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1 Introduction

In the present paper we establish an existence result of an entropy solution for a class of nonlinear
parabolic problems of the type:

u > a.e. in Q x (0,7,
0
au_ div(a(z,t,u, Vu)) + H(x,t,u, Vu) = f in@=Qx(0,7),
(P) ¢ Ot
u(z,0) = ugp in £,

u=0 on 092 x (0,7).

In the problem (P), 2 is a bounded domain in RY, N > 2, T is a positive real number, while the
data f € L'(Q) and ug € L'(€). The operator — div(a(z,t,u, Vu)) is a Leray-Lions operator
which is coercive; H is a nonlinear lower order term.

More precisely, this paper deals with the existence of a solution to the obstacle parabolic problems
associated to (P) in the sense of an entropy solution (see Definition 3.1).

The existence of solutions to nonlinear parabolic inequalities with L'-data in Orlicz spaces
was studied by R. Aboulaich, B. Achchab, D. Meskine and A. Souissi in [1], where the case
H(z,t,u,Vu) = 0 was considered. In the case where a(z,t,u, Vu) = |Vu[P®)~2Vy and
H(z,t,u, Vu) = 0, M. Bendahmane, P. Wittbold and A. Zimmermann [3] proved the existence
and uniqueness of renormalized solutions to nonlinear parabolic equations with L'-data. Recently,
M. Sanchén and J. M. Urbano [15] have studied a Dirichlet problem (P) of p(x)-Laplace equa-
tion and have obtained the existence and uniqueness of an entropy solution for L'-data where
H(z,t,u,Vu) = 0 and Au = —div(|Vu[P"®)=2Vw). In the case where H(z,t,u,Vu) =
—g(u)M(|Vul), the existence of solutions of some unilateral problems in the framework of Orlicz
spaces has been established by M. Kbiri Alaoui, D. Meskine and A. Souissi [11] with the penalization
methods.

The plan of the paper is as follows. In Section 2 we collect some important propositions and
results of variable exponent Lebesgue—Sobolev spaces that will be used thoroughout the paper. In
Section 3 we give the basic assumptions and the definition of an entropy solution of (P). In Section 4
we establish the existence of such a solution in Theorem 4.2. Section 5 is devoted to an example
which illustrates the abstract result.

2 Mathematical preliminaries on variable exponent Sobolev spaces

2-1. Sobolev space with exponent variable. In this section, we recall some definitions and basic
properties of the generalised Lebesgue—Sobolev spaces with variable exponent: LP(®)(Q), W1P(*) ()
and I/VO1 p(@) (€2). We refer to Fan and Zhao [9] for further properties of variable exponent Lebesgue—
Sobolev spaces.

Let Q be a bounded open subset of R (N > 2). We say that a continuous real-valued function p
is log-Holder continuous in €2 if there is a constant C' such that

ip(@) — p(y)| < —C

- 1
< —— Vz,y € Qsuchthat |z —y| < -. (2.1)
|log |z — y]| 2
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Moreover, let us set Cy (Q)={p € C(Q2) : min, 5 p(z) > 1}. For any p € C(§2) we define

p~ = inf p(x) and p" =supp(x).
e xe)

We define the variable exponent Lebesgue space for p € C(£2) by:
LPO(Q) = {u: 2 — R : u is measurable with/ u(z)[P@ dz < oo}.
0

This space endowed with the (Luxembourg) norm defined by the formula

u(x)

z) |P@)
A

Hmummnz|mm@=nm{x>034 dwél}

is a separable and reflexive Banach space. The dual space of LP(*)(Q) is L¥'(*)(Q), where Wlx) +

Wlx) = 1 (see [12]). If p is a constant function, then the variable exponent Lebesgue space coincides

with the classical Lebesgue space.

Proposition 2.1 ([9, 12], Generalised Holder inequality)
(i) For any functions v € LP")(Q) and v € L") (Q) we have

/ uv dx
Q

(ii) For all p,q € C4(Q) such that p(z) < q(z) a.e. in Q, we have L) — LP®) and the
embedding is continuous.

1 1
§<p+¢,)WMMMymSmMmMMM@

The modular of the space LP(*)((2), that is, the mapping p: LP(*)(Q) — R, is defined by the
formula

p(u) = / lu(z)[P™) dz for all u € LP@®)(Q).
Q
Lemma 2.1 ([9]) Ifu € LP®)(Q), then
: P pt P pt
min{ [lullZ .l b < p(u) < max{ llul [, el 2, }-
The next proposition shows that there is a gap between the modular and the norm in LP(®) (Q).

Proposition 2.2 ([10, 17]) For v € LP™)(Q) and {u}ren C LP®)(Q) the following assertions

hold:

D) u#0 = |[|lullpm) =X & P(%) = 1];
i) fullpey > 1 = ullZ) < p(u) < [l
(i) [[ullp) <1 = [l < plu) < [ul%,):



70 Youssef Akdim et al., J. Nonl. Evol. Equ. Appl. 2015 (2016) 67-90

(i) lm [fug[[pe) =0 & lm p(ug) = 0;

li o) =00 & i = 00.
v) ki}H;OHukHLP()(Q) o0 kggop(uk) o0

Similarly to the definition of LP(*)(Q), we define the variable Sobolev space by
Wir@ () = {u € LP@)(Q) : |Vl € LP@)(Q)}.
The space W1?(*)(Q) is endowed with the norm:

Hqu,p(m) = Hqu(a:) + Hvu”p(:v) Vu € WLp(m)(Q)'

We do not assume that the continuous function p(z) € C(f2) is log-Holder continuous. If the

log-Holder continuity condition (2.1) holds, then we denote by I/VO1 P(@) (€2) the closure of C§°(£2) in
wir@)(Q), ie.,

p(z oW PE@(Q)
WP (Q) = G (@)
and No()
p(x
() = Np(2) for p(z) < N,
00 for p(xz) > N.
Proposition 2.3 ([10])

(i) Assuming 1 < p~ < p* < oo and p € C(Q), the spaces W'P*)(Q) and Wol’p(x)(Q) are
separable and reflexive Banach spaces.

(ii) Ifq € Cy(Q) and q(z) < p*(z) forany x € Q, then WP (Q) < L) (Q) is continuous
and compact. In particular, we have that W& P(@) (Q) < L1)(Q) is continuous and
compact (for more details see [8, Theorem 8.4.2]).

(iii) Poincaré inequality: For u € T/VO1 P (x)(Q) withp € C(Q) and p~ > 1 there exists a constant
C > 0 such that |[ul|y) < C||Vullys) holds, where the positive constant C depends on p(x)
and €.

Remark 2.1 By (iii) of Proposition 2.3 we know that ||V'u|| ;) and ||u||1 () are equivalent norms
on Wol’p(m) ().

We will also use the standard notations for Bochner spaces, i.e., if ¢ > 1 and X is a Banach
space, then L9(0,7’; X) denotes the space of strongly measurable functions u: (0,7") — X for
which ¢t — ||u(t)||x € L9(0,T). Moreover, C(]0, T]; X') denotes the space of continuous functions
u: [0,7] — X, endowed with the norm ||ul|c ([0, 77,x) = max;e(o. 77 lu(t)| x. Set

L? (0,T; Wol’p(x)(Q)) = {u: 0,7) — Wol’p(x)(Q) : u is measurable

T
p— p
and (/O O 1 dt) < oo}.
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Similarly to the definition of LP~ (0, T; W @) (1)), we define also the space
L>(0,T;X) = {u: (0,T) — X : wis measurable and 3C > 0 [Ju(t)||x < C ae.}.
Let us recall that the space L>°(0,7"; X) is endowed with the following norm
[ull oo 0,7, x) = IE{C > 0: lu(t)||x < Cae.}.
We introduce the functional space (see [3])
V= {u € LV (0,T; WP D(Q)) : |V € LW)(Q)}, 2.2)

which endowed with the norm:

lullv = [[Vull o ()

or, the equivalent norm:

lfellly = el - o zawtro @y + Vel @)
is a separable and reflexive Banach space. The equivalence of the two norms is an easy consequence

of the continuous embedding LP®)(Q) < LP~ (0, T; LP*)(2)) and the Poincaré inequality. We
state some further properties of V' in the following lemma.

Lemma 2.2 Let V be defined as in (2.2) and let its dual space be denoted by V*. Then

(1) we have the following continuous dense embeddings:
L2 (0, T; Wy P(Q) < Vs LV (0, T; Wy PP ().

In particular, since D(Q) is dense in LP" (0, T; WOLP(I)(Q)), it is dense in 'V and for the
corresponding dual spaces we have

LE (0,75 (Wo "™ (@)") = Vs L (0,7 (W5 P (@))7).
Note that we have the following continuous dense embeddings

L7 (0, T; LP®)(Q)) < LP@(Q) — LP™(0,T; L™ (Q)).

(ii) one can represent the elements of V* as follows: if T € V*, then there exists F =
(fi,-- ., fn) € (LP@(Q))N such that T = div F and

T
<T7€>V*,V:// FVédxdt
0JQ
forany € € V. Moreover, we have

1Tl = max{ | fill gy 8 = 1. N}.
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Remark 2.2 The space V N L>®(Q), endowed with the norm defined by the formula:

Wlivar=(@) = max{[lvllv, [v]r=@}, veVNLXQ),

is a Banach space. In fact, it is the dual space of the Banach space V* + L'(Q) endowed with the
norm:

HUHV*—&-Ll(Q) = inf{”'l)luv* + HUQHLl(Q) TV =01 +V9,V] € V*,Ug S L1<Q)}
2-2. Some technical results. The aim of this section is to state several technical results, which will

be needed in the sequel.

Let v stand for the generalized derivative of u, i.e.,
T T
/ o' (t)p(t)dt = —/ u(t)' (t)dt forall ¢ € C§°(0,T).
0 0

Lemma 23 ([14)) W :={u eV :u € V*+ LY(Q)} — C([0,T]; L'(Q)) and

W NL¥(Q) = C([0,T); L*(%)).

3 Assumption on data and the definition of an entropy solution

Throughout the paper, we assume that the following assumptions hold true.

Assumption (H1)
Let €2 be a bounded open subset of RN(N > 2), T > 0 be given and let us set Q = Q x (0,7).

Moreover, let p € C(Q2) and assume that p(x) satisfies the log-Holder condition (2.1) with
1 <p~ <p(x) <p" < oco. We consider a Leray-Lions operator defined by the formula:

Au = —div (a(x, t,u, Vu)),

where a: Q x [0,7] x R x RY — R is a Carathéodory function (i.e., measurable with respect to
in  for every (s,¢) € R x R and continuous with respect to (s,£) € R x RY for almost every
in ), which satisfies the following conditions: there exists k(z, ) € L (*)(Q) such that for almost
every (z,t) € Q,all (s,6) €ER x RY and 8 > 0

a(z,t,s,8)] < Blk(z,t) + |s|P@ 1 4+ [¢[p@)=1) (3.1)

jalt,5,6)] < B[k(x. 1) + s €l

la(z,t,5,€) —ala,t,5,m)](—n) >0 VE#neRY, (3.2)
a(z,t,5,6) - € > afgP), (3.3)

where « is a strictly positive constant.

Assumption (H2)
Furthermore, let H: Q x [0,7] x R x RY — R be a Carathéodory function such that for all
(x,t) € Q and for all s € R, £ € RY, the growth condition

|H(2,t,5,€)] < v(z,t) + g(s)[€[P™ (3.4)
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is satisfied, where g: R — R™ is a continuous positive function that belongs to L (IR) and ~(x,t) €

LY(Q).

Let ¢ be a measurable function with values in R such that v € LP~ (0, T; Wy ") (Q)) N L=(Q)
and let

Ky = {u e L? (0,T; Wol’p(x)(Q)) tu>1pae. in) x (O,T)}.
We recall that for £ > 0 and s € R the truncation function T}, is defined by

s, if |s| <k,
Ti,(s) = { .

k7 if |s| > k,

and we define ¢x(s) = 1 7%(s).

Definition 3.1 Ler f € LY(Q) and ug € L' (). A real-valued function u defined on Q is an entropy
solution of the problem (P) if

u>ae inQx(0,7), (3.5)
Ti(u) € LP (0, T; Wo '™ (Q))  forall k > 0, 46
u e C(0,T; LY(Q)), '
/Sk ) — o daz—/Sk uo—v(O))dx

v

—Tk(u —v)dxdt + / H(x,t,u, Vu)Ti(u — v) dx dt

o Ot 0

3.7)

+ / a(z,t,u, Vu)VTi(u —v)dedt
Q
< / fTi(u —v)dzdt Vv e KyNL¥(Q),
Q

where Si(s) = [¢ Ty,(r) dr and % e LP" (0, T; W=7 @) (Q)).

4 Existence results

In this section, we establish the following existence theorem. We begin with the following

Lemma 4.1 ([3]) Assume (3.1)—~(3.3) and let (uy,),, be a sequence in LP (0, T} Wol’p(w)(Q)) such
that u, — u weakly in L (0,T; Wol’p(w)(Q)) and

/ la(z,t,un, Vug) — a(z, t, uy, V)| V(uy — u) dz — 0.
Q

Then w,, — u strongly in L (0, T}, Wol’p(x) (Q)).
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Theorem 4.2 Let f € L'(Q), ug € L' () and p € C(Q). Assume that (H1) and (H2) hold true.
Then there exists at least one entropy solution u of the problem (P) (in the sense of Definition 3.1).

Proof. The above theorem is proven in the following five steps.

Step 1. Approximate problem. For n > 0 let us define the following respective approximation of
H, f and ug:

H(z,t,s,§)

Hn 7t7 ? ,
(z,,5,€) 1+ L|1H(z,t,5,9)|

and select f,, and wug,, so that
fn € Lp’(m)(Q), fn — f ae. in Q and strongly in L*(Q) as n — oo, 4.1)
uon € D(R), ugn — up a.e. in Q and strongly in Ll(Q) as n — 00. 4.2)
Note that H,,(z,t, s, ) satisfies the following conditions
[ Hy(2,t,5,8)| < [H(z,t,5,8)]

and
|Hy,(x,t,5,6) <n forall (s,&)eRxRY.

Let us now consider the approximate problem

(Pn) + nTn(Un — ¢)7¢1/n(un) — fn in D/(Q),
tn{t = 0) = uon inQ,
tn =0 on 92 x (0,7).

Moreover, since f, € LP'~ (0, T; W12 () (Q)), proving the existence of a weak solution u, €
LP (0,T; W&’p(x)(Q)) of (Py,) is an easy task (see [13]).

Step 2. A priori estimates. Let us begin with the following

Proposition 4.1 Let u,, be a solution of the approximate problem (Py,). Then there exists a constant
C' (which does not depend on n and k) such that:

1Tl - (o gptort gy < Ck - Yk > 0.

Proof. Let v = Tj(un) " x(0,r) €xp(G(un)), where G(s) = 5% dr (the function g appears

in (3.4)). Choosing v as a test function in the approximate problem (P,) with 7 € (0,7),
by (3.4) and (3.3), we get
%exp(G(un))Tk(un)"‘ dz dt
QT at
+/ a(x,t, un, Vuy) exp(G(uy ) VT (up) T dz dt
(4.3)
b [ ATl = ) exp(Glun)) 1) T )

< [ Blat)+ £ exp(Glun) () do
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On the other hand, taking v = T (us) ™~ X (0,r) €xp(—G(uy)) as a test function in the problem (Py,),
we deduce as in (4.3) that

On e (—Ciuun)) T ()~ d d
QT 81;

+ /T a(x,t, upn, Vuy) exp(—G(u,)) VT (uy,)” dedt
+ /T v(z,t) exp(—G(up)) Tk (un)” dedt 4.4)
+ /T nTn(tn — )~ exp(—G(un)) T (un) ™ ¢1 /5 (un) dz dt

> frnexp(—G(up))Ti(up) ™ dzdt,
QT
which, by using (4.3), gives

/OT A 881;” exp(G(up)) Tk (up) T da dt
+ /T a(x, t, Un, VTk(un)+)VTk(un)+ exp(G(uy)) dz dt
[ AT~ ) exp(Glun)) ) T )

< /T [Y(2,t) + fn] exp(G(un)) T (uy) " da dt.

- , where ¢(r) =

7 Ti(s)* exp(G(r)) ds. Then

ouy,

On oo (G ) T () + it > /
Q‘r 8t Q

Since G(un) < YL e have fpy(n)] £ kexp(HL®)]y

gl 21w
or(un(r)) = kexp (M0 )y
Then, we deduce that

/Q or(un(r)) da

—l—/Ta,(:r,t,un,VTk(un)+)VTk(un)+exp(G(un))da:dt

4.5)
b [ ATl = ) exp(Glun)) 1 00 T )
”g”Ll(R)
< kexp| === Il i) + I fallzr @) + llwonllLr @) < Cik.
Since a satisfies (3.3), by the fact that ¢y (u, (7)) > 0, for every n > 0 we get
o / IV T () TP exp(Guy,)) da dt
9 (4.6)

+ /T N (un — )~ exp(G(un))P1 /n (tn) T (un) ™ dz dt < Cik,



76 Youssef Akdim et al., J. Nonl. Evol. Equ. Appl. 2015 (2016) 67-90

where C' is a constant which varies from line to line and which depends only on the data. It follows

that
0 [ atun ) exp(Glun)or ) 2 drat < €1,

-

and as k£ — 0 by Fatou’s lemma we deduce that

/{ ) nTy(un — )~ exp(G(un))d1 /n(uy) dzdt < Ch. 4.7)
Thanks to (4.6), we have_
a /Q VT () [P exp(G(un)) dar dt < Ci, “38)
and we deduce that T
o /Q VT (un) HP@®) da dt < C1k. (4.9)

Now, using v = Tj(un)~ X(0,7) eXP(—G(un)) as a test function in (4.4), with k > 0, for every
T € 10,T] we get

/ CL({L‘, l, Un, vun) eXp(_G(un))vunX{fkgunSU} dzdi

= [ AT = ) exp(= )1 ) Tiln)”
’ (4.10)

||9||L1 R
< kexp(cﬁ> [l + 1l + luonll )]
- [ phtun(r)) da,
Q
where o = [ Ti(s)” exp(—G(s))ds. Then
| htun(r)) da
Q

+ / a(x, t, un, Vi) exp(—G(un))Vunx{_kgunSO} dz dt
’ @.11)
- /Q nTn(un - 77/})_ eXp(_G(un))¢1/n(un)Tk(un)_ dzdt

9l
< kexp(cﬁ) [1l2(@) + I Fallzr (@) + luonllzr o] < Cok.

Since a satisfies (3.3) and due to the fact that ¢y (u,, (7)) > 0, for every n > 0 we get

a / VT (1) [P exp(—Gi(un)) da dt
@r (4.12)
- TL/ Tn(un - ¢)_Tk(“n>_ eXp(_G<un))¢l/n(un) dzdt < Cak,

where Cs is a positive constant, and we conclude that

0<— /{ [, Tl = ) exp(=Gun))ou () < Co (.13)
up <
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and
a/ IV T ()~ [P@) dae dt < Cok. (4.14)
Q

Combining (4.9), (4.14) and Lemma 2.1, we deduce that

T
. + _
| min (9T 2 9T} < 0 Tk()) < o
= |[Ti(un)|

(4.15)

L 0w @) (o)) S KO3

Then, Ty (uy,) is bounded in LP (0, T'; Wol’p(x) (€2)) independently of n for any k£ > 0. O

Now we turn to proving the almost everywhere convergence of u,,. Consider a non-decreasing
function g, € C?(R) such that

s, iffs| <4,
S =
9:(5) {k if [s] > k.

Multiplying the approximate equation by g; (u,,), we get

89]@ (un)
ot

— div(a(:c, t, Un, Vun)g;g(un)) + a(x, t, un, Vup)gn (un) Vg,

+nTy (un — w)ig;c(un)d)l/n(un) + Hy(2,t, un, vun)g;g(un) = fng;g(un)

(4.16)

in the sense of distributions. This, thanks to the fact that g;_ has compact support, implies that gy, (u,,) is
bounded in LP (0, T’; W& #(®) (€2)), while its time derivative % is bounded in L}(Q) +V*. Due
to the choice of g, we conclude that for each k the sequence T} (u,,) converges almost everywhere
in (), which implies that the sequence u,, converges almost everywhere to some measurable function
v in Q). Thus, by using the same argument as in [4, 5, 6], we can show the following lemma.

Lemma 4.3 Let u,, be a solution of the approximate problem (Py,). Then u,, — u a.e. in Q.

We can deduce from (4.15) that
Ti(un) = Ti(uw) in P (0,7 Wy "' (),
which by (3.3) implies that for every k > 0 there exists a function hy, € (L (*)(Q))N such that

a(z, u, Tp(un), VIk(un)) — by, in  (LP@(Q))N. 4.17)

Lemma 4.4 ([2]) Let uy, be a solution of the approximate problem (P,,). Then,

m—0o0 Nn—o0

lim lim sup/ a(x,t, up, V(uyp))Vuy, de dt = 0. (4.18)
{mS‘U7L|§m+1}

Lemma 4.5 ([3]) Let g € LP™)(Q) and g,, € LP®)(Q) with lgnllpz) < C for 1 < p(x) < oo, if
gn(x) = g(z) a.e. on Q. Then g, — g in LP*)(Q).
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Step 3. Almost everywhere convergence of the gradients. This step is devoted to introducing
for a fixed k& > 0 a time regularization of the function 7% (u) in order to perform the monotonicity
method. This specific time regularization of T} (u) (for fixed k& > 0) is defined as follows. Let (vf)),
be a sequence of functions defined on €2 such that

ol € L(Q) N WP (Q) forall i > 0, (4.19)
0G| oo () < K forall p > 0, (4.20)

1
vl = Ty (up) a.e. in Q and ;HUGLHLP(I)(Q) — 0as u — oo. (4.21)

For fixed k, > 0 let us consider the unique solution (T} (u)), € L*>(Q) N LP (0, T; Wol’p(x)(Q))
of the monotone problem:

O(Th(w))

o+ e((Ti(u)y = Ti(w) =0 in D'(Q), (4.22)

(Ti(uw))u(t =0) = ’Ug in Q. (4.23)
Note that due to (4.22), for 4+ > 0 and k£ > 0, we have

W € LV (0, T; W@ (q)). (4.24)

We just recall here that (4.22)—(4.23) imply that
(Th(w)y = Ti(u) ae.in Q (4.25)

as well as weakly in L°°(Q) and strongly in LP (0, T’; Wol’p(x) (€2)) as p — oo. Note that for any p
and any k£ > 0 we have

(T ()l Lo (@) < max(||Th(u)l| oo (@i 06 Le()) < & (4.26)

We introduce a sequence of increasing C*°(R)-functions Sy, such that
S (r) = r for |r| < m, supp(S),) C [-(m +1),m + 1], HS;)/,LHLOO(R) <1,
for any m > 1, and we denote by w(n, u, n, m) the quantities such that

3B 13 3o e U 44 o7) = 0

The main estimate is
Lemma 4.6 ([2, 6]) We have

/T<8“”T( (Te(w)),) " exp(G(un))S! dt > vm>1. (427
(O = (Ta),) (Gl (u) ) 2 o) V=1, 620
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Taking now v = T, (u, — (Tk(u))u)JrS?’n(un) exp(G(uy)) in (P,,) and using (3.3) and (3.4),
we get

T Uu.
(%2 = (@tw))* exp(Glu)Siun) ) a

+ /Q a(z,t,un, Vun) V(T (un — (Tk(u))M)Jr) exp(G(uy))Sh, (uy) dz dt

+ / Q(IL’, t, Unp, VUTL)TW (un — (Tk(u))u)+ eXP(G(Un))S;,/@(Un)VUn da dt 4.28)
{m<|un|<m+1}

+n /Q Tt — )Ty (1t — (Ti())) * x0(G(110)) Sl (1)1 (1)l it

< Ch.

From (4.7), (4.18), (4.27) and (4.28) it follows that

/Q a(z,t, up, Viun )V (T (un — (Ti(w))) ") exp(Gun)) Sty (uy) dze dt

(4.29)
< On+w(n, p,n,m),
where C'is a constant independent of n and m. On the other hand, let
A={0<Ti(up) — (Tk(u))py <n} and B ={0<u, — (Tk(u)), <n}.
Then, we have
/ a(z, t, tn, Vun) V(T (un — (Tk(u))u)+) exp(G(uy)) S, (uy) dz dt
Q
= / a(@, t, tn, V) (Vg — V(Ti(u)),) exp(Gun))S,, (un) dz dt
b (4.30)

= /Aa(x, &, Ti(un), VIg(un)) (VI (un) — V(Tk()),) exp(Gun)) Sy, (un) da dt
+ / a(, t, tn, V) (Vg — V(Ti(u)),) exp(Gun))S;, (un) da dt.
{|lun|>k}NB

By the coercivity condition (3.3) and the definition of S}, (S, (u,) = 1 ae. in {|u,| < k}if k < m),
in view of (4.29) and (4.30), we get

/Aa(:n, t, T (un), VI (un)) (VTk(un) — V(Tk(w)) ) exp(G(un) Sy, (un ) dz dt

< / a(x,t,un,Vun)V(Tk(u))u exp(G (un))Sh, (up) do dt 4.31)
{|lun|>k}NB
+ Cn + w(n, p,n,m).

Since a(w,t, Ty (tn), VTiiy(un)) is bounded in (LP')(Q))N, there exists some hyy, €
(LY @) (Q))N such that a(z,t, Tpin(un), VIiin(tn)) — hgyy, weakly in (LP'@)(Q))N. Con-
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sequently

/ a2 1,y Vi) |V (T ()] exp(G ) Sy (1) dr
{lun|>k}NB

PtV (T () exp(G(w)) Sy, (w) da dt 4 w(n).

/{u|>k}ﬂ{0§u—(Tk (w)p<n}

Thanks to (4.25) one easily has

/ BV (T () 2 exD(G (1)) Sy (1) it = (1),
{lu|>E}n{0<u—(Tx (u)) n<n}

Hence

/Aa(x, t, T (un), VI (un)) (VI (un) — V(T (u)),) exp(G(uy)) dz dt

4.32)
< COn+w(n, p,n,m).
On the other hand, note that
/Aa(:z, t, T (un), VT (un)) (VT (un) — V(Ti(w)) ) exp(Gluy)) dz dt
= / a(x, t, Tr(un), VTk(un)) (VTk(un) — VTk(u)) exp(G(uy,)) dx dt (4.33)
A

+ /Aa(x, t, T (un), VT (un)) (VT (u) = V(Tk(u)),) exp(G(uy)) dz dt,

and the last integral tends to 0 as n — oo and p — oco. Indeed, we have that
/ a(Tk(un), VIi(un)) (VTk(u) — V(Tk(uw)),) exp(G(uy)) dz dt —
A

N / hio(VT() — V(To(w)),.) exp(Glw) da dt
{O<T ()~ (T () <}

as n — oo. It is obvious that

/ hi (VT (u) — V(Ti(w))u) exp(G(u)) dzdt — 0 as  p — oco.
{0<T (u) = (Th (W) <n}

We deduce then that

/ a(z,t, Tp(un), VIi(un)) (VIk(un) — VIg(w)) exp(G(uy)) dz dt
A (4.34)

< Cn+e(n, p,m,m).
Let

Mn = ([a(xv t, Tk(un)a VTk(un)) - a(a:, t, Tk(un)v VTk(u))] [VTk(Un) - VTk(u)] ) X
% (exp(G(un)).
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Then for any 0 < 6 < 1 we write
I, = / MY dzx dt
{lun = (Ti(w)) |20

= / MY dz dt
{15 (wn) = (Tk (u)) | <n, wn—T (1) >0}

- / M? dz dt.
{15 (un) = (Th () o[>0, wn— (T (1)) >0}

Since a(z,t, Tk (upn), VIk(uyn)) is bounded in (LY@ (Q))N, while VT (uy) is bounded in
(LP®)(Q))N, by applying Holder’s inequality, we obtain

0
I, <Ch (/ Mndxdt>
{0<T (un) = (T () <n}

+Cy meas{(x,t) € Q: [Ti(un) — (To(w))u| > 1, un — (Th(w)), > 0}1_0.

(4.35)

On the other hand, we have

/ M, dx dt
{0< T (un) = (Th (w) ) <n}

= / a(x,t,Tk(un),VTk(un))x
{0< Ty (un ) —(Tx (w) ) <n}

X (VTg(un) — VTi(u)) exp(G(un)) dzdt (4 36)

- / a(x,t,Tk(un),VTk(u))x
{0< Ty (un ) —(Tr (w) ) <n}

X (VT (un) — VT (u)) exp(G(uy)) dz dt
=1+ 12

Using (4.34), we have
II < Cn+wln, p,n,m). (4.37)

Concerning Iﬁ, that is, the second term on the right-hand side of the (4.36), it is easy to see that
I2 = w(n, p). (4.38)

Because a; (2, t, T, (un), VIk(u)) — a;(z,t, T(u), VIk(u)) strongly in LP (#)(Q) for all i =
1,..., N, and Zslum) 8@;@ in L") (@), combining (4.35)~(4.38), yields

I, < Cy(Cnp+w(n, p,m,m))’ + Co(w(n, )",

and by passing to the limit sup over n, u and n

/ ([ote, 1, Ticun), T () — e b, T, Vi) x
{tn— (T (1)), >0} (4.39)

x [VTk(un) — VTk(u)De dz dt = w(n).
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On the other hand, if we choose v = T}, (un, — (Tk(u)),) ~ exp(—G(uy)) in (Py), we obtain

/ (Lo, T o). VT (02)) — (e, £, Ti (), VT (1))] %
(T (10,<0)

(4.40)
0
x [V (un) — VTk(u)D da dt = w(n).
Moreover, (4.39) and (4.40) imply that
/ <[CL(.’L’, L, Tk(un)a VTk(un)) - a’(wv t, Tk(un)7 VTk(u))] X
@ ) (4.41)
x [VTk(tn) — VTk(u)D da dt = w(n),
which implies that
Ti(un) = Te(w) in  LP°(0,T; WP (Q)) Vk > 0. (4.42)

By [7, Theorem 3.3] (see also [4, 5]), there exists a subsequence also denoted by u,, such that
Vu, = Vu ae.in Q, (4.43)
which implies that

a(z,t, T(un), VI(un)) — a(,t, Ti(u), VIi(uw)) in (LY@ Q). (4.44)

Step 4. Equi-integrability of the nonlinearity sequence. Since H,(z,t,uy,, Vu,) —
H(z,t,u, Vu) a.e. in @, using Vitali’s theorem we shall now prove that H,,(z, ¢, u,,, Vu,, ) converges
to H(z,t,u, Vu) strongly in L*(Q).

Choosing ¢ = pp(un) =[5 9(5)X{s>n} ds exp(G(uy)) as a test function in the approximate
problem (P,,), by (4.3) and (3.3), we obtain

T
[/ Qh(un)dx} +/ a(@,t, Un, Vun) Vung(Un) X {u,>h) eXp(G (un)) do dt
Q 0 Q
[ Tt =) e @))os () [ o061y ds

1
n

> g/l 1w
< ([ soxim as) e (“CED) Il + o)

where 0 (1) = [ pn(7) d7, which implies, since 6;, > 0, that
/ a(, t, Un, Vun) Vung(Un) X {u,>n) dz dt
Q

> )l (m
< (/h g(s) ds) exp(iﬁ) [Hf””Ll(Q) + H"YHLl(Q) +/th(U0n) dx + C].
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Using (3.3) we have

a/ [V [P®) g(uy,) daz dt
{un>h}

> 9]l (=
< ([ stas) exo (L) [Ialriar + Ilsiey + [ ehtuon)dat €],
and then

/ Vun|P® g(u,) dedt < Cy </ g(s) ds> :
{un>h} h

Since g € L'(R), we deduce that

lim sup/ [Vt [P®) g () dzz At = 0.
{un>h}

h— oo neN

Similarly, taking ¢ = pp(u,) = ffn 9(8)X{s<—n} exp(—G(un)) ds as a test function in (P,), we
conclude that

lim sup/ |V [P g (uy) dz dt = 0.
{un<—h}

h— oo neEN

Consequently
lim sup/ |V [P g (uy) dz dt = 0,
{lun|>h}

h— oo neN

which, for h large enough and for a subset E of (), implies that

lim /]Vun]p(x)g(un)da:dtg max (g(s)) lim /]VTh(un)|p(I)dxdt
meas E—0 J i E

lun|<h meas E—0

+ / [V |P® g(uy,) dz dt.
{lun|>h}

So we conclude that g(u,)|Vu,[P(*) is equi-integrable, which implies that
9(n) [V [ = g(u)|VulP®in - LY(Q).
Consequently, by using (3.4) we conclude that
Hy(x,t, up, Vuy) — H(z,t,u,Vu) in LY(Q). (4.45)
Step 5. Passing to the limit. Let us consider the following three substeps.
5-1. We show that u satisfies (3.5).

Proposition 4.2 Let u,, be a solution of the approximate problem (P,,). Then u > 1 a.e. in Q.

Proof. Thanks to (4.7) and (4.13), we get fQ nTh(u, — )" exp(G(uy))dedt < C. So, by
Fatou’s Lemma, we infer that fQ(u — )~ da dt = 0, which implies that (u — 1)~ = 0 a.e. in Q.
Consequently, we conclude that v > ¢ a.e. in Q. g
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5-2. We claim that v € C(0,7'; L'(£2)). We will show that

w, —u in C(0,T; LY(Q)).

Since Ty, (u) € Ky, for every k > ||9|| 1 there exists a sequence v; € Ky N D(Q) such that
v; = Te(u) in L~ (0,T; W™ (Q))

for the modular convergence.

Let W;L = (Ti(v;)),, + e T} (n;) with n; > 0 converge to ug in L*(Q2), where (7j(v;)),, is the

l

mollification of 7;(v;) with respect to time. Note that w; is a smooth function having the following

o
properties:
il
/s i\l i, il
5 = AGy) =), @0 =Tim), el <1, (4.46)
W T(y) in L (0, T;WoPY(Q) s g oo, (4.47)

1l

Choosing now v = Ti(un — w;,)X(0,r) as a test function in (Py,), yields

dun, il i
<at,Tk(un - wj’,“)>QT + /T a(z, t, un, Vun) VI (up — wy,) dedt

+ / T (un — V)~ ¢1/p (wn) T (wn — w;i) dzdt (4.48)
+ Hy(x,t, up, Vup) T (u, — wé’L) dzdt = fu Tk (un, — wj’L) dz dt.
Q" ’ QT ’
We have (see [1])

<8 I T (1, — w;L)>QT = M/T(Tk(vj) — w;L))Tk(un — w;L) > e(n,j, pm,l).  (4.49)
And by using (3.4) and the fact that

/T nTn(tn — V) G1 pn(un) Ti (un — w;L) dzdt > 0,
we deduce that

<87m Th(t, — W™ )> +/ a(z,t, up, Vup) VT (uy — w;i) dz dt
Qo Jaor

o Vi
(4.50)
< / [fr + YTk (up, — w;i) dx dt + / 9 ) [V tn [P Ty (uy, — w;i) dx dt.
On the one hand, we have
I= / a(x, t, up, Vun) VT (uy — w;lu) dz dt
4.51)

= / . a(x,t, un, V) [VTi(un) — Vw;lu] dz dt.
{1 T (un)—wi, <k}
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In the following, we pass to the limit in (4.51): By letting n and p go to infinity, since
a(x,t, up, Vuy) — a(x, t,u, Vu) in Ly () (@), in view of Lebesgue’s theorem, we have

I= / a(z,t,u, Vu)[VI(u) — VTi(vj)] dz dt + e(n, ).
{IT0 (w) =T (v;)| <k}

Consequently, by taking the limit as 7 — oo, we deduce that
I= 6(”7 )uaja l)
On the other hand, we have

J = / 9(un) |V PO Ty (= wiy,) dadt. (4.52)

In the following, we pass to the limit in (4.52): Taking the limit as n — oo in (4.52), since
9(n)|Vun [P®) — g(u)|VuP@® in L'(Q), in view of Lebesgue’s theorem, we obtain

J = / g(w) | VP Ty, (u — w;l#) dz dt + €(n).
QT ’
Consequently, by letting 1 and 7 go to infinity, we have
J = 6(”7 M7j7 l)
Similarly to (4.52) and by using (4.1), we have
[ U2V ) dodt = .1 5,
and by using Vitali’s theorem, we get

o ,
lim sup lim sup lim sup lim sup lim <un’ T (up, — wi! )> <0 (4.53)
QT

k—o0 i—0 j—00  p—00 M —>00 ot

uniformly on 7. Therefore, by writing

il Ouy, il owy,, il
/QS’k(un(T) - Wj,u(T)) dr = <at,Tk(un —wy,) o - W,Tk(un —w;,)

+ /Q Sk (un(0) — Ti(ms)) da,

and using (4.49), (4.53) and (4.54), we see that

QT (4.54)

Sk (un (1) — wht (1)) dz < e(n, j, p, 1), (4.55)

which implies, by writing

/Q Sy (W) dz < ;( ) Sie(un(r) = wit (7)) dz s
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/§25k<W> da < ey(n,m).

that

We deduce then that

/ |un (T) — U (7)| dz < €2(n,m) independently of T, (4.57)
Q

and thus (u,,) is a Cauchy sequence in C'(0, T; L'(€2)), and since u,, — u a.e. in @, we deduce that

u, —u in  C(0,T; LY(Q)). (4.58)

5-3. We show that u satisfies (3.7). Let v € Ky, N L®(Q), % € LV (0,T; W—1r@)(Q)). By
pointwise multiplication of the approximate problem (P,,) by Tk (u, — v), we get

/ Sk(un(T) = v(T)) dz — / Sk (uon — v(0)) dz
Q Q
+ @Tk(un —v)dzdt + / a(x,t, upn, Vn) VI (u, —v)de dt
Q ot Q

+/ Hy(z,t, upn, Vup) T (u, — v) da dt
Q
+ / nT(up — )" @1 Tk (up —v)dedt
Q n
= / fTi(up — v) da dt,
Q
where Sy.(s) = [¢ Ti,(r) dr. Since [, T (un — 1)~ ¢1 Tj;(un — v) dz dt > 0, we deduce then that

/ Si(un(T) = v(T)) da — / Sk (uon — v(0)) dz
Q Q

+ @Tk(un —v)dzdt + / a(x,t, up, Vun) VT (uy —v)dedt
Q ot Q

4.59)
—i—/ Hy(z,t,un, Vup)Ti(u, — v) da dt
Q

S/Qka(un—v)dxdt.

Let us pass to the limit with n — oo in each term in (4.59). We saw that u,, — uin C'(0,T; L*(9)).
Therefore, wu, (t) — u(t) in L*(Q) forall t < T.

As Sy, is Lipschitz continuous with constant k£, when n — oo we have

/Sk(un—v)(T)dx%/Sk(u—fu)(T)dx
Q Q

and

/st(un —0)(0)dz = /st(u(m — 0(0)) dz — /st(uo _ 0(0)) da.
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Letv € Ky N L>®(Q). Then % e LV (0, T; W—1¥'(#)(Q)) and by Lebesgue’s theorem, we

have - .
ov ov
/0 <athk(Un_U)>dt_>/0 <atTk(U_U)>dt'

On the other hand, we note that M = ||v||o.. Then we get

/ a(x,t, upn, Vun) VT (u, —v)de dt
Q
T
://Qa(x,t,Tk+M(un),VTk+M(un))VTk(Tk+M(un)—v)dxdt
0
T
:/0/Qa(x,t,TkJrM(un),VTk+M(un))VTk+M(un))l{THM(UH)U|<k}dmdt

T
_//Qa(:n,t,TkJrM(un),VT;HM(un)VvlﬂTHM(un)_ka} dz dt.
0

As Ty v (uy,) is bounded in LP (0, T Wol’p(m)(Q)), Vu, — Vu ae. in @, by Lebesgue’s theorem,
we deduce that

T
/ /Q a(@, t, T (un)y Vg ar (un) VOLGT 3 () —ol<ky d dE
0

T
_>//a(xataTk—i-M(u)vVTk+M(U)vvl{lT;ﬁLM(u—vﬂgk} dz dt.
0JQ
Then

/ a(x, t, up, Vg )Vu, Ty (uy — v) de dt — / a(z,t,u, Vu)VuTy(u — v) dz dt.
Q Q

Since H,(z,t, un, Vu,) — H(z,t,u, Vu) in L'(Q), as [Ty (u, — v)| < k and T}, (u,, — v) —
Tk (u — v) weakly in L*°(Q), by Lebesgue’s theorem, we have

T T
/ / Hy(z,t, up, Vup) Tk (u, — v) dedt — / / H(x,t,u, Vu)Ti(u — v) dx dt.
0/ 0JQ

Due to (4.1) and the fact that u,, — u a.e. in (), we have

/OT/Q foTi(up —v)dedt — /oT/Q FTh(u — v) da dt.

Due to (4.59), we have

/Sk ) —o(T dx—/Sk (uo — v(0)) dz

+ gtTk(u—v)dxdt+/ H(z,t,u, Vu)Ti(u — v) de dt

—I—/ a(x,t,u, Vu)VTi(u —v)dzdt
Q

< /Qka(u—v) dz dt.
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As a conclusion of Steps 1-5, the proof of Theorem 4.2 is complete. (|

S Example

Let us consider the following special case. Let € be a bounded open subset of RV, N > 2,

p(z) =sin|z| + 3, p € C+(£2) and

—4s
1+ st
The Carathéodory function H (z,t, s, §) satisfies the condition (3.4). Indeed,

H(z,t,5,§) = €.

4s " "
H 5,6 < 710 |eP = g(s)leP®),

where g(s) = 1%‘:9'4 is a continuous and positive function which belongs to L!(R). Note that

H(z,t,s,&) does not satisfy the sign condition and the coercivity condition. Set

Au =~y = — div(|VuP®2Vu). (5.1)

We have (|Vu[P®=2Vy — |Vu[P@~=2Vy) (u — v) > 0 for almost all z € Q, u,v € RY and u # v,
and so the monotonicity condition is satisfied.

The operator — div(|Vu[P*)=2Vw) is a Carathéodory function satisfying the growth condi-
tion (3.1) and the coercivity (3.3).

Define the obstacle function
Y(z,t) = [txon () + (1 — X0, (0)]w(z),

where 7 € (0,7) is fixed, c is a real constant and w € Wol’p(x)(ﬂ) N L>(§).

Remark 5.1 Finally, the hypotheses of Theorem 4.2 are satisfied. Therefore, the following problem
u>ae inQx(0,7),

Ty(u) € L7 (0, T; WoP™(Q))  forall k > 0,
u e C(0,T; L)),

/QSk(uv)(T)dJ:/QSk(uv)(O)dx

+ @Tk(u —v)dxdt + / \VuP@) 2Ty T, (u — v) dz dt
Q Ot Q

4du
- VulP@ Ty (u — v) de dt
/Ql+u4| uf™ Ti(u —v) dz

g/ka(u—v)dxdt Vo € Ky N L™(Q),
Q

where Si(s) = [ Ti(r) exp(r) dr and % e LV (0, T; W= (*)(Q)), has at least one unilateral
an entropy solution.
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