diffusion effect is more important as compared to the convection effect.
However, for a large value of Sc the diffusion effect is minimal as compared to the convection effect
and, therefore, the effect of thermophoresis alters the concentration boundary layer significantly.

The effect of the thermophoretic coefficient κ on the concentration profiles is depicted in
Fig. 7(c). The effect of increasing the thermophoretic coefficient κ is to decrease the slope of the
concentration profiles except very close to the surface of the disk (η < 1.0). This is due to the fact
that thermophoresis plays a suction-like effect on particles for a cold surface. This phenomenon
is consistent with the works of Rahman and Postelnicu [34]. In order to examine the effect of
thermophoresis on particle deposition onto a rotating disk surface, the concentration profiles are
displayed in Fig. 7(d), for thermophoresis parameter Nt. According to the definition of the relative
temperature difference parameter, Nt < 1 always, this is positive for a cooled surface and negative
for a heated surface. From this figure it is clear that the concentration profiles are decreased when
temperature ratios are increased; this is because when large temperature difference exists, then
the thermophoretic force drives more particles closer to the disk so to decrease the concentration
somewhere far from the cold surface.

It is noted from Table 2 that the values of the tangential skin friction and the rate of heat transfer
coefficients as well as deposition flux decrease and radial skin friction increases for increasing values
of the injection velocity. It is also noted from this table that increasing the suction velocity leads
to decrease in the radial skin friction coefficient and while its effect is to increase the tangential
skin friction coefficient and the rate of heat transfer coefficient as well as deposition flux. Table 2
also shows that skin friction along the radial and tangential directions; the rate of heat transfer and
deposition flux increase with the increasing values of rotational parameterR. From Table 2 we further
see that radial skin friction decreases whereas tangential skin friction and the rate of heat transfer as
well as deposition flux increase with the increasing values of the unsteadiness parameter λ. It is also
seen that an increase in M leads to an increase in tangential skin friction whereas its influence is to
decrease the radial skin friction, rate of heat transfer and deposition flux. From this table we noted
that skin friction in both directions decreases with the increase of the slip parameter. The largest skin
friction is found for the case of no-slip at the surface. On the other hand the rate of heat transfer
increases with the increase of slip parameter within the range 0 ≤ ε ≤ 0.5. Outside of this range of
the heat transfer and deposition flux decrease with the further increase of the slip parameter. Thus,
the rate of heat transfer can be strongly controlled by controlling the slip on the disk.

From Table 3 we see that the non-dimensional axial thermophoretic velocity W ∗T increases with
the increase of the thermophoretic coefficient κ as well as thermophoresis parameter Nt. Finally,
Table 4 shows the variations of thermophoretic deposition velocity for different values of the Schmidt
number Sc and thermophoretic coefficient κ. From this table it is also clear that the effect of
increasing Schmidt number lead asymptotically to a zero thermophoretic deposition velocity. This is
in agreement with the physical explanations, based on the fact that the Schmidt number is the ratio of
momentum diffusivity (viscosity) to mass diffusivity. This table confirms that the thermophoretic
deposition velocity decreases as the thermophoretic coefficient κ increases.
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Figure 2: Variation of (a) radial velocity, (b) tangential velocity, (c) axial velocity, (d) temperature
profiles and (e) concentration profiles for several values of ws.
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Figure 3: Variation of (a) radial velocity, (b) tangential velocity, (c) axial velocity, (d) temperature
profiles and (e) concentration profiles for several values of ε.
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Figure 4: Variation of (a) radial velocity, (b) tangential velocity, (c) axial velocity, (d) temperature
profile and (e) concentration profile for several values of λ.
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Figure 5: Variation of (a) radial velocity,(b) tangential velocity, (c) axial velocity,(d) temperature
profiles and (e) concentration profiles for several values of R.
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Figure 6: Variation of (a) radial velocity,(b) tangential velocity, (c) axial velocity,(d) temperature
profiles and (e) concentration profiles for several values of M .
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Figure 7: Concentration variation for different values of (a)Sc < 1, (b)Sc >> 1, (c) κ, and (d) Nt.

Table 1: Numerical values of F (η), G(η) and −H(η) without heat and mass transfer and for
λ = M = ws = ε = 0 and R = 1.

η F (η) G(η) −H(η)

present work White [46] present work White [46] present work White [46]

0.0 0.00000000 0.0000 1.00000000 1.0000 0.00000000 0.0000
1.0 0.18002352 0.1801 0.47666771 0.4766 0.26534785 0.2655
2.0 0.11854839 0.1188 0.20329060 0.2034 0.57264331 0.5732
3.0 0.05655563 0.0581 0.08423853 0.0845 0.74391508 0.7452
4.0 0.02507942 0.0256 0.03440941 0.0349 0.82266964 0.8249
5.0 0.01022057 0.0108 0.01369313 0.0144 0.85594800 0.8594
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Table 2: Variation of F ′(0), −G′(0), −θ′(0) and −φ′(0) for different values of ws, R, λ, M and ε
at Pr = 0.71, κ = 0.5, Nt = 0.5 and Sc = 0.94.

ws R λ M ε F ′(0) −G′(0) −θ′(0) −φ′(0)

1.0 1.0 0.5 0.5 1.0 0.0927266 0.3721130 0.1914136 0.2067976
0.5 1.0 0.5 0.5 1.0 0.0687145 0.4274587 0.3251592 0.3862128
0.0 1.0 0.5 0.5 1.0 0.0450152 0.4895662 0.5886159 0.6403698
−0.5 1.0 0.5 0.5 1.0 0.0265266 0.5536815 0.7402647 0.9638555
−1.0 1.0 0.5 0.5 1.0 0.0148325 0.6131033 1.0106508 1.3407542
0.6 0.2 0.5 0.5 1.0 0.0198669 0.3744116 0.2445934 0.2812372
0.6 0.4 0.5 0.5 1.0 0.0376886 0.3818944 0.2530752 0.2919466
0.6 0.6 0.5 0.5 1.0 0.0524955 0.3922625 0.2652003 0.3072754
0.6 0.8 0.5 0.5 1.0 0.0643293 0.4038964 0.2794172 0.3252551
0.6 1.0 0.5 0.5 1.0 0.0736667 0.4157733 0.2944743 0.3443481
0.6 1.0 0.1 0.5 1.0 0.0915046 0.3948652 0.1139683 0.1256954
0.6 1.0 0.3 0.5 1.0 0.0825447 0.4047808 0.2150747 0.2470199
0.6 1.0 0.5 0.5 1.0 0.0736667 0.4157733 0.2944743 0.3443481
0.6 1.0 0.7 0.5 1.0 0.0653891 0.4275072 0.3638482 0.4300710
0.6 1.0 1.0 0.5 1.0 0.0545749 0.4456690 0.4564223 0.5450685
0.6 1.0 0.5 0.5 1.0 0.0736667 0.4157733 0.2944743 0.3443481
0.6 1.0 0.5 1.5 1.0 0.0292621 0.5177313 0.26885316 0.2994761
0.6 1.0 0.5 2.5 1.0 0.0153430 0.5812493 0.2492675 0.2873027
0.6 1.0 0.5 3.0 1.0 0.0118888 0.6044182 0.24714064 0.28458906
0.6 1.0 0.5 4.0 1.0 0.0077865 0.6404763 0.24481106 0.28160777
0.6 1.0 0.5 0.5 0.0 0.3553806 0.6985804 0.2986664 0.3484625
0.6 1.0 0.5 0.5 0.5 0.1418910 0.5330671 0.3032187 0.3551829
0.6 1.0 0.5 0.5 1.0 0.0736667 0.4157733 0.2944743 0.3443481
0.6 1.0 0.5 0.5 2.0 0.0291623 0.2880587 0.2794093 0.3253503
0.6 1.0 0.5 0.5 5.0 0.0055400 0.1519075 0.2584244 0.2987912
0.6 1.0 0.5 0.5 8.0 0.0019516 0.1038555 0.2508964 0.2892476
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Table 3: Variation of non-dimensional axial thermophoretic velocity W ∗T for different values of
thermophoretic coefficient κ, and thermophoresis parameter Nt.

κ Nt W ∗T = − κNt
(1−Nt)

θ′(0)

0.2 0.05088
0.4 0.11779
0.8 0.50 0.23558
1.0 0.29447
1.2 0.35337

0.0 0.0000
0.1 0.01636
0.3 0.06310

0.50 0.6 0.22086
0.8 0.59885
0.9 1.32514

Table 4: Variation of non-dimensional thermophoretic deposition velocity V ∗d for different values of
Schmidt number Sc, and thermophoretic coefficient κ.

Sc κ St = −V ∗d
0.22 2.6535056
0.60 1.0274275
0.78 0.5 0.6936924
0.94 0.6860257
100 0.0416088
1000 0.0297816
2000 0.0194139

0.2 0.3424810
0.4 0.3549821
0.8 0.3908922

0.94 1.0 0.4076531
1.2 0.4467840

6 Conclusions

In this paper, we have studied the effects of thermophoresis on unsteady hydromagnetic forced
convective heat and mass transfer flow of a viscous incompressible fluid over a cold rapidly rotating
disk in the presence of partial slip at its surface under the action of an applied magnetic field.
Using similarity transformations, the governing non-linear partial differential equations have been
transferred into a system of ordinary differential equations which are solved numerically by applying
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Nachtsheim–Swigert shooting iteration technique along with sixth-order Runge–Kutta integration
scheme. Comparison with previously published work for steady case of the problem was performed
and the results are found to be in excellent agreement. From the present numerical investigations the
following major conclusions may be drawn.

1. Radial, tangential, and temperature profiles decrease whereas both inward axial velocity and
concentration profiles increase with the increase of the suction velocity. An opposite trend
is also observed for the case of injection. Suction and injection stabilizes the growth of the
boundary layer.

2. Slip parameter significantly controls the flow, heat and mass transfer characteristics.

3. Magnetic field significantly controls the skin friction coefficient along tangential and radial
directions. The rate of heat transfer and deposition flux reduces due to an intensification of the
applied magnetic field strength.

4. Radial, inward axial velocity and concentration profiles increase whereas both the tangential
velocity and temperature profiles decrease with increasing values of the rotational parameter.

5. Radial, tangential, inward axial velocity and temperature profiles decrease whereas concentra-
tion profiles increase with the increasing values of the unsteadiness parameter.

6. Radial, tangential, and axial velocity decelerate as magnetic field parameter increases. It can
be also noticed that the temperature profile increases whereas concentration profile decreases
with the increase of the magnetic field parameter.

7. Concentration profiles decrease with the increase of thermophoretic coefficient and the ther-
mophoresis parameter. On the other hand it increases with the increase of the Schmidt number.

8. Axial thermophoretic velocity increases linearly with the increase of the thermophoretic
coefficient and thermophoresis parameter.

9. Inward axial thermophoretic particle deposition velocity decreases with the increase of the
Schmidt number. On the other hand, it increases with the increasing values of the ther-
mophoretic coefficient.

Nanofluids are a new class of fluids which can be used for various purposes specially for
solar collectors to improve the efficiency of the collector. The interdisciplinary nature of
nanofluids research presents a great opportunity for exploration and discovery at the frontiers
of nanotechnology. An investigation is under way exploring the heat transfer augmentation
considering nanofluid in the present model.
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Nomenclature

B0 Applied magnetic field Tw Temperature at the surface of the disk
Cf Skin friction coefficient T∞ Temperature of the ambient fluid
cp Specific heat at constant pressure Ut Target velocity
C Concentration within the boundary

layer
u, v, w Velocities along radial, tangential and

axial direction respectively
Cw Concentration at the surface of the disk V ∗d Thermophoretic particle deposition ve-

locity
C∞ Concentration of the ambient fluid W ∗T Axial thermophoretic velocity
D Molecular diffusivity ww/ws Dimensional/non dimensional suction

and injection velocity
F Dimensionless radial velocity z Axial coordinate
G Dimensionless tangential velocity Greek symbols
H Dimensionless axial velocity ρ Density of the fluid
k Thermal conductivity of the fluid µ Coefficient of dynamic viscosity
Kn Knudsen number ν Kinematic viscosity
M Magnetic field parameter κ Thermophoretic coefficient
Nt Thermophoresis parameter α Thermal diffusivity
Nu Nusselt number η Similarity variable
p∞ Pressure of the ambient fluid δ Time dependent length scale
Pr Prandtl number λ Unsteadiness parameter
qw Surface heat flux λ∗ Mean free path
R Rotational parameter φ Dimensionless concentration
Re Rotational Reynolds number ϕ Cylindrical tangential coordinate
r Cylindrical radial coordinate τr Radial shear stress
Sc Schmidt number τt Tangential shear stress
St Stanton number θ Dimensionless temperature
t Time Ω Angular velocity
T Temperature within the boundary layer ε Slip parameter
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[26] M. Miklavčič, C. Y. Wang, The flow due to a rough rotating disk, Zeitschrift für angewandte
Mathematik und Physik 55 (2004), pp. 235–246.

[27] A. F. Mills, X. Hang, F. Ayazi, The effect of wall suction and thermophoresis on aerosol particle
deposition from a laminar boundary layer on a flat plate, International Journal of Heat and
Mass Transfer 27 (1984), pp. 1110–1114.

[28] K. Millsaps, K. Pohlhausen, Heat transfer by laminar flow from a rotating plate, Journal of
Aeronautical Science 19 (1952), pp. 120–126.

[29] P. R. Nachtsheim, P. Swigert, Satisfaction of the asymptotic boundary conditions in numerical
solution of the system of nonlinear equations of boundary layer type, NASA TND-3004, 1965.

[30] E. Osalusi, J. Side, R. Harris, Thermal-diffusion and diffusion-thermo effects on combined heat
and mass transfer of a steady MHD convective and slip flow due to a rotating disk with viscous
dissipation and Ohmic heating, International Communications in Heat and Mass Transfer 35
(2008), pp. 908–915.

[31] A. Postelnicu, Effects of thermophoresis particle deposition in free convection boundary layer
from a horizontal flat plate embedded in a porous medium, International Journal of Heat and
Mass Transfer 50 (2007), pp. 2981–2985.



HYDROMAGNETIC FORCED SLIP FLOW OVER A ROTATING DISK 23

[32] A. Postelnicu, Thermophoresis Particle deposition in natural convection over inclined surfaces
in porous media, International Journal of Heat and Mass Transfer 55 (2012), pp. 2087–2094.

[33] ATM. M. Rahman, M. S. Alam, M. K. Chowdhury, Thermophoresis particle deposition on
unsteady two dimensional forced convective heat and mass transfer flow along a wedge with
variable viscosity and variable Prandtl number, International Communications in Heat and
Mass Transfer 39 (2012), pp. 541–550.

[34] M. M. Rahman, A. Postelnicu, Effects of thermophoresis on the forced convective laminar flow
of a viscous incompressible fluid over a rotating disk, Mechanics Research Communication 37
(2010), pp. 598–603.

[35] M. M. Rahman, I. A. Eltayeb, Radiative heat transfer in a hydromagnetic nanofluid past a
non-linear stretching surface with convective boundary condition, Meccanica 48 (2013), pp.
601–615.

[36] M. M. Rahman, M. A. Sattar, MHD free convection and mass transfer flow with oscillatory
plate velocity and constant heat source in a rotating frame of reference, Dhaka University
Journal of Science 47 (1999), pp. 63–73.

[37] M. M. Rahman, Convective hydromagentic slip flow with variable properties due to a porous
rotating disk, Sultan Qaboos University Journal for Science 15 (2010), pp. 55–79.

[38] M. M. Rahman, Thermophoretic deposition of nanoparticles due to a permeable rotating disk:
effects of partial slip, magnetic field, thermal radiation, thermal-diffusion and diffusion-thermo,
World Academy of Science, Engineering and Technology 77 (2013), pp. 5–20.

[39] M. A. Sattar, M. M. Hossain, Unsteady hydromagnetic free convection flow with hall current
and mass transfer along an accelerated porous plate with time dependent temperature and
concentration, Canadian Journal of Physics 70 (1992), pp. 369–374.

[40] H. Schlichting, Boundary layer theory, McGraw Hill, 1968.

[41] M. A. Seddeek, Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer
mixed convection in a fluid saturated porous media, Journal of Colloid Interface and Science
293 (2006), pp. 137–142.

[42] E. M. Sparrow, G. S. Beavers, L. Y. Hung, Flow about a porous-surface rotating disk, Interna-
tional Journal of Heat and Mass Transfer 14 (1971), pp. 993–996.

[43] L. Talbot, R. K. Cheng, R. W. Schefer, D. R. Willis, Thermophoresis of particles in a heated
boundary layer, Journal of Fluid Mechanics 101 (1980), pp. 737–758.

[44] R. Tsai, A simple approach of evaluating the effect of wall suction and thermophoresis on
aerosol particle deposition from a laminar flow over a flat plate, International Communications
in Heat and Mass Transfer 26 (1999), pp. 249-257.

[45] C. Wagner, Heat transfer from a rotating disk to ambient air, Journal of Applied Physics 19
(1948), pp. 837–839.

[46] F. M. White, Viscous fluid flows, McGraw-Hill, Inc., New York, 1991.

[47] J. Zueco, V. Rubio, Network method to study magnetohydrodynamic flow and heat transfer
about rotating disk, Engineering Applied Computational Fluid Dynamics 6 (2012), pp. 336–345.


