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Abstract. This paper deals with a Sobolev type retarded integro-differential equation. We prove ex-
istence, uniqueness and convergence of each integral approximate solution using analytic semigroup
theory and fixed point method. Then we consider Faedo—Galerkin approximation of solutions and
prove some convergence results. We also give some examples to illustrate the applications of the
abstract results.
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1 Introduction

In this paper we study the existence, uniqueness and approximation of mild solutions of the following
neutral integro-differential equation in a separable Hilbert space H:

0

d(u(t) +dgt(t’ u(t))) + Au(t) = Bu(t) + Cu(t — 7) + / a(f)Lu(t + 6)de,

0<t<T <0, 7>0,

(1.1)
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Here v is a function from [—7,00) into the space H, h: [-7,0] — H is a given function and
a € Lj (—7,0). Foreacht > 0, us: [—7,0] — H is defined by u:(0) = u(t + 6), 0 € [—,0],

and the operator A: D(A) C H — H is a linear operator. The operators B: D(B) C H — H,
C:D(C)CH— Hand L: D(L) C H— H are non-linear continuous operators.

For ¢t € [0,T], we shall use the notation C; := C([—7,t]; H) for the Banach space of all
continuous functions from [—7, ¢] into H endowed with the supremum norm

[¥]le := sup_[lp(n)]-

—7<n<

The existence, uniqueness and regularity of solutions of (1.1) under different conditions have
been studied by Di Blasio et al. [8] and Jeong et al. [12]. The fundamental works on the exis-
tence, uniqueness and stability of various types of solutions of functional differential equations are
Bahuguna [1, 2], Balachandran and Chandrasekaran [5], Lin and Liu [13]. The related results for the
approximation of solutions may be found in Bahuguna, Srivastava and Singh [4] and Bahuguna and
Shukla [3].

Segal [17] and Murakami [15] studied the existence, uniqueness and finite-time blow-up of
solutions for the following equation

u'(t) + Au(t) = g(u(t)), t>0,

(1.2)
u(0) = ¢.
Bazley [6, 7] studied the following semilinear wave equation
"(t) + Au(t) = t)), t>0,
W' (8) + Au(t) = g(u(t), ¢> 03

u(0) = ¢, u'(0) =1,

and proved the uniform convergence of approximations of solutions to (1.3) using the existence
results of Heinz and von Wahl [11]. Goethel [10] proved the convergence of approximations of
solutions to (1.2). Goethel [10] assumed g to be defined on the whole of H. From the methodology
of Bazley [6, 7], Miletta [14] proved the convergence of approximations to solutions of (1.2). In our
paper, we use the methods of Miletta [14] and Bahuguna et al. [3, 4] with suitable modifications to
prove the convergence of finite dimensional approximations of the solutions to (1.1). We use the
Banach contraction principle to prove our first theorem.

2 Preliminaries and assumptions

The existence of a solution to (1.1) is closely associated with the existence of a function u € Cs,
0 < T < T, satistying

h(t)’ te [_Ta 0]7
u(t) = { e (R(0) + g(0,h(0))) — g(t,u(t)) + [ Ae”=94g(s,u(s)) ds

t 0
e~ =94 Bu(s u(s — 1 a uls 5 -
| +/0 [B<>+C< )+/ (0)Lu(s +0) do|ds, te[0,T],

-7

and such a function v is called a mild solution of (1.1) on [—7,T]. A function u € Cr is called a
classical solution of (1.1) on [—7,T), if u € C'((0,T]; H) and u satisfies (1.1) on [—7, T'.
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We assume in (1.1) that the linear operator A satisfies the following conditions.

(H1) Ais aclosed, positive definite, self-adjoint linear operator from the domain D(A) C H into
H such that D(A) is dense in H; A has the pure point spectrum

O<Xd< <A<,
and a corresponding complete orthonormal system of eigenfunctions {¢;}, i.e.,
Ad; = Nidi and (&5, 9;) = dij,
where 6;; = 1 if 7 = j and zero otherwise.
If (H1) is satisfied then — A is the infinitesimal generator of an analytic semigroup {e¢~*4 : ¢ > 0} in

H (cf. [16, pp. 60-69]). It follows that the fractional powers A% of A for 0 < a < 1 are well defined
from D(A%) C H into H (cf. [16, pp. 69-75]). Hence, for convenience, we suppose that

et <M forall t>0

and 0 € p(—A), where p(—A) is the resolvent set of —A.
D(A®) is a Banach space endowed with the norm ||z||, = ||A%x]|.

Fort € [0,T], we set Ci* := C([—,t]; D(A®)) and endow this space with the norm

[Yllta = sup_[lo(@)]a-

—7<v<t

Further, we make the following assumptions.

(H2) h € C§ and h is locally Holder continuous on [—, 0].

(H3) We shall assume that the map B: D(A®) — H satisfies the following Lipschitz condition on
balls in D(A®%): for each n > 0 and some 0 < a < 1 there exists a constant /1 (7) such that
@) [[B(¥)]l < Ki(n) forp € D(AY) with [|A[| < n;
(i) [[B(1) — B(yho)|| < Ki(n)[[A% (41 — o) || for o1, 1p2 € D(A®) with | A%p;|| < n for
i=1,2.

(H4) The map C': D(A®) — H satisfies the following Lipschitz condition on balls in D(A®): for
each 7 > 0 and some 0 < o < 1 there exists a constant K2 () such that
(i) 1C(0)]| < Ka() for v € D(A®) with | A% <
(iv) [|C(¢1) = C(@)|| < Ka(n)[|A% (1 — ¢po)|| for 11, 4o € D(AY) with [| A%y < 7 for
i=1,2.

(H5) The map L: D(A®) — H satisfies the following Lipschitz condition on balls in D(A®): for
each 7 > 0 and some 0 < o < 1 there exists a constant K3(7) such that
W) [[L()] < K3(n) for ¢ € D(A%) with [[A%)|| < n;

(vi) ||L(¢n) — L(¥2)|| < K3(n)||A*(1p1 — 4b2)|| for 41, 1p2 € D(A®) with ||A%;|| < 1 for
i=1,2.
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loc

(H6) a € L? (—7,0) for some 1 < p < oo and ap = f_OT la(6)| dé.

(Hg) Themap g: [0,7] x D(A) — H satisfies the following Lipschitz condition on balls in D(A%):
for each 7 > 0 and some 0 < a < 1 there exists a constant L () such that

(vil) [lg(w)]| < Ly(n) for ¢ € D(A®) with [ A%¢] < 1;

(viih) [lg(t, 1) — g(t2, ¥2)l| < Lo(n) (I[tr — t2]l” + [| A% (b1 — ¢2)) for v1, 92 € D(A%)
with ||[A%Y;|| < nfori=1,2.

3 Approximate solutions and convergence

Let H,, denote the finite dimensional subspace of H spanned by {¢¢, ¢1,--- , ¢, } andlet P": H —

H,, be the corresponding projection operator forn = 0,1,2,---. Let 0 < Ty < T be such that
—tA « R
sup_[|(e™ = DAR(0)]| < 3, G.)
0<t<Ty
where R > 0 is a fixed quantity.
Let us define
- h(t ift € [—7,0
hy - {0, ifte 0l
h(0), ifte[0,T].
We set
= (1 1
11—« —
Ty < min H(l - a)(K(no)Ca)_l} : {2(1 — a)(K(1n9)Ca) 1} } , (32
where
K(no) = [Ki(no) + Kaz(no) + Ks(no)ar] (3.3)

and C,, is a positive constant such that || A% 4| < C,t~ for t > 0. We define B,,: H — H by
B,r = BP"z, x¢€ H.
Similarly, C,, and L,, are given by
Cpx=CP'z, x€H, L,x=LP"z, xz¢€ H.

Let A%: Cf* — Ct be given by (A%¢)(s) = A%(¢Y(s)), s € [-T, 1], t € [0,T]. We define the map
F,onB R(C%U, h) as follows

h(t), te[-0l]

(Fau)(t) = { e~ (1(0) + 9a(0, 1(0))) — ga(t, u(t)) +/0 Ae” (704G, (s, u) ds

t 0
+/ o (t=5)A [Bnu(s) + Chu(s — 1) +/ a(@)Lyu(s+0)do|ds, t € 0,Ty),
0

—T

for u € Br(C§,, h).
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Theorem 1 Suppose that the conditions (H1)-(Hg) are satisfied and h(t) € D(A) forallt € [—,0].

Then there exists a unique u,, € BR(C%O, h) such that Fy,u,, = u, for eachn =0,1,2,---,i.e., u,
satisfies the approximate integral equation

h(t), t e [—T, 0],
eftA (h(O) + gn(O, h(O))) — gn(tv un(t))

t t
+/ Ae_(t_s)Agn(Saun)d5+/ e~ (t=9)4 [Bnun(S)
0 0
0

(3.4)

+ Cpup(s — 1) + /

\ —T

a(0)Lpun(s + 6) de} ds, t € [0, Tp).

Proof. First, we show that F},: Br(C§,, h) — B r(CE, h). For this first we need to show that the
map ¢t — (F,u)(t) is continuous from [—7, Tp] into D(A®) with respect to the norm || - ||o. For any

u € Br(C$,,h) and ty,t2 € [—,0], we have
(Fru)(ty) — (Fpu)(ta) = h(ty) — h(ta). (3.5)
Now, for ¢, to € (0, Tp] with t1 < t2, we have

[(Enu)(t2) = (Fau)(t) o
< ll(e7™4 — =) (R(0) + 9(0, 1(0)))
+ | AP [ A% g (b2, 1) — AP ga(t1,u)|

t1
T / (e~ ta=t4 ) A+a—Be=(1-94) || 4B, (s, ) | ds
0

to
T / e~ =904 Al+a=B|| | 4By, (s, )| ds

t1

t 3.6)
+/ H(ef(tgfs)A - ef(tlfs)A)AaH
0
0
X {\Bnu(S)H + [|Cru(s — 7)) +/ |a(0)|[| Lnu(s + 0)[| df | ds
to A
+/t (e (2 )A“H[\BnU(S)II+||CnU(8—T)II
1
0
—I—/ la(0)]]| Lpu(s+ 0)|| de} ds.
Using (Hg) we obtain
1A% gn(ta, u) — APgu(tr, w)l| < Lo (R + [P u(ts) — P u(t1)]a) 37)
< Lo(R + [lu(tz) — u(t1)]la) '
and - s
t2 L B _gh”=@
[l %, s ) ds < S 6)01;a — 069
t1 -
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since
1A% gn (s, w)l| < [|A%ga(s,u) — APg(s, B(0))|| + || A%g (s, n(0)) | (3.9)
< Ly||P™u(s) — h(0)||o + B < LyR + B. '
Part (d) of [16, Theorem 2.6.13] implies that for 0 < ¢ < 1 and 2 € D(AY),
e = Da|| < Cht”||z|. (3.10)

Let ¢ be a real number with 0 < 9 < min{1—a, 3—a}. Then A% € D(A?) forany y € D(A*+?),
Forallt,s € [0,T],t > s and we get the following inequalities:

Clty —t1)?
(e~ 7104 — DA% A < Cy(ta — 1) A*HPe 1 < (EMI) 3.11)
1
—(ta— a, —(t1—s étQ_tl)ﬂ
(et — narem =) < Z=, (3.12)
—(ta— a—B,—(t1—s C tQ—tl)ﬁ
[(e= (24 — )y Al+efe=(h=a4|| < t(++195 (3.13)

where C' = Clymax {Cy1y9, Ci+a+v—p}. Using the estimates (3.9), (3.12) and (3.13), we get

t1
/0 (e~ 214 1) A+a=Be=(1-94] || AP, (5, ) | ds

- (3.14)
TOB (a+9)

B—(a+1)

< C(ta —t1)"(LyR + B)

Part (d) of [16, Theorem 2.6.13] states that for 0 < § < 1land x € D(Aﬁ),
l(e™* = D)z|| < Cpt?|| A%x]].

Hence, if 0 < 3 < lissuchthat 0 < a + 8 < 1, then A%y € D(AP). Therefore, for ¢, s € (0, Tp),
we have

(et — 1) A% ™Az || < CptP||A2HPe™34z| < CpChypt?s™ @A) |2 (3.15)

We use inequality (3.15) to obtain

t1
/0 [(e= =94 — gm(=)dy g [HBnU(S)II + [|Cruls = 7)||

0
+ [ la@zaats + o)) a0]as

—T

t1
< / H(e““”A—I)e(“S)AA”H[HBW(S)H+HCnU(s—T)\ (5.16)
0

0
+ [ @t + 0)a0] as

-7

< Coplta — )P,

where
1—(a+p)

Cap = CﬂCaJr,BK(Uo)ma
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K (no) is given by (3.3) and 179 = R + || k|0, We calculate the last integral on the right-hand side
of (3.6) as follows. We have

to 0
/ le= =274 A% || Bru(s)|| + | Cru(s — ) +/ |a(0)|| Lnu(s + 0)|| dO | ds

t1 —T

) (3.17)
to —t1) ¢
< CaK(Wo)(Q(l_li)-

Hence, from (3.5), (3.7), (3.8), (3.9), (3.14), (3.16) and (3.17), the map ¢t — (F,u)(t) is continuous
from [—7, Tp] into D(A®) with respect to the norm || - ||4.

Now, for t € [—,0], (F,,u)(t) — h(t) = 0. For t € (0, Tp], we have

|(Fa) () — B(0)]la
< (e — D) A(R(0) + ga(0, h(O)) | + A% ]| || 420, (0, h(0)) — APga(t, )]
+ / | AP =)A || 4B g, (s, u)|| s
0

t
T / He-“—S)AAarr[\Bnu(s)H+\|cnu<s—f>u+ / 1a(6)]| Luu(s + )] 46 | ds
0

-7

R
<A-p)g+ IA“PIL{ T + [[u(t) — dlla}

C L,R+ B T C. K Ti7e
+ 1+a75( gR+ )ﬁ—a+ ol (770)1_&
R R Ti-e
<A—p=+0—-p)=+CK 0
<A -mg+Q-p)g+Cakmn)T—
R T«
<+ CK 0.
< 5+ Cak(mo)——

Hence || Fu — h||7y,0 < R. Thus F,: Br(C$,,h) = Br(C$,, h).

Now, for any u,v € Br(Cf,,h) and t € [—T,0], we have Fju(t) — F,v(t) = 0. Moreover
147 gn(t, u) — APgn(t, v)|| < Lgllu(t) — v(t)lla < Lgllu — v]z a- 3.18)
Thus, for ¢ € (0,Tp] and u,v € Br(C,, h), we have

[Enu(t) — Fro(t)]la
< AP AP gn(t, u) — A%gn(t,)lla

t
4 / A B A [ AP g (s, u) — APgu(s, v)]| ds
0
t
4 / e~ =94 49 [anu(s) ~ Buo(s)| + | Cuuls — 7) — Cuvo(s — 7]
0

0
+ [ 1a@)lLouts + 6) an<s+9>||de}ds

B—a
_ T
(142212 + Crrams g Yllu = ol

IN
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+ / Calt =) [Kl(no)HU(S) = 0(8)[la + K2(mo)llu(s = 7) = v(s = 7)lla
0

0
+f |a(9)’K3(770)HU(5+9)—U(S+9)Had9]ds

-7

T8«
< (HA”HLQ  Crpas )\u “olna

0 —«
t
+ [ Calt =9 Km)llu ~ vl ds
0
T 1
< (14020 + Cusamsl g Y= vl + 3l = vl

Taking the supremum on ¢ over [—7, Tp], we get

TS 1
1w = Fovllzp,a < <||A°“‘BHL9 + Crvaplg— 2) lv = vllz,0-

Hence, by the definition of T}, there exists a unique u,, € B R(C%O, h) such that F,u,, = u,, which
satisfies the approximate integral equation (3.4). This completes the proof of Theorem 1. O

Corollary 1 If all the hypotheses of Theorem 1 are satisfied, then u,(t) € D(AP) for all t €
[—T, T, where 0 < 3 < 1.

Proof. From Theorem 1 there exists a unique v, € B R(C%O, i_z) satisfying (3.4). From [16, Theorem
1.2.4] we have that e *4z € D(A) for z € D(A). Also from Part (a) of [16, Theorem 2.6.13] we
have e *4: H — D(AP) fort > 0and 0 < 8 < 1. Hélder continuity of u,, follows from similar
arguments to those used in (3.16) and (3.17). Thus, (Hg) implies that the map ¢ — A%g(t, u,,(t)) is
Holder continuous on [0, 7'] with the exponent p. It follows from [16, Theorem 4.3.2] that

t
/ e_(t_S)AAﬁgn(s,un) ds € D(A),
0

and for 0 <t < T we have ,
/ e~ (=941 (s)ds € D(A).
0
Since D(A) € D(AP) for 0 < 8 < 1, the result of Corollary 1 thus follows. O
Corollary 2 Ifh(0) € D(A®), where 0 < a < 1 and to € (0,Tp), then there exists a constant My,

independent of n, such that
1A ()] < My

forallty <t <Typand 0 < 8 < 1. Furthermore, if h(t) € D(A) forall t € [—T,0], then there
exists a constant My, independent of n, such that

1A% (1) < Mo

forall - <t <Tyand 0 < < 1.
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Proof. For any ty € (0, 7o), we have
lun(8)lls <Cisty” (1PO)]| + 1190 (0, HOD) + | A= *(|(Lg R + B)

- T8 T,"
+ Cl+,3—a(L9R + B) 1 _ B + CﬁK(UO) 1 _ 5 < Mto'

Now, as h(t) € D(A) forallt € [—,0], h(t) € D(AP)forallt € [~7,0], and so forany ¢ € [—7, 0]
we have

lun(®)lls = | AP(E)[| < [Pllos  forall t € [~7,0].
Now again, for any ¢ € (0, Tp], we have
lun (@) llg <M (IRl + g (0, AO))I1), 5 + I A7~ I(Ly R + B)
. T1-8 Ti-8
—o(LR+ B K 0.
This completes the proof of Corollary 2. g

Theorem 2 Suppose that the conditions (H1)-(Hg) are satisfied and h(t) € D(A) forallt € [—,0].
Then the sequence {uy} C C%O is a Cauchy sequence and therefore converges to a function u € C%O.

Proof. Forn > m > ng, where ny is large enough, n, m,ng € N, t € [—7, 0], we have
[un(t) = um(t)|la = [[A(t) = h(t)[la = 0. (3.19)
For t € (0,Tp] and n, m and ng as above, we have

[un(t) = um(t)la
< [le™ A% (9n(0,6) = g (0,0)) || + | A* || A7 gn(t, un) — A g (t, um) |

t
+/ |AT P eI [ AP g (s, un) — AP gun (s, um) || ds
0

t

+/ e~ =24 4| [HBnun(S) — Bium ()|l
0

+ |Crun(s — 7) — Crpum (s — 7)||

0
—l—/ |a(0)|]| Lnun(s +6) — Lypyum (s + 0)|| d0 | ds.

—T

For 0 < t;, < to, we have

[t (£) =t (t) |
< ”eitAAa(gn(oa (Z;) - gm<07 (ZB))H + HAaiﬁ” HAﬁgn(t, un) - Aﬁgm(taum)u

t6 t
+ </ +/ )HA”“_%_“_S)AH 1A% gn (s, un) — A7 g (3, um)llds
o Ju

" . (3.20)
n (/ +/ >||e_(t_5)AAa||[HBnun(S)—Bmum(s)”
0 tq

+ |Crun(s — 1) — Crpupm (s — 7)||

0
+ [ 1O Lyl +6) —Lmum<s+9>ude}ds.

—T
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Now, for 0 < o« < 8 < 1, we have

1[Bn (1 (5)) — Bun(tm ()]
< HBn(Un(S)) - Bn(um(s))H + HBn(um(S)) - Bm(um(s))H
< K1 (10) | A% un(s) — um(s)][| + K1 () | AP (P" — P™) APup(s)| 32D
(

K1 (no)

e |40 (5|

< K (10)[| A% [un(s) — um (s)]]| +

Similarly
1Cn(tn(s — 7)) — Con (s — 7))
< |G (tn(s — 7)) — Cu(tm(s — 7)) + | Cr(tm(s — 7)) = Con(um(5))]|
< Ks(10) | A% un(s — 7) — (s — 7)][|+ K2 (o) | A> P (P — P™) APy (s — 1) B-22)

< K| A%luns =) (s = 7 + S AP (5 = )]

and
(L (tn (5 + 0)) = L (i (5 + 6))]|
< | Ln(tun(s + 0)) = L (tim (5 + 0)) |+ L (tm (5 + 0)) = Lo (i (5 + )|
< K3(10) [ A% [un (s + 0) — um (s + O]+ Ks(n0) [ A* P (P — P™) APy (s + )] (323

< Kym) | A% 5+ 0) = 5+ 0] + Z2 4P s+ 0)]

m

We estimate the first term as

e A%(9a(0.6) — gm(0,))| < M A2 A0, P"¢) — A%g(0, P" )]
< MJAP| Ly||(P" ~ P™) A9

The first and the third integrals are estimated as

to
/0 | AP =AY | A8 g (s, 1) — AP g5, )| s
< 2C11a-p(LgR + B)(to — to) "t

For the second and the fourth integrals, we have

t
AT DA | AP (5, wn) = A gy, )| i

!
to

< Crya—ply /

to

(1 — 5 (i+od) [||un<s> =t (5)la + Wr\A%m(sm] s

Uy Th— t e
< Crya-—ply <)\'B(2(ﬁ—o¢) + /t/ (t— )Tl (s) — Um(S)HadS>~
m 0
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From inequalities (3.21), (3.22) and (3.23), inequality (3.20) becomes

[un(t) = um(t)la
< M| AP Ly||(P" — P™)A%)|

ap Ut
#1471 (n0) = O +

m

Civap(LyR+ B)\ , Ut
9 t Ca I U
! ( (to— th)1Fap )0 Eyama

| /(M)‘““ ~ tn(8)]lads

+(f i / e | s ) 47T (5) — )

+ [i L) A%, (5) | + Ko ()| A% tns = 7) = tms = )|

(3.24)

0
<Ia(9)IK3(?70)||Aa[un(8 +0) —um(s + 0)|

—T

e
N IR
Ks(m

+A )||A5 (s+9)||)d0]ds,

m

where Co 3 = Crya_ply— B . Since ||A%P||L, < 1, and from Corollaries 1 and 2, inequal-
ity (3.24) implies that

[un(t) — wm(t)lla

1
< n __ pm
< A M - P z
Clia—p(LgR+ B)\ , Uy, s (3.25)
+2< (to—t6)1+a_/3 0 C ’ﬁAgL +Cl t0+>\ﬁl

t Cu L
+ (CaK(n0) + Crya-p) /t/ <(t —5) "+ (t_s)ira_,g> [tn = tm|[s,a ds},

0

where C; = 2C,(top — ty) " *CK(np) and Cy = % Now, replacing ¢t by ¢t + 6 in
inequality (3.25), where 6 € [t{, — t,0], we get

[[tn(t 4 0) = um(t +0)l[a

1 n __ pm
< T I -

4+ 9 Cl+a—B(LgR + B)
(to — to) P

Oy (3.26)

B—a
m

Uy,
>O+C,,3)\ +Clt0+

m

t+60 L
o\ g _
+ (CQK(T]()) +C1+a75) /t\/o <(t+0 S) + (t—|—9—5)1+a_ﬁ)‘|un UmHS,a dS}
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We put s — 6 = v in (3.26) to get

[un(t +6) — um(t + )|l
_ 1
~ (1= Aro L,

Cl+a*ﬁ(L9R + B) ’
2
" < (to — tp)Te=F o

M — P™)A” AP L,
(e - pmyasel + a5

U Cy
+ Cy + Cy.t
75>\ 1.t + )\rﬁnia

t L
aK a— - -« —g n — WUm @
(ol )+ Crvacs) [ (02974 s ln = bt

0—

= 1{MH(P" — P™)A%|| + A% L it
— (=AY A

Cl+a—ﬁ(LgR + B) ’
2 t
" ( (to — ty)+ep )0

Co
)\5 «

m

U

t Cw L
+ (CaK (o) +Cl+a6)/t/ ((t—v) + (75_7)91+a—/3>”“" —UmHv,ad’Y}-

0

Now

Sup (4 0) =t 4 0) o
#—t<0<0
< oy (I - P
= T4 ILy)

_s(L,R+ B
+2<Cl+a ,3( 9R+ )>t6

m

(to — tg) ' +o=F (3.27)
Uy, s
+C + Oty + —2—
a8 8 o )\6 1.tg + )\B @

m

+ (ol ) + Cusacs) [ (€= + =y )l

0

We have

sup  |unp(t+60) — upm(t +0)||a
—r—t<6<0

< sup  Jup(t+0) —um(t+0)|[|la + sup  ||up(t+6) — up(t + 0)||a-
0<O+t<t}) th—1<6<0
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Using inequalities (3.27) and (3.24) in the above inequality, we get

sup  |Jup(t+60) — upm(t + 0)||a
—7<t+0<t

1
<
= (L= [|A>=B||Ly)
Cl+a—B(LgR+B) /
2 t
i < (to — thyrop )%

Uy Cy+C
+ ca,w—tfa +(C1 + Ch) g + gt

Ut6

N\o~a

{MH(P” Py A% + |4 L,

+ (CaK (1m0) + Cria-p) /t/ ((t -7+ (t_,YL)”({M_B) [un — um

0

‘%ad7}7

where C3 and C} are constants. An application of Gronwall’s inequality to the above inequality gives

the required result. This completes the proof of Theorem 2.

O

With the help of Theorems 1 and 2, we may state the following existence, uniqueness and

convergence result.

Theorem 3 Suppose that the conditions (H1)~(Hg) are satisfied and h(t) € D(A) forallt € [—7,0].
Then there exist a function u, € C([—7,To]; H) and w € C([—7,To|; H) satisfying
h(t), t e [—T,0],
e (h(0) + 9n(0,1(0))) = gn(t, un(t))
unlt) = + /0 t Ae= =94 (5, uy,) ds + /O -9 [Bnun(s) 528
+ Chup(s—71) + /0 a(0)Lpun(s +0) dﬁ] ds, t € [0, To]
\ —r
and
(h(t), te[-7,0]
e~ (1(0) + g(0,h(0))) — g(t, u(t))
u(t) = (3.29)

t t

—i—/ Ae(tS)Ag(s,u(s))ds+/ e~ (=94 [Bu(s)
0 0

0

a(0)Lgu(s+0) de} ds, te[0,7T)

—i—Cu(s—T)—i-/

\ —T

such that u,, — win C([—7,Tp); H) as n — oo, where B,,, Cy, and L,, are as defined earlier.
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4 Faedo—Galerkin approximations

We know from the previous sections that for any —7 < 7T < T" we have a unique u € C7; satisfying

the integral equation

h(t), te[-7,0],
e~ (h(0) + g(0,2(0))) — g(t. u(t))
wlt) = + /Ot Ae™ 94 (s, u(s)) ds + /Ot e~ (t=s)4 [Bu(s) @D
+Cu(s—171)+ /O a(0)Lgu(s+0) dﬁ} ds, t e [0,7).
Also, there is a unique solution u € C7; of the approximate integral equation
(n(t), t € [-,0],
e " (1(0) + gn(0,1(0))) — gn(t, un(t))
unlt) = + /Ot Ae_(t_S)Agn(s, un) ds + /Ot e~ (t=9)4 [Bnun(s) *2)
+ Chun(s — 1)+ /0 a(0) Lpun(s + H)dﬁ} ds, t € [0, Tp).
\ -7
Faedo—Galerkin approximation u,, = P™u,, is given by
(Ph(t), te -0,
e~ AP (R(0) 4 gn(0,7(0))) — Prgn(t, un(t))
nlt) = + /O t Ae=ED4P, g, (s, un) ds + /O Ct=9apn [Bnun(s) @3
+ Chun(s — 1)+ /0 a(0)Lyu,(s + 0) d@] ds, t € [0, Tp],
where B,,, C,, and L,, are as defined earlier.
If the solution u(t) to (4.1) exists on —7 < ¢ < Tj, then it has the representation
u(t) = i ai(t) i, 4.4)
i=0
where «;(t) = (u(t), ¢;) fori =0,1,2,3,--- and
un(t) = Zn: ai' ()i, (4.5)

where o' (t) = (tn(t), ¢;) fori =0,1,2,3,---.
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As a consequence of Theorem 1 and Theorem 2, we have the following result.

Theorem 4 Suppose that the conditions (H1)-(Hg) are satisfied and h(t) € D(A) forallt € [—,0].
Then there exist unique functions u,, € C([—,Tp]; Hy) and uw € C([—1,To|; H) satisfying

Ph(t), te[-7,0],

e AP (h(0) + gn(0,7(0))) — Pogn(t, un(t))

ﬂn(t) = (t—s)A ' —(t=s)A pn Un (S
/ Ae~( Pngn(z ,Up) ds —i—/o e P |:Bn n(s)
+ Chup(s — 1) + a(0)Lpun(s +6) dﬁ] ds, t € [0, Tp]
and
h(t), te[-7,0]
e 4 (h(0) + g(0,h(0))) — g(t, u(t))
u(t) =

t t
+ / Ae= A0 (s u(s)) ds + / e~ (t=s)4 [Bu(s)
0 0

0

a(@)Lyu(s + Q)dﬂ] ds, t e 0,7

+C’u(s—7)+/

—T

such that u,, — win C([—7,To|; H) as n — oo, where By, Cy, and L,, are as defined earlier.

Theorem 5 Let (H1)-(H6) hold. If h(t) € D(A) forallt € [—1,0], thenforany —7 <t < Ty < T,

N=00 _r<t<Tp

lim  sup [Z A2 oy (t) ()}2] =0.

Proof. Leta](t) = 0 fori > n. We have

Au(t) — iy (1)) = A° Z{az }@] =32 {ai(t) — al(0)} .
=0
Thus, we have
1A [u(t) — T (1> = > AF () — af (1)) (4.6)
i=0

Hence, as a consequence of Theorem 3, we have the required result. ([l
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5 Example

Let us consider a quantum particle in a potential V' (x). Then the particle is represented by its
wave function u(¢, z) which is a solution of the following partial differential equation with delay of
Schrodinger type

Z_3(u(t, x) + g(t,x))
ot

= (A 4+ V(z)u(t,z) + blu(t,x))u(t, )
+ c(u(t — 7,2))ug(t — 7, )

0
+/ a(s)l(u(t + s,z))ug(t + s,x)ds, t>0, ze (0,1), (G.1)

T

u(t,z) = h(t,x), te[-70], e (0,1),
u(t,0) =u(t,1) =0, t>0,

where the kernel a € L‘ﬁ)c(—T, 0), b, ¢, [ are smooth functions from R into R, hisa given continuous

function and 7 > 0 is a given number.
We define the operator A as follows:
Au = (i —iV)u with ue€ D(A) = H}(0,1) N H*(0,1). (5.2)
Clearly, the operator A satisfies the hypothesis (H1) and is the infinitesimal generator of an analytic
semigroup {e~*4 : t > 0},

For0 < o < landt € [0,T], we denote Cf* := C([—, t]; D(A®)), which is the Banach space
endowed with the sup norm

[Pllta = sup_[lv(n)]a-

—7<n<t

We observe some properties of the operators A and A defined by (5.2). For ¢ € D(A) and
A € R, with Ap = (1A —iV)u = \u, we have (A¢, @) = (A, ¢), that is,

(=¢",¢) = [W/[72 = A7,

so A > 0. For u € D(A) there exists a sequence of real numbers {ca, } such that

w@) = omn(z), Y (an)® <4oo and Y (An)*(an)? < +oo.

neN neN neN

A1/2u(x) = Z \/E an Pn(2)

neN
with u € D(AY2) = HE(0,1), thatis, ., .y An(an)? < +0c.

‘We have

Equation (5.1) can be reformulated as the following abstract equation in a separable Hilbert space
H = L*0,1):
O(w(t) + g(t, w(t))
ot

+ Aw(t) = Bw(t) + Cw(t — 7) + /O a(0)Lw(t + 6)de,

—T

0<t<T <00, 7>0,
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where w(t) = u(t, ), that is, w(t)(x) = u(t,z), w(0)(z) = u(t +0,2),t € [0,7], 6 € [-7,0],
x € (0,1), the operator A is defined as in equation (5.2) and h(0)(x) = h(6, z) for all € [—T, 0]
and z € (0, 1). The operators B, C' and L are defined as follows:

e B: D(AY?) = H, where Bw(t)(z) = —ib(u(t, z))u.(t, z);
e C: D(AY?) — H, where Cw(t — 7)(x) = —ic(u(t — 7,2))uy(t — 7, 2);

o L: D(AY?) = H, where Lw(t + s)(z) = —il(u(t + s, x))ug(t + s, x), where s € [—7,0] and
z € (0,1).

Let cv be such that 3/4 < o < 1. For u,v € D(A%) with ||A%u| < nand ||[A%v|| < n, we have

[b(u(@))uq () = b(v(x))ve(2)]
< [b(u()) = b(v(@))[Juz ()] + [b(v(2))|Jux(2) — ve(2)]
< Lylu(z) = v(@)[[uz ()] + b1|ue(z) — vz ()],

where L, is the Lipschitz constant for b and by = Lb# + [b(0)|. For u,v € D(A%*) C D(AY?),
0

we have

1
|B(w) ~ B)|> < /0 | [Zolu(x) — v(a) e (@)] + biua () = va(@)]] | da.

Thus, from [16, Lemma 8.3.3], we get
1 1
IB(u) — B)|? < 2Ly / () — v(@)| [ (@) dz + 25, / g () — ()| da
0 0

1 1
< 20,2|u — vugo/ g ()2 dz + 2b12/ 1 () — 0 ()2 dz
0 0
< 202 ||u — v 2 || AY 2ul|? 4 2612 AV (u — v)| 2
< 2L,%Pn?|| A% (u — v) || + 2b1%|| A% (u — v)||?
< My(n)? || A%(u — v)|1?,

where 3/4 < a < 1, || A%ul| < 1, | 4%0]| < 1, My(n) = v2[Loen + bi), ulloo = 5uppeer (@)
and ||ul|eo < ¢||A%u|| for any u € D(A%). Hence, the operator B restricted to D(A®) satisfies the
hypothesis (H3) with K (n) = My(n). Similarly, we can show that the operators C' and L satisfy
the hypotheses (H4) and (HS), respectively.

The nonlinear operators of the above type arise in the theory of shock waves, or various types of
Schrodinger equations, turbulence and continuous stochastic processes (cf. [9] for more details).
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