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1 Introduction

In the present paper we prove the existence of entropy solutions for a class of nonlinear parabolic
unilateral problems of the type:

w> P a.e. in Q x (0,7),

b(w) _

5 TAutg(a.tuDu)=f inQx (0,T), (1.1)
b(u)(t = 0) = b(uo) in 2,

w=0 on 092 x (0,7).

In problem (1.1), 2 is an open bounded subset of RV, N>2 Tisa positive real number and
Q = Q x (0,7), while the data f € L'(Q) and ugp € L'(€), b is a strictly increasing C''-function.
Let M and P be two N-functions such that P < M (for definitions see Section 2). The differential
operator A: D(A) C WH* Ly (Q) — W12 L1(Q) is defined by Au = —div(a(z, t,u, Vu)),
where a is a Carathéodory function such that

(@, t,5,)] < Blh(x,t) + kM Plkals|) + ksM M (kal€])],

where h(z,t) € F3;(Q), ¢ > 0and 3, k; > 0 (i = 1,2, 3) are given real numbers.

Let g be a Carathéodory function such that the growth condition

g(x,t,s,8) < (1) + p(s) M([£]) (1.2)

is satisfied, where p: R — R is a continuous non-decreasing function which belongs to L!(R) and
~y(x,t) is a given non-negative function in L!(Q). The function 1 € Wol’xEM(Q) NL>(Q).

Under these assumptions, the above problem does not admit, in general, a weak solution since
the field a(z, t, u, Du) does not belong to (L1, (Q))" in general. To overcome this difficulty we use
in this paper the framework of entropy solutions. This notion was introduced by Bénilan et al. [4] for

the study of nonlinear elliptic problems.

Note that Dall’aglio—Orsina [18] and Porretta [19] proved the existence of solutions for the
problem (1.1) without obstacle with the function b equal to the identity, i.e., b(u) = u and the
nonlinearity g satisfying the following ‘natural’ growth condition (of order p):

lg(z,t,5,8) < b(s) (€7 + c(, 1)) (1.3)

and the classical sign condition
g(x,t,5,6)s > 0. (1.4)

It is our purpose, in this paper, to prove the existence of a unilateral entropy solution for the
problem (1.1) in the setting of the Orlicz—Sobolev spaces without the sign condition (1.4) and without
the following coercivity condition

lg(z,t,5,8)| = BEP for s = 7.

The nonlinearity term g has to fulfil only a weaker condition than (1.3) (see assumption (1.2)). This
condition is a growth condition with respect to Du; we do not assume any growth conditions with
respect to u. The case where g(x,t, u, Du) = div(¢(u)) was studied by H. Redwane in the classical
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Sobolev spaces WP (Q) and Orlicz—Sobolev spaces, and the assumptions for the parabolic part are
inspired by [24, 25].

The aim of our work is to investigate the relationship between the obstacle problem (1.1) and
some penalized sequence of approximate equations.

This result generalizes an analogous one due to Boccardo—Gallouét [12], see also [13, 14, 19].

A large number of papers was devoted to the study of the existence of renormalized solutions of
parabolic problems with rough data under various assumptions and in different contexts: for a review
on classical results, see [2, 3, 5, 6,7, 8, 10, 11, 16].

The plan of the paper is as follows. Section 2 presents the mathematical preliminaries. In
Section 3 we make precise all the assumptions on b, a, g, f and g, the definition of an entropy
solution of (1.1) and we establish the existence of such a solution (Theorem 3.5).

2 Mathematical preliminaries

2.1 Let M: Rt — R* be an N-function, that is, M is continuous, convex, with M (t) > 0 for
t> O ( ) s 0ast — 0and ( ) & soast — oo Equivalently, M admits the representation:

fo 7)dr, where a: R+ — R is non-decreasing, right-continuous, with a(0) = 0,
( )>0fort>0anda( ) — oo ast — oo.

The N-function M conjugate to M is defined by M (¢ fo 7)dr, where a: Rt — RT is
given by a(t) = sup{s : a(s) <t} (see [, 23]).

The N-function M is said to satisfy the As-condition if, for some k& > 0,
M(2t) < kM(t) forall ¢>0.

When this inequality holds only for ¢ >ty > 0, M is said to satisfy the Ay-condition near infinity.

Let P and () be two N-functions; P < () means that P grows essentially less rapidly
than @, that is, for each ¢ > 0, P(t)/Q(et) — 0 ast — oo. This is the case if and only if

lim (Q~'(t)/P~'(t)) = 0.
t—o0
We will extend these N-functions into even functions on all R.

2.2 Let §2 be an open subset of R™. The Orlicz class £y7(Q2) (resp. the Orlicz space Lj(f)) is
defined as the set of (equivalence classes of) real-valued measurable functions u on €2 such that

/ M(u(x))dx < +oo (resp. / M (u()\:p)) dx < +o0 for some A > 0).
Q

Note that L, (€2) is a Banach space under the norm

\|u||M,Q:inf{A>o:/QM<“(;)> dxgl}

and £/(€2) is a convex subset of L (2).
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The closure in Lj;(2) of the set of bounded measurable functions with compact support in
Q is denoted by Ej;(Q2). The equality Ej(Q2) = Ly (Q) holds if and only if M satisfies the
As-condition for all ¢ or for ¢ large, according to whether €2 has infinite measure or not.

The dual of Ej;(2) can be identified with L7(€2) through the pairing [, u(x)v(x) dz, and the
dual norm on L;(€2) is equivalent to ||.||5; (,- The space L/ () is reflexive if and only if A/ and M
satisfy the Ay-condition for all ¢ or for ¢ large, according to whether €2 has infinite measure or not.

2.3 We now turn to the Orlicz—Sobolev spaces. WLy (Q) (resp. WLE;(9)) is the space of all
functions u such that u and its distributional derivatives up to order 1 lie in Lz (£2) (resp. Epr(£2)).
This is a Banach space under the norm

lulliare = Y I1Du|are.
le|<1

Thus, WLy, () and W!Ej () can be identified with subspaces of the product of (N + 1) copies
of Ly7(£2). Denoting this product by [ ] Ly, we will use the weak topologies o ([ [ Las, [ [ E47) and

o(IT Lo, IT Lyp)-

The space Wi Eps(Q) is defined as the (norm) closure of the Schwartz space D(€2) in W1 E;/(€2)
and the space W Ls(Q) as the o([] Las, [T Eq7) closure of D(Q2) in WLy, (). We say that u,,
converges to u for the modular convergence in WLy, () if for some A > 0,

D — D«
/ M <“"A“> dz —0 forall |o|< 1.
Q

This implies convergence for o (]| Lar, [ L) If M satisfies the Ao-condition on R (near infinity
only when {2 has finite measure), then modular convergence coincides with norm convergence.

2.4 Let W1 L37(9) (resp. W1 E57(£2)) denote the space of distributions on €2 which can be written
as sums of derivatives of order less than or equal to 1 of functions in L7(€2) (resp. E57(€)). Itis a
Banach space under the usual quotient norm.

If the open set 2 has the segment property, then the space D((2) is dense in W Ly () for the
modular convergence, and thus for the topology o ([ [ Lar, [[ L7) (cf. [21]). Consequently, the
action of a distribution in W~ L77(€2) on an element of W L () is well-defined.

2.5 Let now € be a bounded open subset of RY, 7" > 0 and set Q = Q x (0,T). Let M be an
N-function. For each o € N”, denote by D the distributional derivative on @ of order o with
respect to the variable z € RY. The inhomogeneous Orlicz—Sobolev spaces of order 1 are defined as
follows

WYLy (Q) = {u € Ly (Q) : DXu e Ly (Q), V|a| <1},
WY EyM(Q) = {u € Ex(Q) : Dju € En(Q), V |af < 1}.

The latter space is a subspace of the former one, and both are Banach spaces under the norm

lull = ) 1DSullar-

lal<1

We can easily show that they form a complementary system when 2 satisfies the segment property.
These spaces are considered as subspaces of the product space [ Lys(Q) which have as many
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copies as there are «-order derivatives, || < 1. We shall also consider the weak topologies
o(IT1 L, I1 Eg7) and o(IT Las, [T Lgz)- If w € WL (Q), then the function ¢ — u(t) = ul(t,.)
is defined on (0, 7") with values in WL/ (Q). If, further, u € W% Ey;(Q), then the concerned
function is a W' E);(§)-valued and is strongly measurable. Furthermore, the following continuous
imbedding holds: W% Ey(Q) C LY(0,T; W' E (). The space W% L;(Q) is not in general
separable; if u € W% L, (Q), we can not conclude that the function u(t) is measurable on (0, T').
However, the scalar function ¢ — || D%u(t)]||pr.q is in L*(0,7T) for all |o| < 1.

2.6 The space Wol’xEM(Q) is defined as the (norm) closure in W% E,;(Q) of D(Q). We can
easily show as in [20] that when €} has the segment property, then each element u of the closure
of D(Q) with respect of the weak* topology o ([ Las, [ E57) is a limit, in W% L/ (Q), of some
subsequence (u,) C D(Q) for the modular convergence, i.e., there exists some A > 0 such that for

all || <1,
D& — D«
/M(M) dzdt -0 as n — oo.
Q

This implies that (u,,) converges to u in W1 Ly (Q) for the weak topology o (T Las, [ L4z)- Con-
sequently, D(Q)U(H Lan I Ewr) _ D(Q)U(H Eac Il i space will be denoted by WOI’ILM(Q).
Furthermore, W, " Exn(Q) = Wy Ly (Q) N 1 Exm(Q). Poincaré’s inequality also holds in
W, Las(Q), ie., there is a constant C' > 0 such that for all u € Wy Ly;(Q) one has

> IDgullirg <€ ) [Dfullae.

laf<1 laf=1

Thus, both sides of the last inequality are equivalent norms on I/VO1 “La(Q). We have then the
following complementary system

(W&“LM@) F)
W En(Q) Fo
with F’ being the dual space of I/VO1 “En(Q). Tt is also, except for an isomorphism, the quotient of

[ 1 L7 by the polar set Wol’zEM(Q)l, and will be denoted by F' = W ™% L1-(Q) and it is shown
that

WLy (Q) = {f =) DSfa:fa € LM<Q>}-

o<1

This space will be equipped with the usual quotient norm
11l = inf > llfallxzo

o<1

where the inf is taken over all possible decompositions
f=" DSfa with fo€ Lyz(Q).
o<1

The space Fj is then given by

Iy = {f: Z Dgfoz : fa GEM(Q)}

o<1

and is denoted by Fy = W12 E+(Q).
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Definition 2.1 We say that u, — uwin W% L1(Q) + L*(Q) for the modular convergence if we
can write
Up = Z DouS +ud and u= Z DSu® +u°
|a <1 o<1
with u% — u® in L17(Q) for the modular convergence for all || < 1 and u®, — u® strongly in

LY(Q).

In this point, we are in position to recall the following abstract lemmas, which will be applied to
the truncation operators.

Lemma 2.2 (cf. [21]) Let F': R — R be uniformly Lipschitzian with F(0) = 0. Let M be an N-
function and let w € WYLy (Q) (resp. WLEy (). Then F(u) € WLy () (resp. WEEp(Q)).
Moreover; if the set D of discontinuity points of F' is finite, then

aa-F(“> _ {F/(z)g;i a.e. m {zc Q u(z) ¢ D},
T a.e. in{x € Q: u(x) € D}.

Lemma 2.3 (cf. [21]) Let F': R — R be uniformly Lipschitzian with F(0) = 0. We suppose
that the set of discontinuity points of F' is finite. Let M be an N-function. Then the mapping
F: WYLy () — WLy (Q) is sequentially continuous with respect to the weak* topology

Remark 2.4 We can easily check, using Lemma 2.2, that each uniformly Lipschitzian mapping
F, with F(0) = 0, acts in inhomogeneous Orlicz—Sobolev spaces of order 1: W1 L1(Q) and
Wy Lar(Q).

In order to deal with the time derivative, we introduce a time mollification of a function u €
Ly (Q). Thus, we define, for all 4 > 0 and all (z,¢) € Q

wilat) =p [ ale,s)espla(s — 1)) ds,

—0o0
where u(z, 5) = u(w, s)X(0,)(8) is the zero extension of u. The following lemma is fundamental in
the sequel.
Lemma 2.5 (cf. [16])
1) Ifu € Ly(Q), then u,, — win Lyr(Q) for the modular convergence, as j1 — +00.

2) Ifu € WYLy (Q), then uy, — win WHT Ly (Q) for the modular convergence.

3) Ifu € WHeLy(Q), then adit“ = p(u —uy).

Lemma 2.6 (cf. [16]) Let M be an N-function and let u,, be a sequence in whzr M (Q) such that
uy, converges to u weakly in Wh* Ly (Q) for o(I] Lar, [ Exp) and %Lt" = hy, + kp in D'(Q) with
(hn)n bounded in W1 L17(Q) and (ky,),, bounded in the space M(Q). Then, u,, converges to u
strongly in L}, .(Q).

If further, u,, € T/VO1 " L17(Q), then uy, converges to u strongly in L' (Q).
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Lemma 2.7 (cf. [17]) Let Q2 be a bounded open subset of RN with the segment property. Then

{u e Wy Li7(Q) : % e WM L(Q) + Ll(Q)} c C([0,T), L*(Q)).

Remark 2.8
1) Note that Lemma 2.6 generalizes the result of Corollary 4 due to J. Simon (see [27]).

2) Let us mention that the trace result of Lemma 2.7 generalizes the following classical result due

to J.-L. Lions (see [26]).

3) Let us mention that the following trace result holds true: D(Q) is dense in the space
u € Wol’mLM(Q) NL%Q) : Eg; e W L(Q) + LQ(Q)}for the modular convergence

(see [17]). The trace result generalizes the following classical result, i.e.,

{u € L*(0,T, Hy()) : g;‘ € L*0,T, Hl(Q))} c C([0,T], L*(Q)).

Proposition 2.9 (cf. [16]) Assume that (uy,),, is a bounded sequence in VVO1 * L (Q) such that %Lt"
is bounded in W 1% L1(Q) + LY(Q). Then u,, is relatively compact in L' (Q).

We end this section by recalling the following approximation theorem, that will be needed in the

sequel to prove the existence of solutions for parabolic inequalities.

Theorem 2.10 Let 1) € I/VO1 “En(Q) N L®(Q) and consider the convex set

Ky = {U € Wol’wLM(Q) tv>Yae. in Q}

Then for every u € KyNL>(Q) such that % € Whe L(Q)+LY(Q), there exists vj € Ky,ND(Q)
such that
v; —u in WYLy (Q),
0v; 0
S5 S i WY L(Q) + LNQ),

_>
ot ot
for the modular convergence.

Proof. Immediate, by using [17, Theorem 3] and the approximation techniques from [22] ([

Remark 2.11 The result is still true for 9 € W Ey (Q) N L*(Q), when Q is more regular;

see [22].
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3 Assumptions and statement of main results

3.1 Basic assumptions

Throughout this paper, we assume that the following assumptions hold true: €2 is an open bounded
subset of RV, N > 2, with the segment property, 7' > 0 is given and we set Q = Q x (0,T). Let
M and P be two N-functions such that P < M.

b: R — R s a strictly increasing C"'-function with b(0) = 0 and such that

0<by < b’(s) <b Vs € R, @D
where b; and b, are given real numbers.
The differential operator A: D(A) C Wh* Ly (Q) — W12 L17(Q) is defined by
Au = —div(a(z,t,u, Vu)),
where
a: Q xR x RY 5 RV isa Carathéodory function 3.2)
which for almost every (x,t) € @ and for every s € R, £ # & € RY satisfies
laz,t,5,€)| < Blh(e,t) + ki M P(kals|) + ksM M (kal€])], (3.3)
la(@,t,5,€) —a(w, t,5,)][€ = £ >0, (3.4)
a(z,t,s,§)€ = aM(|¢]), (3.5)

where h(z,t) € E3;(Q),c>0and o, 8, k; > 0 (i = 1, 2, 3, 4), are given real numbers.

Furthermore, let g: Q x R x RY — R be a Carathéodory function such that for a.e. z € 2 and
foralls € R, £ € RV, the growth condition

g(x,t,5,) <(z,t) + p(s)M(|¢]) (3.6)

is satisfied, where p: R — R is a continuous non-decreasing function which belongs to L!(R) and
~y(x,t) is a given non-negative function in L!(Q).

fel'(Q) and wge LY(Q). (3.7
Forallt € R and k > 0, we define

t,ifft <k,
T.(t) = t
(1) b 1>

3.2 Some intermediates results

This subsection is devoted to introduce some basic technical lemmas and results that will be needed
throughout this paper. For some details concerning their related contents, the reader can consult [6, 9,
10, 15] for instance.
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Lemma 3.1 (cf. [6]) Let (fn)n, f and vy € L'(Q) be such that
1) fn>vae inl;

(i) fn, — fae in;
(iii) / fn(x)dz — / f(x)da.
Q Q
Then f, — f strongly in L'(Q).

Lemma 3.2 Assume that assumptions (3.2)—(3.5) are satisfied, and let (z,), be a sequence in
Wol’xLM(Q) such that

(i) zn — 2z in Wy Lag(Q) for o([1 Las, [T Exp);
(i) (a(x,t, 2, V2y))n is bounded in (L37(Q))N;
(iii) / [a(x,t, 2p, Vz) — a(x, t, 2, Vaxs)|[Vzn, — Vaxs) dedt — 0, as n, s — oo,
Q

where s is the characteristic function of Qs = {(z,t) € Q, |Vz| < s}). Then
1) M(|Vzn|) = M(|V2]) in LY(Q):

2) lim a(x,t,zn,Vzn)Vzndxdt:/ a(z,t,z,Vz)Vzdzdt;

3) Vz, = Vzae inQ.

Proof. Fix r > 0 and let s > r one has

0< / [a(x,t, zn, Vzy) — a(x, t, z,, V2)|[Vz, — Vz] dz dt

< / la(x,t, 2n, Vzn) — a(z,t, 2n, V2)|[Vz, — Vz]dz dt

s

= / [a(x,t, 2n, Vzn) — a(z,t, 2, Vzxs)|[Vzn — Vaxs) dedt

s

< / [a(x,t, 2n, V) — a(z,t, 2, Vzxs)| [V, — Vaxs) dzdt,
Q
which with (iii) implies that

lim [a(x,t, 2n, Vzn) — a(z,t, 2, V2)|[Vz, — Vz] dax dt = 0.

n—o0 QT‘
So, following the same argument as in [21], one can show that

Vzp, =+ Vz ae.in Q. (3.8)
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On the other hand, we have

/ a(x,t, 2z, Vzn)Vz, do = / [a(x,t, 2n, Vzy) — a(z, t, 2, V2xs)]
Q Q

X [Vzn — Vzxs| dedt

3.9
+/a(:c,t,zn,szs)(Vzn—szs)dxdt 59
Q

+ / a(z,t, zn, Vz, ) Vzys de dt.
Q

Since (a(z,t, zn, Vzp))n is bounded in (L77(Q))Y, by (3.8), we obtain that a(x,t, 2, V2,,) con-
verges to a(z, t, z, Vz) weakly in (L37(Q))" for o(T] Lz, [ Ear), which implies that

/ a(z,t,zn, V) Vaxs de dt — / a(z,t,z,Vz)Vzxsdrdt as n — oc. (3.10)
Q Q
Letting also s — oo, one has
/ a(z,t,z,Vz2)Vzxsdedt — / a(z,t,z,Vz)Vzdxdt. (3.11)
Q Q

On the other side, it is easy to see that the second term on the right-hand side of (3.9) tends to 0 as
n — oo.

Consequently, from (iii), (3.10) and (3.11) we have

lim a(x,t,zn,Vzn)Vznda:dt:/ a(x,t,z,Vz)Vzdrdt
n—oo Q Q

and by virtue of (3.4), Lemma 3.1 and Vitali’s Theorem, one can deduce that
M(|Vz|) = M(|[Vz]) in LYQ),

which completes the proof. O

Remark 3.3 It is interesting to note that the condition (ii) in Lemma 3.2 is not necessary in the case
where the N -function M satisfies the Ao—condition.

3.3 The principal result

We now give the definition of an entropy solution of (1.1).

Definition 3.4 A real-valued function u defined on Q) is a unilateral entropy solution of problem (1.1)

if
Ti(u) € Wol’xLM(Q) and uw>1 aein Q,
gz, t,u, Vu) € LY(Q),
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and for all v € WOI’ELM(Q) N L>®(Q), %@’ € WHL(Q) such that v > b(1) a.e. in Q and
Vk>0 7€ (0,7T)

/QTk(b(u(T)) —v(7))dzc+/0T<gqt),Tk(b(u) o))

+/ a(z,t,u, Vu)VTi(b(u) — v) dxdt+/ g(x,t,u, Vu)Ti(b(u) —v)dzdt  (3.12)

T

< [ fTi(b(w) - v) dudt + / B(b(ug) — v(0)) dz,
Q- 0

where Ty (r) = [; Ti(s)ds.
The aim of the present work is to prove the following

Theorem 3.5 Under assumptions (3.1)—(3.7), there exists at least one unilateral entropy solution of
problem (1.1).

Proof. The proof is divided into 5 steps. In Step 1, we introduce an approximate problem. In Step 2,
we establish a few a priori estimates which allow us to prove that the approximate solutions ,,
converge to u a.e. in (). In Step 3, we define a time regularization of the field T} (u), establish the
boundedness of the sequence (a(x, t, uy, Vuy,))n in (L37(Q))", and prove that u,, satisfies (3.30).
In this step, using some techniques, we also prove the modular convergence of Ty (uy,) to Ty (u) in
VVO1 *L(Q), which allows us to control the parabolic contribution that arises in the monotonicity
method when passing to the limit. Step 4 is devoted to prove the equi-integrability of the nonlinearities
g. At last, in Step 5, we pass to the limit which is the final step to prove Theorem 3.5.

Step 1. The approximate problem. Let us introduce the following regularization of the data:

fn € D(Q): || fullLrg) < |1 fllz1 (@) and fr — fin LYQ)asn — +oo, (3.13)
uon € D(Q): [[uonllr1) < lluollzi ) and uon — ug in L'(€2) as n — 400, (3.14)

1+ Llg(z,t,5,6)]

Note that g, (x, t, s, £) satisfies the following conditions

|gn($7t75>£)| S |g(x,t,s,§)] and |gn($7t787£)| Sn
Let us now consider the following regularized approximate problem

un € Wy L (Q),

/[)T<ab((;:”) ,b(up) — v> dt + /Q a(@,t, up, Vun)V(b(uy) — v) dz dt

+ /an(x,t,un, Vuy)(b(u,) —v)dzdt — n/Qm(Tn(un — )7 )(b(uy) —v)dzdt

:/fn(b(un)—v)dxdt forall v e Wy Ly (Q) N L¥(Q).
Q
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Remark 3.6 Note that, thanks to [15], there exists at least one solution u,, of the approximate
problem (P,,).

Step 2. A priori estimates. The estimates derived in this step rely on standard techniques for
problems of the type (P,).

Proposition 3.7 Assume that (3.1)—(3.7) hold true and let u,, be a solution of the approximate
problem (P,,). Then for all k > 0, we have

HTk(Un)HWOl,mLM(Q) <Ck forall neN, (3.15)

where C' is a constant independent of n.

Proof. Letv = b(uy) — exp(G(un))Ti(un — Th(uy)), where G(r) = [ 290 ds and h > [[4]|
(the function p appears in (3.6)). Choosing v as a test function in the approximate problem (P,), we
get

T u
/0 <8l’ét"), exp(G(1n)) Tt — Th(un)) ) dt
+ / a(x,t, un, Vn) VI (un — Th(un)) exp(G(uy,)) de dt
Q
+ / a(x,t, up, Vun)V (exp(G(un)) Tk (un, — Th(uy)) do dt
Q
+ / n (@, t, Up, V) exp(G(un)) Tk (un — T (uy)) dzdt
Q
-n /Q m(Tyn(un — 1)) exp(G(up)) Tk (un, — Th(uy)) da dt

_ /Q Fo xp(Gtn))Ti (1 — Ty (1)) dr it

Which gives

/Q <abgzn> ,exp(G (un)) T (un — Th(un))> dt

+/ a(z,t, up, Vi) Vu, exp(G(uy)) da dt
{h<|un|<h+k}
+ / a(z,t, up, Vun)VunM exp(G (un) Tk (un, — Th(uy)) dz dt
Q «
+ / Gn (2, t, Uup, Vuy,) exp(G(un)) Tk (un — Th(uy)) da dt
Q
—-n /Q m(Ty (up — )~ ) exp(G(un)) Tk (un, — Th(uy)) da dt

- /Q o XD(G (1)) T (1t — Th (1)) da .
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Using the coercivity condition (3.5) and (3.6), we obtain

T Uu
/0 <8bét“) , exp(G(un)) T (tn — Th(un))> dt
+/ a(x,t, un, Vi) Vi, exp(G(uy)) de dt
{h<|un|<h+k} (3.16)
- /Q (T (1 — 1)) exp(G (1)) T (1t — T (1)) dar It

< / [| fr + v(z, t)] exp(G(un)) Tk (un, — Th(uy,)) da dt.
Q

On the other hand, we have

/OT<abg;én) ,exp(G(un)) T (un, — Th(un))> dt
- / B (un(T)) dv — / By, n(uon) de,
Q

Q

where By, () = [; b'(s)Tk(s — Th(s)) exp(G(s)) ds. Thus, due to the definition of By, j, and since
|G (un)| < M, e have

Ipllz:
0< / Bie,n(uon) dz < kexp <(LX(R)) 16(uon) || L1 () = Ck.
Q

So, using again the coercivity condition (3.5) and the fact that [, By 5, (un(T')) dzz > 0, then (3.16)
becomes, for alln € N

a/ M(|Vuy|) exp(G(uy)) dz dt
{h<|un|<h+k}

- n/Qm(Tn(un — )7 ) exp(G(un)) Tk (un — Th(uy)) dz dt < Ck.

Thus
—némmmwwommwwmnw";”%”mmsa
And since
— n/Qm(Tn(un — 1)) exp(G(up)) Tk (wn — Th(uy)) dz > 0
as well as

exp(G(-20)) < exp(Glun)) < explG(+o0)) and exp(|Go0)) < xp (L)),
we deduce thanks to Fatou’s Lemma, as £ — 0, that

/ m(T, ) )dzdt < C. (3.17)
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Now, using v = b(u,) — exp(G(un))Tk(un) " X (0,r) as a test function in the approximate problem
(P,) with 7 € (0,T), we get

T u
| (P explGlun) Tin) o
+/ a(m,t,un,Vun)V<eXp(G(un))Tk(un)+) dz dt
4 [ gulist i, V) exp(G un) T dr
—n/ m(Ty (un — V)7 ) exp(G (upn)) Tk (un) ™t dz dt

- /Q Fo exp(G 1)) T () * darl,

which gives

/OT <abgttn)7exp(c(un))Tk(unﬁX(O,T» "

+/ a(x,t, un, Vun ) VT (uy) " exp(G(uy)) dz dt

—|—/ a(m,t,un,Vun)Vunp(Zn) exp(G (un)) Tk (up)t dz dt
. / (T (1, — 1)) exp(G(un)) T (1) dz dt
< / (@, s Vi) | €xp(G (1) T (1) * i lt

T

[ Ul explGlua)) Tutun) drr.
Q-

Let i (r) = [ () Ti(s)* exp(G(s)) ds. We have |y ()] < kexp(M) 1b(r)|. Then

/Of<ab((;:n)’exp(G(un))Tk(un)+> 4 — /

0 @k(un(T)) dx — /Q gok(u()n) dzx.

Then

/0T<8b(u"), eXp(G(u”))Tk(un)+X(o,T)> dt

ol
> [ ontunr) de = kexo (FEE s o,
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Which gives

/cpk(un(T))dx—i—/ a(x,t, un, Vn ) VT (uy) " exp(G(uy)) dz dt
Q T
p(un)

+/ a(x,t, up, Vi) Vuy, exp(G (up)) i (un) T dz dt

—n / (Tt — )™ exp(C(tn)) T () * da dt 3.18)

< / g0 (2, t, V)| exp(G 1)) T )+ vl

T

’ / |l exp(G(un))Ti(un) * dadt + k exp (HPH];(]R)

T

) bCuon) 121

Moreover, using the fact that ¢y (u, (7)) > 0, then (3.18) becomes

/ a(x,t, un, Vg ) VT (un) T exp(G(uy,)) dz dt

/ $)7) exp(G(un)) Ti(un) ™ da dt
<

HPHLl(R)
(6%

/ (| £l + (2, 1)) exp(G (un)) Ti(un) T dz dt + k exp( ) [wonll L1 (@)
Qr

which gives
/ a(x,t, un, Vi) Vuy, exp(G(uy)) dz dt
{0<un<k}
— n/ m(Tp (un — )7 ) exp(G(un)) Tk (un) T da dt (3.19)

Il
<k exp (a(@) (171120 + Ml @) + Nuonllr ey ) = C:

Thanks to (3.17), we have
’—n / (Tt — 1)) exp(G (1)) T (1) * dt‘

< kexp (HPHLWR)> n/ m(Ty(up — )~ )dedt = Ck.

«
Therefore, (3.19) becomes
/ a(x,t, upn, Vi) Vuy, exp(G(uy)) dzdt < Ck.
{0<u, <k}
Now, since
Qo

exp(G(=o0)) < exp(Glun)) < exp(G(+00)) and  exp(|G(d00)) < exp (HPHL(R))

we get

/ a(z,t,up, Vuy)Vu, dxdt < Ck. (3.20)
{0<un<k}
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Thus, by (3.5), we have
/ M(|Vuy|)dedt < Ck. (3.21)
{0<un <k}

Similarly, taking v = b(uy) + exp(G(un))Tk(un)”X(0,r) as a test function in the approximate
problem (P, ), we obtain

/ a(x,t, up, Vuy,)Vu, dedt < Ck, (3.22)
{~k<u, <0}
and then
/ M(|Vuy|)dxdt < Ck. (3.23)
{—k<u,<0}

Combining (3.21) and (3.23), we deduce that

/ M(|VTk(un))d:L"dt:/ M(|Vuy|)dzdt < Ck. (3.24)

Q {lun|<k}

Hence, the inequality (3.24) give the desired estimate (3.15). g

Proposition 3.8 Assume that (3.1)—(3.7) hold true and let u,, be a solution of the approximate
problem (P,). Then for all k > h > 0 there exists a constant C' (which does not depend on the n, k
and h) such that

/ M(|VTi(un — Th(un))|) dzdt < Ck. (3.25)
Q

Proof. Letk > h > 0. By using v = b(un) — 7exp(G(un))Tk(un — Th(tun))" X (0,), With
7 € (0,7, as a test function in the approximate problem (P, ), we obtain

T u
/0 <8bétn) ,exp(G (un)) Ti (un — Th(“n))+x(057)> at

+/ a(z,t, un, Vg ) VT (uy — Th(un)) " exp(G(uy,)) dz dt

+ / a(x,t, up, Vun)Vunp(zn) exp(G (un ) Tk (un, — Th(uy)) " da dt
- n/Q m(Ty (un, — V)7 ) exp(G (un)) Tk (un — Th(uy)) " da dt
< / |gn (2,1, Un, Vug)| exp(G(un))Tr(un — Th(uy)) ™ da dt

T

+ / |fn| exp(G(un))Tk(un - Th(un))+ dzx dt,

T

which yields, thanks to (3.6) and (3.17),
/ B,jh(un(T)) dx + / a(z,t, Un, Vg ) VT (un — Th(un)) " exp(G(uy,)) dz dt
Q ' T
< [ (1l 4 3(.0)) exp(Gln) Tl — Ty ()"

ke (220 (Iouon) sy + €).
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where B/f, (r) = [ V/(s) exp(G(s))Tk(s — Th(s))" ds. Then, since B}, > 0, we have

/ a(x,t, upn, Vip)Vuy, exp(G(uy,)) dz dt
{h<un<h+k}

Un
< kexp <p(a )> (”fHLl(Q) + (2, t) + [luonll L1 @) + C) = Ck.

Therefore, and by the coercivity condition (3.5), we get
/ M(|Vuy|)dzdt < Ck, (3.26)

where C is a positive constant not depending on n, k and h.
On the other hand, if we consider the test function v = b(uy) + exp(—G(un)) Tk (un —

Ty (un))~ X(0,) in the approximate problem (P,,) and reason as in (3.26), we get

/ M(|Vauy|) dzdt < Ck. (3.27)
{_h_k§u7L§_h}

From the inequalities (3.26) and (3.27) follows the estimate (3.25). ]

Proposition 3.9 Assume that (3.1)—(3.7) hold true and let u,, be a solution of the approximate
problem (P,,). Then there exists a measurable function u such that for all k > 0, we have (for
a subsequence still denoted by u,,),

1) up > uaee inQ;
2) Ty (up) — Ty (u) weakly in WOI’ILM(Q)for o(IT1 L, [ E5p):
3) Ti(upn) — Ti(u) strongly in Epn(Q) and a.e. in Q.

Proof. Let k > h > 0 be large enough. Thanks to [21, Lemma 5.7], there exist two positive
constants C'; and C5 such that

/ M (C|Ti(up — Th(uy))|)dedt < C’g/ M(|VTx(up — Th(uy))|) dz dt.
Q Q
Then, by Proposition 3.8 we deduce that

M(C1k) meas({[un — Th(un)| > k}) = /{ e M(Cy|Ti (p — Th(up))|) dz dt

< Cz/ M(|\VTi(up — Th(uy))|) dzdt
Q
< Csk.

Hence Ok
n — Th (tn < :
meas({|u n(u )‘>k})*M(C’1k)’ VneN,Vk>h>0

Finally, we have Vn e N, Vk > h > 0

meas({|up| > k}) < meas({|un — Th(up)| > k — h}) < ——— 22
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Letting £ to infinity, we deduce that
meas({|up| > k}) -0 as k — oo.
For every A > 0, we have

meas({|un, — um| > A}) < meas({|u,| > k}) + meas({|un| > k})

+ meas({|Tx(un) — Tk (um)| > A}). .

Since T} (uy,) is bounded in W(}’xLM(Q), there exists some vy, € W(}’ILM (Q) such that

Th(un) — v, weakly in Wy " Las(Q) for o([ Las, [T Exp),
Tk (un) — v strongly in - Ep(Q) and a.e. in Q.

Therefore, we can assume that T} (u,, ) is a Cauchy sequence in measure in Q.

Let £ > 0. By (3.28) there exists some k(g) > 0 such that
meas({|up — um| > A}) <e forall n, m > ho(k(e), \).

This proves that (uy,,), is a Cauchy sequence in measure in (), thus it converges almost everywhere
to some measurable function u. Then

Ti(un) — Ti(u) weaklyin Wy "Ly (Q) for o(T] Las, [1 Exp),s
Ti(upn) — Ty (u) stronglyin  FEj(Q) and a.e. in Q.

This completes the proof of Proposition 3.9. U

Step 3. Almost everywhere convergence of the gradients. Since T} (u) € VVO1 “Ly(Q), then

there exists a sequence (a;?) j € D(Q) such that oz;? — T (u) for the modular convergence in

VVO1 "Ly (Q). In the sequel and throughout the paper, x; s and x, will denote, respectively, the
characteristic functions of the sets:
Q" ={(z,t) € Q: \VTk(a;?)] <s}t and Q° ={(x,t) € Q: |VTi(u)| < s}. (3.29)

We will introduce the following function of one real variable s, which is define as

1, if |s| < m,
hin(s) = {0, if [s] > M+ 1,
m+1—1s|, ifm<|s|<m+1,

where m is a non-negative real parameter with m > k.

Proposition 3.10 Assume that assumptions (3.2)—(3.6) hold true and let u,, be a solution of the
approximate problem (Py,). Then for all k > 0

M(|VTi(un)|) = M(|VTg(u)|) strongly in L*(Q) as n tends to infinity.
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Proof. In order to prove the modular convergence of the truncation T} (u,,), we shall show the
following assertions:
Assertion (1)

Boundedness of the sequence (a(x,t, un, Vuy))y in (LM(Q))N.
Assertion (ii)

lim lim sup/ a(z,t, up, Vuy)Vu, dxdt = 0. (3.30)
{m<|un|<m+1}

Mm—00 n—00

Assertion (iii)

Th(un) — Ti(u) modular convergence in Wy L (Q).

Proof of Assertion (i). Let ¢ € (Ep(Q))Y with ||¢]|ar,¢ = 1. Using the assumption (3.4), one has
[ Ti), V() — . i), D[V Ti) — o] vt > 0,
Q

which gives

/ 0, T (), VT () oo da it < / (s, T (1), VT (1) )V T () dar it
Q Q
~ [ alet T @) V() - o] do
Q
On the one hand, by (3.20) and (3.22), we have

/ a(x,t, Ti(un), VI (un)) VI (uy) dz dt < Ck.
Q

On the other hand, for A large enough, and thanks to (3.2), we get

/QM(a(x,t,Tk(un)asﬁ))dxdt < 5</QM<

hence (a(x,t, Tx(un), ¢))n is bounded in (L37(Q))".

h(x,t)

>dxdt+i/ M(k:4|cp\)dxdt+c> <C,
Q

At present, since Ty (uy,) is bounded in WO1 “ L (Q), it obviously follows that
/ a(x,t, Ti(un), ) [VTk(un) — p]dedt < C.
Q

So, by using the dual norm, we conclude that (a(z, t, Tk (u,), VTk(uy)))y is a bounded sequence in
(L37(Q))N. Thus, up to a subsequence

a(z,t, Ti(un), VT (un)) = he in (Lyp(Q)N for o([] Ly [1 Em)

for some hy, € (L77(Q))N.
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Proof of Assertion (ii). Taking v = b(u,,) + exp(—G (un))T1 (un, — T (uy))~ as a test function in
(P,), we get

T u
_/O (P0) (G )T 1 — T () )
+/ a(z,t, up, Vuy)Vu, exp(—G(uy,)) de dt
(m~+1)<up<—-m}
+n/ m(Ty(un — )7 ) exp(—G(up))Th (un — Ti(uy))” dedt
< [ 1o exp(-Gun) Ta(un ~ Tin(un))” do
Q

+ [ 1l T da.
Q
By setting 35 (r) = — [; b/ (s)T1(s — T (s))~ exp(—G(s)) ds, and using the fact that
+ n/ (Tt — 1)) exp(—G (tn))Ti (ttn — T (1))~ dardt > 0,
Q
we obtain

/ﬁm(un(T))dx—k/ a(x,t, upn, Vip) Vg, exp(—G(uy,)) dz dt
Q {—(m+1)<u,<—-m}

) HpHLl(Q)
< WA
<o (F52) ([ 05
+/ |'y]d:cdt—|—/ |b(U0n)|dl‘>.
{lun|>m} {Ib(uon)|>m}

Since B (r) > 0,7 € L*(Q) and by using (3.13) and (3.14), then Lebesgue’s Theorem, we deduce
that

lim lim a(z,t,up, Vuy)Vu, dedt = 0. (3.31)

M—00 M=00 JU_ (1 41) <up <~}

On the other hand, if we set v = b(u,,) — exp(G(uy))T1(un — T (uy)) ™ as a test function in the
approximate problem (P,) and reason as in the proof of (3.31), we deduce that

lim lim a(z,t, up, Vuy)Vu, dedt = 0. (3.32)

M—00 =00 J i <y <1}

Thus (3.30) follows from (3.31) and (3.32).
Proof of Assertion (iii). Taking v = b(uy,) — exp(G(un))(Tx(un) — Tk(af)uﬁhm(un) as a test
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function in the approximate problem (P,,), we obtain

T u
/0 <abétn),eXp(G(un))(Tk(un) _Tk(aé?)u)+hm(un)>dt
+ / (st Vi)V (Te(ttn) — Te(0b)) exp(Catn) o (1) dz dt
(T (un)~Tr(ak) .20}

- / exp(G (tn)) (2, £, Vi) Vet (T (1) — Te(0h),)* e dt
{Mm<un<m+1} (3.33)

- n/ m (T (un, — )~ ) exp(G(un))(Tk(un) — Tk(af)u)Jrhm(un) dxdt
< [+ ) exp(G ) Tiln) = Tel)u) () v
Q
+ / frnexp(G(up))(Tk(un) — Tk(af)M)Jrhm(un) dz dt.
Q

Observe that

- / exp(G (tn)) (2, £, i, Vi) Vet (T (1) — Te(oh),)* e dt
{m<un,<m+1}

< 2kexp (HpHLl@R)> / a(x, t, upn, Vuy)Vuy, dz dt.
@ {m<un<m+1}

Thus, thanks to Assertion (ii), the third term of (3.33) tends to zero as n and m tends to infinity, and
by Lebesgue’s Theorem, we deduce that the right-hand side converges to zero as n, j and p tend to
infinity. Indeed, since

(T (un) — Ti(@) )™ = (Ti(w) — Ti(a¥) )T weakly in (Epr(Q))™N as n — oo,

(Ti(u) = Ti(@)p) " = (Ti(u) — Ti(u)y) " weakly in (Epr(@)™ as j — oo,

and
(Th(u) — Te(u) )" — 0 weakly in (Ep(Q))™ as p — oo.

So, it’s easy to see that
‘—n/Qm(Tn(un — )7 ) exp(G(un)) (T (up) — Tk(a;?)u)Jrhm(un) dz dt| — 0,

asm, jand u — oo. Let e(n, m, j, 1) > 0 be a positive sequence such that

lim lim lim lim e(n,m,j,pu) =0.
H—00 j—+00 m—00 N—00

Therefore, (3.33) becomes

T 9b(uy)
/0 <T,exp(G(un))(Tk(un)—Tk(ag?)uﬁhm(un»dt
" / exp(G(un))a(z, t, up, Vun) (3.34)
{Th (un) =T (a¥) >0}

X V(T (upn) — Tk(af)u)hm(un) dzdt <e(n,m,j,p).
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Thanks to [25, Lemma 3.2], we deduce that

T
/ (PP0) (G o) (T ) — T > e, ).
0

On the other hand, the second term of left-hand side of (3.34) reads as
/ exp(G(uy))a(z, t, up, Vuy,)
{The (un )~ Ti () n >0}
X V(T (un) — T () ) bz (un) da dt

/ exp(C ). 1 Te(um), V(1)
{Tk (un)ka(O‘?)u ZO}

< V(Ti(un) — Ti() ) i (un) da dt

- / exp(G(uy))a(z, t, up, Vuy,)
{Th (un)=Ti (o) =0 |un|>k}

X VTk(af)uhm(un) dz dt.

Now, observe that

|/ exp(G(up))a(z, t, un, Vun)VTk(a;?)uh;n(un) dx dt
{Th (un) =Ty () n>0; |un|>k} (3.35)

< C’/ la(x,t, Triq(un), VTerl(un))HVTk(af)M] dz dt.
{Th(un)=Ti (o) u =05 |un| >k}

On the one hand, since (|a(z,t, T 41(un), VI +1(un))|)n is bounded in (L37(Q))", we get for a
subsequence that

|la(z,t, Tsp1(un), Vi1 (un))| = himy1 weaklyin  (Ly(Q))Y

for o([[ L737(Q), 1] Em(Q))- Since |ka(a§)pX{un>k}| converges to |ka(a§),uX{u>k}‘ strongly
in (E(Q))", so by tending n to infinity, we get

/ laa,t, T (), Vg1 (w0) [V Tk ()] d dt — B[V T(ak) ] da dt.
{lun|>k} {lu|>k}

Using now, the modular convergence of VTk(ozg‘? )uto VT (u) as j and p tend to infinity, we get

/ hiner |V Te(0),ul dar dt — / b1 [V T ()] e di.
{lul>k} {Jul>k}
Therefore, since V71 (u) = 0 in {|u| > k}, we deduce that
/ la(@,t, Ti1 (un), V1 (un)|[VTi() | dz dt = e(n, j, o).
{lun|>k}
Combining this with (3.35), we get
exp(G(un))a(@, t, Ti(un), VI (un))

/{Tk(un)—Tk(aﬁ)MZO} (3.36)
X V(T (upn) — Tk(af)u)hm(un) dzdt < e(n,j,p).
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On the other hand, we have
/ exp(G(up))a(z, t, Tk (uy), VI (uy))
{Th (un ) =Ty (), >0}
X V(T (un) — T () ) bz (un) da dt
> / [a(:c, t, Ti(up), VI (uy)) — a(z, t, Ty (uy), VTk(af)uxg)]
{Ty(un) Tk (o) >0}
X [VTi(un) — VTk(aé?)ng} exp(G (un))hi (uy) da dt (3.37)
+ [ e, £, Ti (). T ), (VT 1) — Vi)
{Tk (un )~ T () n >0}
x exp(G(un))hm(uy) de dt
-C la (@, t, T (un), VT (un) [V Tk () ul i () dez it
Q\Q7>®
where Xg denotes the characteristics function of the subset (* defined as in (3.29).

For the third term on the right-hand side of (3.37), and by tending n, j, m and g to infinity, it
obviously follows that

-C la(z,t, Ti(un), VI (up))| |VTk(a§“)M]hm(un) dz dt

QA\Qe (3.38)

=-C hk\VTk(u)|d:cdt—i—s(n,j,ﬁz,,u).
Q\Q*
For what concerns the second term on the right-hand side of (3.37), we can write,

/ a1, Tiun), VT T i) = V()]
{Th (un) —Ti () s >0}
x exp(G(un))him(uy) dz dt
-/ a1, Telom), VT, VT ()
{Th (un) =T (of) n >0} (3.39)
x exp(G(un))hi(uy) dz dt
-/ a1, Ti(un), VT VT ()]
{Tk(u")—Tk(a?)HZO}
x exp(G(un))him (uy) dz dt.
Starting with the first term of the last equality, since
exp(G(un))a(z, t, Ti(un), VTk(a;?)MXg)h’fﬁ(un)X{Tk(un)—Tk(a;?)uZO}
> exp(Gu)ale £, Tk(w). VTi(0), )i (u) X1, 0y 101,200
strongly in (E57(Q))" as n tends to infinity, and since VT},(u,) converges to VT},(u) weakly in

(La(Q)N for o(TT L, [] E57(Q)). by Proposition 3.9 we deduce that

/ exp(G(up))a(z, t, T (uy), VTk(a?)uxg)VTk(un)hm(un) dxdt

{T (un) —Ti (o) s >0}

= / exp(G(u))a(x,t, T (u), VTk(a;?)#Xg)VTk(u)hm(u) da dt + ¢(n),
{Th(u)=Th(a) >0}
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and by letting j, s and p to infinity, one easily has
/ exp(G(u))a(x,t, Ty (u), VTk(a;?)uxg)VTk (w)hi (u) da dt
{The () =Ty (o) >0}

= / exp(G(u))a(x,t, Tk (u), VI (uw)) VT (u)hy(uw) de dt + (n, 7, s, p1).
Q
In the same way, for the second term on the right-hand side of (3.39), we have

= / exp(G(un))a(z,t, Ti(un), VTk(a?)uxg)VTk(af)uxghm(un) dz dt
{T (un)—Ti(ef) s >0}

= —/ exp(G(u))a(z, t, Ty(u), V() VT (w)hi (u) dz dt + e(n, j, s, 1)
Q
Adding the two last equalities, we get

/ exp(G (1un))a(z, £, Ti(tn), VT (05),x0)
{Tk(un)ka(a?)HEU} (3.40)

X [VTi(un) = V() ixdhi(un) dz At = e(n, j, s, ).

Combining (3.36)—(3.38) and (3.40), we then conclude

exp(G(—oo))/ la(x,t, T (un), VIg(uyn)) — a(z, t, Tk (uy), VTk(a;?)“Xg]
{T (un) =Tk (a)n>0}
X [VTi(tm) — VTi(0)xdY i () @341)

<C [ bl VI dede+ <5,
Q\Q*

Now, taking v = b(uy,) + exp(—G(un))(Tk(un) — Tk(af)u)hm(un) as a test function in the
approximate problem (P,,) and reasoning as in (3.41) it is possible to conclude that

exp(G(—00)) / [a(z, t, Tr(un), VTk(un)) — (@, t, T(un), VTi(af) x1]
{The(un) ~Tx (%), <0}
< [V(Ti(un) — VT (%) X2 hi (un) dz dt (3.42)

< c/ b1 [V T ()] dae dt + £(n, J, 5, ).
Q\@®
Finally, by (3.41) and (3.42), we get

exp(G(—oo))/Q[a(:c,t,Tk(un),VTk(un)) — a(m,t,Tk(un),VTk(aé?)uxg]

X [V (Tk(un) = VTk(af) X him (un) dzdt - (3.43)

<C [ bl VT dede 40,500,
Q\Q*®
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On the other hand

/Q[a(a:,t,Tk(un), VTi(uy)) —alx, t, Ti(uy), VI (u)xs)]
X VT () — VT () x5 i (1) dz
- /Q (0, Ti(1tn), VT (1)) — e, £, Te(un), VT(ab),00)]
X [VTi(un) — VTi(05) X2 (un) dz dt

(3.44)
= /Qa(:v,t,Tk(un),VTk(aé?)ng)[VTk(un) —VTk(a;?)uxg]hm(un)da: dt
— /Qa(x,t,Tk(un),VTk(u)Xs)[VTk(un) — VT (w) uxs) b (un) do dt

+/Qa(m,t,Tk(un),VTk(un))[VTk(af)“Xg) — VT (uw)uxs) b (uy) do dt;

it is easy to see that each integral on the right-hand side of (3.44) has the form &(n, j, u) or
e(n, j, s, 1), which implies that

o€ T, T () — a1 ), 9Ti0) )
X [VTx(upn) — VT (uw)xs)him (un) de dt
_ /Q [a(@, , T (), V() — ala, £, Ti(tn), VTk(ak),00)]

X [VTi(un) = V() uxd i (un) dz dt < e(n, j, s, ).

(3.45)

Furthermore, using (3.43) and (3.45), we have

/Q[a(x,t,Tk(un), VTi(uy)) — a(x, t, Ti(uy), VI (u)xs)]
X [VTk(upn) — VT (w)xs|hm(uz) de dt (3.46)

<C hi|VT(u)| dedt + e(n, 7, s, j1).
Q\Q*®

Now, we remark that

/Q (s, T (1), V() — ala, £, T(un)s VTi(w)xs)]
% [V Tk (un) — VT3 (u)ys] da dt
_ /Q [, £, T (), VT (un)) — ala t, To(un), V() xs)]
< [V T (1) — VT (1) o (1) i it
+ /Q (0, £, To(un), V() — ala, £, T (ttn), VT () o)

X [VTi(up) — VT (w)xs| (1 — hy(uy)) de di.

(3.47)
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Since 1 — hz(uy) = 0in {(x,t) : € |up(z,t)] < m} and since {|u,| < k} C {Jun| < m}, form
large enough the second term on the right-hand side of (3.47) can be written as follows

/Q (alie, b, Ti(tn), VTi(un)) — (e, Te(un), VT (1) xs)]
X [VTi(up) — VI (u)xs|(1 — hi(uy)) dedt

— /Q a(a, t, T (un), Vi () VT (u)Xs (1 — b (un)) da dt (3.48)

- /Qa(a:,t,Tk(un),VTk(u)XS)VTk(un)(l — hiz(uy)) de dt

Because (a(x, t, Ty (un), VIk(un))y, is bounded in (L37(Q))Y uniformly in n and VT, (u)xs(1 —
h#(u,)) converges strongly to zero in (Epr(Q))", the first term on the right-hand side of (3.48)
converges to zero as n goes to infinity.

The second term converges also to zero, because
a(x,t, Ti(uy), VI (u)xs) = a(z,t, Tp(u), VT (u)xs) strongly in (LM(Q))N

and
VT (un)(1 = hip(un)) = VTp(u)(1 — hip(uw)) weaklyin - (Ep(Q))Y.

Finally, we deduce that

nh_}ngo Q[a(m,t,Tk(un), VT (un)) — a(z, t, Ti(un), VIk(w)xs)] (3.49)

X [VTi(un) — VT (uw)xs] (1 — ha(uy)) dedt = 0.

Combining (3.46), (3.47) and (3.49), we get
/Q[a(x, t, Tho(un), VI (un)) — a(a, t, Tp(un), VI (w)xs)] [V Tk (un) — VI (u)Xs] do dt
< C/ hii1|VTx(w)| dz dt + e(n, 7, m, s, ).
Q\Q*®
Letting n, j, m, s and p to infinity, we deduce that
/Q[a(x, t, Ti(un), VT (un)) — a(z, t, T (un), VI (w)xs)] [VTk(un) — VTg(u)xs) de dt (3.50)

converges to zero. Consequently, by Lemma 3.2 we deduce that
M(|VT(up)|) = M(|VT(u)])  stronglyin  L'(Q).

This ends the proof of Proposition 3.10. O

Proposition 3.11 Let u,, be a solution of the approximate problem (P,,). Then

u>Y ae in Q.
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Proof. Thanks to (3.17), we can write fQ To(up — )" )dedt < % And by using Fatou’s
Lemma as n — oo, we have that [, m L (u — 1)~ ) dz dt converges to zero. Now, by using the fact
that m(z) = 0 is equivalent to z = O, we get (u — )~ = 0 a.e. in ). Consequently we conclude
that u > 1 a.e. in Q). O

Step 4. Equi-integrability of the nonlinearities. First, note that thanks to (3.50), we obtain that
Vu, converges to Vu a.e. in () (for a subsequence).

Now, we will show that
g(x,t, Un, V) — g(x,t,u, Vu) strongly in  LY(Q).

Considering v = b(u,) — exp(G(uy) fo $)X{s>h} ds as a test function in the approximate
problem (P, ), we obtain

/Eh(u(T))dx—l—/ a(x,t, un, Vun) Vg p(tn) X u,>h) €xXp(G(un)) dz dt
Q Q

+/a(x,t,un,Vun)Vunp(un)/ np(s)x{s>h}dsdxdt
Q @ Jo
+/ gn(z,t un,Vun)exp(G(un))/ P(8)X{s>hy ds dx dt
0
—n / (T = ) ) exp(Glun) [ ooy dsdr
0
/ [l exp(Glu) [ pls)xqeon dsded + [ Buouon))do.

where By, (r = [y V' (s)exp(G(s)) [y p(T)X{r>ny dT ds > 0, which implies that
/ a(, t, un, Vi) Vi p(tn ) X {u, >h) dz dt
Q

< ol
< ([ soras)exp (PLE) (lallaigy + ey + bluonllsco) + €

Using the coercivity condition (3.5) and since fou" 8)X{s>h} ds < f L, p(s)ds, we get

/ M(|Vug|)p(uy) dedt < C/ p(s)ds.
{Un>h} h

And since p € L*(R), we deduce that

lim sup/ p(un)M(|Vuy,|) de dt = 0. (3.51)
{un>n}

h—00 neN

Similarly, let v = b(uy,) — exp(—G(uy)) fl?n P(8)X{s<—n} ds as a test function in the approximate
problem (P, ), we conclude that

lim sup/ p(un) M (|Vuy|) de dt = 0. (3.52)
{un<—h}

h—00 neN
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Consequently, combining (3.51) and (3.52), we conclude that

lim sup/ p(un) M (|Vuy,|) dedt = 0,
{lun|>h}
which, for h large enough and for a subset E of (), implies that

Jim / () M (| Vi) da it

meas(FE)—0 J g

< max (p(s)) lim /EM(VTh(un)Ddxdt

T unl|<h meas(E)—0

+ lim / p(un) M (|Vuy|) de dt.
En{|un|>h}

meas(FE)—0
So, we conclude that p(uy,)M (|Vuy|) is equi-integrable, which implies that
plun) M ([Vun|) = p(u)M(|Vul) in LNQ).

Consequently, using (3.6) and Vitali’s Theorem, we conclude the equi-integrability of the nonlineari-
ties.

Step 5. Passage to the limit. Let ¢ € Ky N D(Q) and 7 € (0,7T). Choosing now v =
b(un) — Ti(b(un) — #)&(0,7) as a test function in (P,), we get

T
/ (75 Tulbn) = 90071+ [ e, V) VT4 b) — )

T

+ / gn(x, t, up, Vup)Ti(b(uy) — ¢) dedt — n/ m(Ty(un — )7 )Tk (b(uy) — @) dzdt

T

= | faTk(b(un) — ¢) dz dt.
Q-

Since ¢ € Kyy) N D(Q), we have —n [i, m(Tp(un — ) ") Ti(b(un) — ¢) dzdt > 0, and

/ a(x,t, upn, Vn) VT (b(un) — ¢) da dt

T

S—

a(@, t, tn, V) (0 (Tet gl (Un)) Vet gl (Un) = V) X{lb(un) o)<k} d dt

T

Il
S~

a(@, t, u, V) (0 (Tt ) o (W) VTt 1g])o (0) = VO) X {jo(u)—g|<k} d dt + £(n)

T

/ a(x,t,u, Vu)VTi(b(u) — ¢) dz dt + e(n).

T

Thus, we obtain

[ Tbtn o) = oo+ (5 Tulbtn) = )

* / a(@, t, tn, Vi) (0 (Tet fg]le (Un)) VTt gl (Un) = V) X{Jb(un) o)<k} do dt
+ / gn(xa t, Un, vun)Tk(b(un) - (b) dz dt
Qr

< T (b(uy) — @) do dt + / T (b(ugn) — ¢(0)) da.
o Q



ENTROPY SOLUTIONS OF NONLINEAR PARABOLIC EQUATUIONS 129

Hence, by passing to the limit, we obtain

| Tetbtutr)) = sy da+ [ (G Tulbt) = ) s

+/ a(z,t,u, Vu)VT(b(u) — ¢)dz dt + / g(x,t,u, Vu)Ti(b(u) — ¢) de dt

T

< [ 1Teta) - o) dedt+ [ Ti(bluo) - 9(0)
Qr Q

Now, since for every v € Kjy) N L*°(Q), there exists ¢; € Ky ND(Q) such that v; converges to
v for the modular convergence in W& “La(Q) and % converges to % for the modular convergence

in W% L1(Q) + L'(Q). Then we conclude that u satisfies (3.12).

As a conclusion of Step 1 to Step 5, the proof of Theorem 3.5 is complete. U
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