Journal of Nonlinear Evolution Equations and Applications ISSN 2161-3680
Volume 2014, Number 5, pp. 53-76 (January 2015) http://www.jneea.com

ENTROPY SOLUTIONS FOR NONLINEAR
NONHOMOGENEOUS NEUMANN PROBLEMS
INVOLVING THE GENERALIZED p(z)-LAPLACE
OPERATOR AND MEASURE DATA

M. B. BENBOUBKER*
Equipe de recherche SIGL, Ecole National des Sciences Appliquées,
Université Abdelmalek Essaadi, BP 2222 M’hannech Tétouan, Maroc

S. OUARO'
Laboratoire de Mathématiques et Informatique (LAMI),
UFR Sciences Exactes et Appliquées, Université de Ouagadougou,
03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso

U. TRAORE?
Laboratoire de Mathématiques et Informatique (LAMI),

UFR Sciences Exactes et Appliquées, Université de Ouagadougou,
03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso

Received on October 23, 2013

Accepted on April 5, 2014

Communicated by Alexander Pankov

Abstract. Our aim in this paper is to study the existence of entropy solutions for the class of
nonlinear p(x)-Laplace problems with Neumann nonhomogeneous boundary conditions and diffuse
Radon measure data which does not charge the sets of zero p (.)-capacity.

Keywords: Generalized Sobolev space, Neumann boundary conditions, Entropy solution, Radon
measure, p (.)-capacity.

2010 Mathematics Subject Classification: 35J20, 35J25, 35D30, 35B38, 35J60.

*e-mail address: simo.ben@hotmail.com
fe-mail address: souaro@univ-ouaga.bf, ouaro@yahoo.fr
te-mail address: urbain.traore @yahoo.fr

© 2015 Journal of Nonlinear Evolution Equations and Applications, INEEA.com



54 M. B. Benboubker, S. Ouaro and U. Traore, J. Nonl. Evol. Equ. Appl. 2014 (2015) 53-76

1 Introduction

In this paper we study the notion of entropy solutions for the inhomogeneous and nonlinear Neu-
mann boundary value problem

—div(® (Vu—0 W) + [ufP2u+a@) =p  inQ,
®(Vu—-0(u)n+vy(u)=g on 09,

P(u)

with
(€)= [¢P e, vEeRY,
where Q ¢ RN (N > 3) is a smooth bounded open domain with Lipschitz boundary 952, 7 is the

outer unit normal vector on 0f2, «, 7y, © are real functions defined on R or RY, g€ Lt (092) and p
is a diffuse measure such that p = p |Q2.

The existence of entropy solutions for the problem P(u) where i belongs to L'(€2) is also
studied in [2]. In [2], under some assumptions the authors proved that the operator associated to the
approximated problem is of type (M). So, by some a priori estimates, they obtained the convergence
of the approximate sequence to an entropy solution of the initial problem. In this work, we extend
the approach developed in [2] to the case of diffuse Radon measure.

We define M;,(X) as the space of bounded Radon measures in X, equipped with the standard
norm [[.{| vy, (x)-

In the context of variable exponent, the p(.)-capacity of any subset B C X is defined by

Capyy (B, X) = uesir(lf)(B) {/X (|u]p(x) + |Vu\p($)> dx} ,
p(.

with

Sp(y (B) = {u € Wol’p(') (X) : w > 1in an open set containing B and v > 0 in X} .

If S () (B) = 0, we set Cap,,) (B, X) = +oo.

For 1 € My (X), we say that y is diffuse with respect to the capacity W) (X) (p (.)-capacity
for short) if y1 (B) = 0 for every set B such that Cap,,(y (B, X) = 0.

The set of bounded Radon diffuse measures in variable exponent setting is denoted by

MY (X).

Elliptic problem with measure data was studied by many authors (cf. [1, 3, 7, 8, 13, 14, 15]).
Let us recall that within the context of variable exponent, the Dirichlet problem was investigated
in [3, 13, 14]. In [14], the authors proved that every measure ;4 € Mé’(') (€2) admits a decomposition
in L' (Q) + w10 (€2) and used it to prove the existence and uniqueness of entropy solutions.
In the case of Neumann boundary conditions we work in general in W () (Q) (see [15]), so we
cannot use directly the argument of decomposition of measure, since the second part of the measure
is in W—1#'() (Q) (the dual of I/VO1 2() (€2)). To overcome this difficulty, in [15] the authors assumed

that €2 is an extension domain (see [9]) which permited them to work with a space like VVO1 P() (Q)
and return after to the space W P() (©2). With a view to use the same ideas we suppose that € is a
bounded domain in RY with boundary 92 of class C''. Then, it has an extension domain (cf. [9]),
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so for any fixed open bounded subset Ugq of RY such that Q C Ug, there exists a bounded linear
operator

E: W0 (Q) = Wy (Ug),

for which

(i) E(u) =uae. in Q for each u € WPl (Q),

() ||E (u)HW&,p(,)(UQ) < C|lullyy1.00)(q)» Where C'is a constant depending only on 2.

We introduce the set
fmf(') Q) == {u € /\/lf(') (Uq) : p is concentrated on Q} .
This definition is independent of the open set Ug. Note that for u € W10 (Q) N L™ (Q) and
e imf(') (€2) we have
(1.B () = [ wdn

Q

On the other hand, as y is diffuse, there exist f € L' (Ug) and F € (LPU) (UQ))N such that
w= f—div (F)in D’ (Ug). Therefore, we can also write

(u, E (u)) = fE (u) dz +/ FVE (u) dz.
Ua Ua

In this paper, we assume that

(1.1)

p(.) : @ — Ris a continuous function such that
I <p- <py < Ho0,

where p_ := essinf cq p(x) and p1 1= esssup,cq p(x).

Let us briefly summarize the rest of the paper: in Section 2, we introduce some basic properties
of the space W'P() (Q2) and some useful lemmas. Section 3 is devoted to the proof of the existence
of entropy solutions for the problem P ().

2 Preliminaries

We denote the Lebesgue space with variable exponent LP(-) (€2) (see [10]) as the set of all measur-
able function u: {2 — R for which the convex modular

Py () = /Q ") dz

is finite.

If the exponent is bounded, i.e., if p; < 4-00, then the expression

[[ully = inf {A>0:p,0) (u/X) <1}
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defines a norm in L) (Q), called the Luxembourg norm.

The space (Lp(') (Q), H.||p(.)) is a separable Banach space. Moreover, if 1 < p_ < p; < 400,

then LP() (Q) is uniformly convex, hence reflexive and its dual space is isomorphic to L () (Q),

1 1
Wherem—i—m =1.

Finally, we have the Holder type inequality

/ uv dx
Q

for all u € LP0) (Q) and v € LF'0) (Q).
Let

1 1
<=+ =)l vl .1)
(5 + oo ) Tty Tl

w0 (9) = {ue L) (@) : [Vul € L0 ()],
which is a Banach space equipped with the following norm
lally s 2= lallygy + [Vl

The space (W1P0) (Q), |. 11 () is a separable and reflexive Banach space.

An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by
the modular p,, ) of the space LP0) (€2). We have the following result.

Proposition 2.1 (see [11, 21]) Ifuy,u € re) (Q) and p1 < oo, the following properties hold true:

@ Nl > 1 = [l < oy () <l

) llullyy <1 = [0l < oy (0) <l
(iii) Hqu(') < 1 (respectively = 1; > 1) <& p,(y (u) < 1 (respectively = 1; > 1);
(V) [[unll, ) = O (respectively — +00) < pp() (un) < 1 (respectively — +00);
W) oy (u/ Nl ) = 1

For a measurable function u: {2 — R we introduce the following notation:

P1p() () :/ |u|p(z) dﬂc~|—/ |Vu!p(x) dz.
Q Q

Proposition 2.2 (see [19, 20]) Ifu € W12() (), the following properties hold true:

@ llullypy >1 = el < prpe (@) < llullh
i) flull iy <1 = Tullf) < ooty () <l

(iii) [[ully p) <1 (respectively =1; > 1) < py () (u) < 1 (respectively = 1; > 1).



ENTROPY SOLUTIONS FOR PROBLEMS INVOLVING p(z)-LAPLACE OPERATOR 57

Put
WN=Dpl) e,
P @)= p@)?! N_p@ = P@=N
o if p(z) > N.

Proposition 2.3 (see [20]) Letp € C (Q) and p— > 1. If ¢ € C (9Q) satisfies the condition
1<q(z)<p?(x) VeedQ,
then there is a compact embedding W) (Q) — L0 (9Q). In particular, there is a compact
embedding W) (Q) — LPL) (99).
Let us introduce the following notation: given two bounded measurable functions
p(x),q(z): Q@ — R, we write

a@)<p(e) i essinf(p(e) —a(x)) >0,

For the next section, we need the following lemmas
Lemma 2.4 ([2]) Let&,n € RN anlet 1 < p < oo. We have

1 p_} D p—2 _
p\£l p\n\ <[FTEE—n).

Lemma 2.5 (Lebesgue generalized convergence theorem) Let (f,,), . be a sequence of measur-
able functions and let f be a measurable function such that f, — f a.e. in Q). Let (gn), ey C L' (Q)
be such that for alln € N, | f,| < gn a.e. in Q and g, — g in L' (). Then

/anda:—>/gfdx.

We recall the following two technical lemmas (see [12, 18]), the second is a well-known result
in measure theory.

Lemma 2.6 Let (vy,),,cy be a sequence of measurable functions in Q. If v,, converges in measure to

v and is uniformly bounded in LP() (Q) for some 1 < p(.) € L (), then vy, strongly converges
tovin L' (Q).

Lemma 2.7 Let (X, M, 1) be a measure space such that 1 (X) < oo. Consider a measurable
Sfunction v: X — (0, 00) such that

p({z € X :v(x)=0}) =0.
Then, for every € > 0, there exists 0 > 0 such that

w(A) <eforall Ac ./\/lwith/ ydp < 9.
A

We end this part by giving the result concerning the decomposition of measure.

Theorem 2.8 (see [16]) Letp(.): X1 C X — [1,00] with1 < p_ < py < 400 be a continuous
function and let ;1 € My, (X). Then p € Mf(') (X) ifand only if p € L* (X) + W~1P'0) (X).
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3 Existence result

This section is devoted to the proof of the existence of an entropy solution for the problem P (u).
Our method of proof combines the ideas from [2] and [15]. First of all, we make the following
assumptions:

(H1) « and « are continuous functions defined on R such that there exist two positive real numbers
My, My with | (z)| < My, |v(2)] < My, a(x).z > 0, v(x).z > 0 forall z € R and
a(0) = ~(0) = 0.

(Hy) p € MY (Q) and g € L (99).

(H3) ©: R — RY is a continuous function such that © (0) = 0 and |© (z) — © (y)| < C |z — y|
for all z,y € R, where C'is a positive constant such that

1 1
. P—\o- (DP—\>ps
min ( 5 5
Now, we recall some notations and results.

For any k& > 0, we define the truncation function T}, by T} (s) := max {—Fk, min {k, s} }. For
all u € WHPL) (Q) we denote by 7 (u) the trace of u on OS2 in the usual sense.

In the sequel, we will identify at the boundary, v and 7 (u).

Set

T (Q) = {u: Q — R : u measurable and such that T}, (u) € W0 (Q) for any k > 0} .

Proposition 3.1 (see [6]) Let u € T1p() (Q). Then there exists a unique measurable function
v: Q — RY such that VTy, (u) = UX{|u|<k}> Jor all k > 0. The function v is denoted by Vu.

Moreover, if u € W'P0) (Q) then v € (Lp(') (Q))N and v = Vu in the usual sense.

We denote by ﬁi’p(') (Q) (cf. [4, 5, 16, 17]) the set of functions u € T?() (Q) such that there
exists a sequence (uy),cny C WPl (Q) satisfying the following conditions:
(C1) up — wae. in €
(C) YTk (un) — VTi (u) in (L' ()" for any k > 0;
(C3) there exists a measurable function v on 952 such that u,, — v a.e. on 9.

The function v is the trace of w in the generalized sense introduced in [4, 5]. In the sequel, the
trace of u € ﬁi’p(') (Q) on O will be denoted by tr (u). If u € WP (Q), tr (u) coincides with

7 (u) in the usual sense. Moreover u € ﬁi’p(') () and for every k > 0, 7 (T}, (u)) = Ty, (tr (u))
and if ¢ € WHPO) (Q) N L® (Q) then (u — @) € TP (Q) and tr (u — @) = tr (u) — tr ().

Now, we announce our notion of entropy solution for the problem P (u).
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Definition 3.2 A measurable function u: Q0 — R is called entropy solution of the elliptic problem
P(u)ifue ﬁi’p(') (), [u[PY 20 e LY (Q), o (u) € L' (Q), v (u) € L' (0Q) and

/‘P(Vu—@(u))VTk (u— ) da:—l—/ P2 0Ty, (u — @) da
Q Q
+/Qa(u)Tk(u—<p) dm+/69’y(u)Tk(u—g0) do 3.1
< [Tew—g) dut [ oTiu—g)in

for any ¢ € WHPL) (Q) N L™ (Q) and every k > 0.

Remark 3.3 Since ¢ € W'PL) (Q) N L™ (Q), then u — ¢ € ﬂi’p(') (Q), hence Ty, (u — ) €
WPl (Q) N L>® () and consequently the first, the second, the third and the fifth integral in

(3.1) are finite. Moreover, in the fourth and sixth integral, we can use the fact that the trace of
g € WHP0) (Q) on OSY is well-defined in LP\) (9R).

The main result of this paper is the following theorem.

Theorem 3.4 Let assumptions (Hy), (Ho) and (H3) hold true. Then there exists at least one entropy
solution of the problem P ().

Proof. The proof is divided into two steps.

Step 1. The approximate problem. Since 1 € Mf(') (Uq), recall that p = f —div (F) in D’ (Ug)

with f € L' (Ug) and F € (Lp/(') (UQ))N, where Uq, is the open bounded subset of RY which
extend (2 via the operator E. We regularize p as follow: Ve > 0, Vo € Ug we define

fe(x) =T (f (2)) xa (z).

€

We consider Fr = xoF and e = fe — div (FR).

For any € > 0, one has i € sm{j(') (Q) N L>®(Q) and pe — pin Mf(') (Uq). Furthermore, for
any k > 0 and any £ € 7HP0) (Q)

/QTk (&) dpe

< kC (1,9).

Now, we consider the approximated problem

—div (® (Vue — O (ue))) + |ue® 2 uec + T1 (o (ue)) = pe  inQ

P (pe)
© (Vue = (0 (ue))) -n+ T1 (v (ue)) = T1 (9) on 9.

Let us prove the following result.
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Lemma 3.5 There exists at least one weak solution u. for the problem P (u.) in the sense that
ue € WO (Q) and for allv € WHP0) (Q),

[ (Vu -0 @) Vode+ [ @ uode+ [ 11 @ u)vds
Q Q Q

+/ T ('y(ue))vda—/vdue—i—/ T1 (g)vdo.
o ¢ Q o

Proof. We define the reflexive space

3.2)

E =W (Q) x LPO (99) .
Let X be the subspace of E defined by
Xo={(u,v) € E:v=1(u)}.
In the sequel, we will identify an element (u,v) € X, with its representative u € WhPL) (Q).
We define the operator A, by

(Acu,v) = (Au,v) —i—/

QT% (« (u))vd:ﬂ—i—/ T1 (v (u))vdo,

on ¢
where

<Au7v>:/<I>(Vu—@(u))Vvdx+/ P2 uudz, Vu,v € Xo.
Q Q

According to [2], the operator A, is of type (M), coercive, bounded and hemi-continuous. Thus,
for F. € E' C X{) defined by

<F€7U>:/Udue+/ T (g)?)d0'7
Q onN

€

we deduce the existence of a function u, € X such that
(Acue,v) = (Fe,v) Yv € Xy,

ie.,

/ ¢ (Vue — O (u.)) Vodz + / ue|P D2 yov da + / T1 (a (ue)) vde
Q Q e

Q

3.3)
—l—/ T1 (v (ue))vdo = / vdue—i—/ T (g) vdo.
o - Q o

Step 2. A priori estimates.

Assertion 1. V (T}, (uc)), is bounded in (LP- Q).
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Proof. We take v = T}, (u.) as a test function in (3.3) to get

/ ® (Vue — O (ue)) VT (ue) dz + / ue|PO 20 Ty (ue) da
Q Q

+ /Q T (o (ue)) T (ue) da + /8 Ty (3 () T ) do (3.4)

€

:/QT’“(UE) dpe + / T (g) T (ue) do.

o

The third and fourth terms on the left-hand side of the above equality are non-negative, and so

/ D (Vue — O (u)) VT (ue) dz + / |ue|PD 72 0 T, (ue) da
Q Q

3.5)
< kgl ony + | T ()
As
/ ue|PD 72 0 T, (ue) da = / Ty (u) P da + / |ue[P@ 2w Ty, (ue) da
o [luel <] [te] >H]
> / Ty (ue)[P®) dz + / kP dy
[[ue| <] [[ue|>] 3.6
> / Ty (ue)|P®) dz + / Ty (ue)|P®) da
(el <k] (e >#]
> [ )P de,
Q
we have
[ 71w dise = [ BT ()
Q Q
= (e, E (T (ue)))
(3.7)
= feE (Ty (ue)) de + FrVE (Ty (ue)) dx
Uq Uq
_ / o (f) B (T (u)) da + / FVE (xoTs (u)) dz.
Q € Uq
Firstly, we have
|7 B ) do] < k1l (3.8)
Secondly, we have
/ FVE (xoTs (1)) dz| = / FVT; (u,) da
Uq [x€Q,|ue|<k] (3.9)

< [ 1F1IVTi ()] da.
Q
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By Young’s inequality, we have

T (ue 1
LRIVl as = [ LTI o3t 0
Q Q (p+ X 21%)@

1 1
< VT, (u)P®) d
/Qp<x><p+x2p+>' k (el

+/ 1 (p4 X 2p+)% ‘F‘P'(x) d
op (z) "

1 1
< VT (ue P(*) qy
o m Jy V)
L oP+ % FIP'@ g
+ = (p4 x 2P%) ral .
p_ Q

Combining (3.8) and (3.10), the equality (3.7) becomes

1 1

Ty (ue) dpe < k +/VT )P a
[ 7w ane <1l + - gy L 9T 0l da

1 v :
T / P da.
p_ Q
Then, we deduce from (3.5) that

(A, Tic () <k (lgll oy + 110

Dl On wP® de s Ly x 29 [P da
2p+ Q k € pL p+ Q

b—p+ X

On the other hand, using Lemma 2.4 and (3.6), we obtain
(Aue, T, (ue)) = /Q @ (Ve — O (ue)) VT (ue) do + /Q P2 u Ty (ue) dz
= | IVTi(u) = © (ue) P72 (VT (ue) — © (ue)) VT (ue) da
+ /Q lue P2 4 Ty, (ue) da

L Ue) — U, (@) T — S U (=) €T
> [ S IV )~ 0 )P o~ [ i ) d

+ / T (ue)|P®) da.
Q

Since
(a+b)? <2071 (Jaf? + |b|P) for all a, b € R,

we have

1 @ 1 @
oot VT (o)) = 5 |9 T () = © () + © (ue)

< VT (ue) — O (ue) P 410 (ue) [P

(3.10)

@3.11)

(3.12)

(3.13)

(3.14)
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Then
1

551 [V Tk ("™ — [0 () ™) < VT, (ue) — © (ue) )

Consequently, for k£ large enough we have

(T () > [ s | 9T P = 0w as

1 X X
1 1 2
S p@) g, / p(x)
> / ( = P— |V Ty (ue)] dx o (@) O (ue)| dz

/|Tk P dw

T 2 T T
z/p()% VT (ue) P dx — /Qp(m)cﬂ ) |ue[P®) dze

(3.15)
+ [ TP do
>/ ! VT (u)|P® dx—/Cp |uc[P®) da
= Jop(x) 2+t ‘ QD
+/ | T (ue)]p(x) dz
Q
1 1
- p(z)
oy ope VT (ue) dx
/ (1— = >|Tk (ue) P dz.
Q pb—
So, the choice of C'in (H3) gives the existence of a positive constant Cjy such that
1
(Aue, Ty, (uc)) 2 o / VT (u)|P® d:z—i—C’o/ | T (ue)[P® (3.16)

Hence, by using the inequalities (3.12) and (3.16) and the fact that p_ > 1, we deduce that

1

= /Q VT (ud) ") dae + Cy / T (we) " da < & (|rguL1(am + 122y

1
- - p(z _ p+ _ p'(z)
+p+ g / VT (ue)] dx—i—p (py x 2P+)P— / |F| dz,

which implies that
Lot [ 9T @l az o [ 1P <k (Il + 1)

1 Py /
o e x 2 [ (PP o
p Q
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So
. 1 1
min{ Lo 0}t (0 ) < (I ol
1 . (3.17)
+ — (p4 X 2p+)p/ |F‘p’(ac) dzr.
p_ Q
Consequently
P1p() (T (ue)) < kCy + Co, (3.18)
where Cy = const (f, g, p—, p+) and Cy = const (F, p_, p4 ). Therefore
1
| T (ue)lly oy <1+ (Cy 4 Co) 7~ . (3.19)

We deduce that for any k& > 0, the sequence (T}, (ue)), is uniformly bounded in W1P() () and
so in WP~ (). Then, up to a subsequence, we can assume that for any k > 0,

Ty (ue) — vy, in WHP= (Q)
and by compact embedding, we have

Ty (ue) — vg in LP~ () and a.e. in Q.

Assertion 2. (u.) . converges in measure to some function wu.

Proof. Let k > 1 be large enough. Using T}, (u.) as a test function in (3.3), we get
P1,p(.) (Tk (ue)) < kCy+ Oy,

which yields

/ kP- dx < / kP®) da < k (Cy + Cs).
{Jue| >k} {Juc|>k}

meas {|uc| > k} < k7P (O + Cy).

It follows that

Therefore
meas {|ue| > k} — 0 as k — +oosince 1 —p_ < 0. (3.20)

Moreover, for every fixed ¢ > 0 and every positive £ > 0, we know that
{luer = ues| >t} CH{Juey| > k} U{lue| > K} U [Tk (ue,) — T (uey)| > 2}
and hence

meas({|ue, — ue,| > t}) < meas({|ue,| > k}) + meas({|uc,| > k})

+ meas ({| Tk (ue,) — Tk (ue,)| > t}). 3:21)

Let 0 > 0. Using (3.20), we choose k = k (&) such that

. (3.22)

Wl >
Wl >

meas ({|u, | > k}) < and meas ({|ue,| > k}) <
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Since T, (ue) converges strongly to vy in LP~ (€2) and a.e. in €2, then it is a Cauchy sequence in
LP- (Q). Thus, for all €1, €2 > ng (¢, ) we have

1 )
meas ({Ti (uey) — T ()| > ) < - /Q T (o) ~ T (w)P~ dw< 3. 3.23)
Finally, from (3.21), (3.22) and (3.23) we obtain
meas ({|ue, — ue,| > t}) < b forall er, €2 > ng (¢,6), (3.24)

which proves that the sequence (). is a Cauchy sequence in measure, and so it converges almost
everywhere to some measurable function wu. ([

As for k > 0, T}, is continuous, then T (u¢) — Tj (u) ae. in Q and vy, = T} (u) a.e. in Q.
Therefore

Ty, (ue) — T (u) in WHP= (Q),

(3.25)
Ty (ue) = T (uw) in LP~ (©2) and a.e. in Q.

Assertion 3. (Vu,) ., converges in measure to the weak gradient of w.

Proof. Indeed, let 6, ¢, k, v be positive real numbers (it is assumed that v < 1) and let ¢ > 0. We
have

{|Vue — Vu| >t} C {|ue] > k}U{|u| > k} U{|IVTy (ue)| > k} U{|VTy (u)| > k}U
U{|ue —u| >v} UG,

where
G = {|Vue — Vu| > t, [u| <k, |ue| <k, |VT} (ue)| < k,|VT) (v)| <k, Jue —u| < v}

The same method used in the proof of Assertion 2 allows us to obtain for & sufficiently large,

meas ({|uc| > k} U {|u| > k} U {|VT) (un)| > k} U{|VT} (u)] > k}) < (3.26)

Wl >

On the other hand, the application

A: (5,6,8) = (2L -0 (s) =2 (&—0(s)). (& — &)
is continuous, the set

K= {(s,&,&) eRxRY xRV ;

s| < kG| <k |&| < k6 - &| >t}

is compact and

(@ (61 -0(s) =2 (L2 =0 (9)))- (&1 = &) >0, V& # &
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Then, the application A has its minimum on K; we denote it by 3. Therefore, we have § > 0 and

/ Bdz < / (@ (Vu, — O () — ® (Vi — © ()] [V — Vai] da
G G
< /G [ (Ve — O (ue) = ® (VI (1) = © Ty ()] VI (Tt () — Tk (w) da
< /G (Ve — 0 (1)) VT, (Tr (ue) — T (u)) da
- [ ® (VT (0) = © (Thps (0)) VT, (T (00) = T ()

We take v = T}, (T4, (un) — Tk (u)) in (3.3) to obtain

/ ® (Ve — O (ue)) VT, (Tt (ue) — Ty (v)) dz + / P2 4 T, (Thgy (ue) — T (u)) da
Q Q

gu(]

3 @), g, +]

Ty (7 (u))|

T 111y + ||9||L1(aQ)>

LY(Q) L1092

+ - FVE (xoTy (Tkyv (ue) — Ti (w))) dz.

Then

/Q O (Vue — O (ue)) VT, (Tigr (ue) — Tk (u)) dx

9(\

+ / FVE (xaTy (Trs (ue) — Te (u))) da
Uq

|

3 (@ )]y gy + 72 O @),y + Wy + sl )

LY(Q) L1(09

— [ PO T, (@ () = T ) d

Taking v = %Tk (ue) in (3.3), we get

1 1
/QTl (0 () 3 T () da:+/BQT1 (3 () £ T () do

€ €

) (3.27)
< Ul +lolsomy + [ FVE (xapTi ) ) do
Q
Since 1
,El_r)% %Tk (ue) = signg (ue),
using the Lebesgue dominated convergence theorem, as k — 0, we deduce that
1 1
7 @) i) o [T 00) T ) dor
@ g o g (3.28)

-

Ty (o (uo))

T (3 (u)|

L1(Q) * ‘ L1(09)
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The sequence (E (xo3Tk (ue)))€>0 is bounded in Wol’p(') (Ug). Indeed, (xoiTk (u€))e>o is

bounded in W) (Q) and we use the inequality
1B @)l 1000y < C ol o€ W0 (@)

We also have
1 1 )
E <XQTk (u€)> = xa-Tx (ue) ae.in Ug

k k
and )
XQETk (ue) — xqsigng (ue) a.e.inUg as k — 0.
Hence
1
E <XQka (u5)> — E (xqsigng (ue)) ae. inUq as k — 0.
Then

N
VE (XﬂlTk (u5)> — 0in (Lp(') (UQ)> .
K
Finally, we get

1
lim [ F.VE (XQTk (ue)> dz = 0. (3.29)
k—0 Uq k

Therefore, by passing to the limit as £ — 0 in (3.27) and using (3.28) and (3.29), we get

I

|7 (v o)

< fllzr ey + lgllran -

LY(Q) L1(09)

It follows that

/Qtl) (Vue — O (ue)) VI, (Tt (ue) — Ty (u)) dz < vCjs
[ PO T @ ) = T de G30)
+ / FVE (xoTy (Tk+y (ue) = Ti (w))) da.
Uq

Now, let us show that

lim lim FVE (xoT, (Tkt+y (ue) — Tk (u))) dx = 0. (3.31)

v—0e—0 Uq

The sequence (E (xoTy, (Tho (ue) — Tk (u)))) -, is bounded in Wol’p(') (Uq). We have

E (xoTy (Tgyy (ue) = T (w))) = xaTy (Trtw (ue) — Tk (u)) ae. in Ug

and
XLy (Tity (ue) — Tk (u) = xoTy Tkt (u) — Tk (u)) ae. in Ug as € — 0.

Hence

E (xoTy (Tk+y (ue) = T (w))) = E (xoTy (Tkry (u) — Tk (u))) ae. in Ug as € — 0.
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Then
VE (xaTy (Tisw (ue) = T, (u) = VE (xTy (Tesw (w) — Ti () in (LPO (Ug)) ™.

Since F € (Lp/(') (UQ))N, we deduce that

lim FVE (xoTy (Titv (ue) — Ty (u))) dz
e—0 Uq

(3.32)
- /U FYE (xaTy Ty (u) — Ti () da.

We have
VE (xoT, (Tkyy (u) — Ty (u))) — Oae. inUg asv — 0
and as v < 1, we have
FE(xaTy (Tiyy (u) = Ti (w)) < |F[E (xQT1 (T (w) = Ti (u))] -
Using Holder inequality, we get

|FIE (xT (Tt (u) = Ti (w)| € L' (Ug).

Thus, by the Lebesgue dominated convergence theorem, we obtain

lim FVE (xoTy (Tkyy (ue) — Ty (w))) dz = 0.
e—0 Uq

Consequently, letting v — 0 in (3.32) yields

lim lim FVE (xoTy (Tit+y (ue) — Tk (u))) dz = 0.

v—0e—0 Uq

Since
/ |u6|:0(:v)71 Ty (Thto (ue) — Tg (u))| do < ,// |u6|p(z)71 da
@ Q

<v (pp’(.) (’ue’p(.)71> + 0Pp() (1)> (3-33)
< v (meas (Q) + pp() (uc))

s0, letting v — 0 in (3.33) and using the fact that €2 is bounded and p,,( (u) is finite, we deduce
that

lim / lueP T, (Thp (ue) — Ty ()] dz = 0. (3.34)
Q

v—0

According to the Assertion 1, the sequence (T, (uc)).~ is uniformly bounded in W1P() (Q).
Then, we have
Thoty (1) = Thpy (u) inWHPL) (Q) and ace. in O

and
Tt (te) = Thay (w) in LPO) (Q) and ace. in Q.

Hence, by using (Hs), we obtain

O (Thsw (1)) = O (Tioqy (w)) in L) (Q) and ace. in Q. (3.35)
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Thus, the sequence ® (VT (u) — © (Tkr, (ue))) converges to ® (VT (u) — O (Tksy (u))) ae. in
Qand |® (VT (u) — O (Tkts (ue)))|p/(‘) is equi-integrable. Therefore

& (VTi (1) — O (Thsy (ue))) = ® (VTx (1) — O (Tery () in (LX) ()Y (3.36)
and since Tj4,, (uc) converges weakly to Th,, (w) in WPL) (Q), it follows that
VT, (Thyw (ue) — Tio (u) = VT (Trpy (u) — Tx (w)) in (LPO (). (3.37)

Consequently

im @ (VI (u) = © (Tt (ue)) VT (Thto (ue) — T (u)) da
Q@ (3.38)

- /Q & (VT (u) — © (Trsy (1)) VT, (Tip (u) — T (u)) da

Since
lim VT (Tiery (u) = Tk (u)) = 0

and as v < 1, thanks to (Hs), we get
® (VI (u) = © (Thtv (u))) VI, (Thso (w) — Tis ()
< Cy (|Tea (PO + VT () PO [T (T () = T ()]
Although
(171 @P@ " 4 VT (@) PO VT (T (w) = T ()] € L (9),

thanks to the Lebesgue dominated convergence theorem, we obtain

lim | @ (VT (u) = © (Ti () VT, (T () = T (w)) do =0,

Let p > 0 and v < ;& be fixed such that

/Q<I> (VT (u) — O (Tisy (w)) VT, (Tirr (u) — Tk (w)) dz| < g (3.39)
Then, there exists €; > 0 such that for all € < €7,
/ ® (VT (u) = © (Thtv (ue))) VI, (Thtw (ue) — Tip () da
“ (3.40)

- /Q‘I’(VTk () = © (Thetw (W) VT, (Thtw (u) = Ti (u)) dz| <

Combining the two inequalities (3.39) and (3.40), we obtain

/Q B (VT (u) — © (Thsw (1)) VT, (Tig () — T (w)

< g, Ve <e.  (3.41)
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Also, there exists eo > 0 such that for all € < €9,

Cot [ a7 T, (T () = T ()] da

(3.42)
+ [ FVE (ol (T (0) ~ Ti (u) di < 5.
Uq
Adding the two inequalities (3.41) and (3.42), we get
[ pac<p.
G
Thus, by applying Lemma 2.7, we obtain
)
meas (G) < 3 (3.43)
Moreover, by using the Assertion 2, we deduce the existence of €3 > 0 such that
0
meas ({|uc — u| > v}) < 3 Ve < es. (3.44)
Therefore, for g = min (€1, €9, €3), it follows that
meas ({|Vue — Vu| > t}) <4, Ve < . (3.45)
So, Vu, converges in measure to Vu. g

Assertion 4. (u.),., converges a.e. on 9f) to some function v.

Proof. We know that the trace operator is compact from W1 (Q) into L! (0Q); then there exists
a constant C such that

Tk (ue) = Th (W)l 1oy < Cs 1Tk (ue) = Th (W)l q -

Then
Ty (ue) — Ty (v) in L' () and a.e. on 9.

Therefore, there exists A C 9€2 such that T}, (u.) converges to T}, (u) on 92 \ A with o (A) = 0,
where o is the area measure on 0.

For every k > 0,let Ay, = {x € 0Q : [T}, (u(x))| < k} and B = 9Q \ Uy~ Ax- We have
1
7(B) = [ 11w do
B
1
< 2 1Tk (Wl a0
(3.46)

< - 1T (Wllwiag)

< — Tk (Wl ) -
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We know that for all & > 1, py .y (T) (ue)) < kM, where M is a positive constant which does not
depend on €. Then

/ Ty (uo)|P®) da + / VT, (uo)|P dz < kM. (3.47)
Q Q

We now use Fatou’s lemma in (3.47) to get

/ T, (w)[P®) dz + / VT (w) P dz < kM,
Q Q

which is equivalent to
P1p() (T (u) < kM. (3.48)

According to (3.48), we deduce that

U
ITi ()l < Cr (K 4475
Therefore, by letting £ — oo in (3.46), we get that o (B) = 0.
Let us now define on 0f2, the function v by

v(x) =T, (u(x)) if z€ A

We take x € 092\ (A U B); then, there exists & > 0 such that x € Ay, and we have
e (2) — 0 () = (e (2) — Ti (e (2))) + (Ti (e (2)) — Ti (u (2))) .
Since © € Ay, we have |1}, (uc (x))| < k, from which we deduce that |u, (z)| < k. Therefore
ue (x) —v(z) = (T (ue (x)) — Tg (u(z))) - 0ase — 0.

This means that u. converges to v a.e. on 2. U

Assertion 5. u is an entropy solution solution of the problem P (u).

Proof. Since the sequence (VT} (uc)).., converges in measure to VTj (u), by (3.19) and

Lemma 2.6, we get

VT (ue) — VT (u) in (L' ()" VE > 0. (3.49)

Consequently, the Assertions 2 and 4 as well as (3.49) give u € ’7;1”) 0 (Q).
Let o € WHPO) (Q) N L™ (Q); we take v = T}, (uc — ) as a test function in (3.3) to get

/ O (Vue — O (ue)) VT (ue — ) dz —|—/ ue|PD 720 T (ue — @) da
Q Q

+ /QTi (a (ue)) Ty (ue — ) dw + /89 Ty (v (ue)) Tk (ue — ) do (3.50)

€

=/ Ty (9) Ti (ue — o) da+/Tk<ue—w) Qe
o0 Q

€
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Letk =k + ||| ... We have
/Q<I> (Ve — 0O (ue)) VT (ue — ) do = /Q(I) (VT3 (ue) — © (T3, (ue))) VIy (T (ue) — @) dz
_ / @ (VT (u) — © (1)) VT () X, )
Q

- [ (VT (w) ~ © (1) Vg do
Q

where Q (e, k) = {|T}; (uc) — ¢| < k} and yp is the characteristic function of the set BCRY.

The inequality (3.50) can be written as
/ (cb (VT () — © (Ty () VT (u0) + —— |6 (T <ue>>\p<l’>) Ya(op da
0 E \Ue E E » (@) 2 Q(e.k)
= [ (9T () = © (T (w)) Vooxagey + [ Jud™ 2 uli (e = ) do
Q Q
[ D@ Tt =) ot [ T Q@) Tw—p)de GSD
— [ D= 9) dnet [ 7L (@) Tl ) do
Q o0

b [ 10 (T )P gy do

aop(x)
Since N
VT, (ue) — VT (u) in (LFY (Q))
and
O (T (uc)) = © (T (w)) in (LPO) ()Y, (3.52)
then
VT (ue) — © (T (ue)) = VT (u) — © (T, () in (L) ()"

Thus

© (VT (ue) — © (T (ue))) — @ (VT (u) — O (Tj, (w))) in (LF'O) (). (3.53)
Furthermore

V(,DXQ(€7E) — V()DXQ(E) in (Lp(') (Q))N,
with Q (k) = {|T} (u) — ¢| < k}. Then

| @ (9T () = © (T (1)) Vi gy do =
(3.54)

= /Q @ (Vi (u) — © (T (u))) Vo p) do-
According to (H3) and the properties of the truncation function, we get

O (Ty (ue)P™ < (CR)"™.
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Using (3.52) and the Lebesgue dominated convergence theorem, we obtain

/Q p(lx) |@ (TE (uﬁ))|p(x) XQ(@E) dZC — /Q p(l.ic) |® (TE (u))|p(1’) XQ(E) dx'

Now, since

( (V7 (0 = © (T (5) VT (1) + 510 (Te ()P ) oy = e, in

1
p(z)

by using Fatou’s lemma, we obtain

1 ol
[ (#9750 = 01T 0) T 0+ 510 (7 )P ) gy o

< lim inf< /Q (@ (VT (ue) — O (T (we)) VT () + (3.55)

e—0

Let us prove that
[ Tituc =) due = [ Teu—) d (3.56)
We have
[ Ttuc= ) duc= [ BT (= 9)) due
= (pe, E (Ty (ue — #)))

= | fE(Tk (ue — ¢)) do
Ua

+ Fr.VE (T (ue — ¢)) dx
Uq

(3.57)
— [ T 0B (T (u - ) do
Ug °©
+ / (Fxq) .VE (Ty (ue — ¢)) dz
Uq
= [ T () (=) da
+ FVE (xoT (ue — ¢)) dz.
Uq
Thanks to the Lebesgue dominated convergence theorem, we have
lim [ T1 (f) Tk (ue — ) do = / [Ty (u— ) da. (3.58)
e—0 0 € Q

Since the sequence (xoT} (ue — ¢)) is bounded in W'P() (Q), by using the property (ii) of the
operator £, we deduce that E' ((xqT% (ue — ¢))) is bounded in VVO1 #() (Uq). Moreover, we have

E (xoTk (ue — ¢))) = xaTk (ue — @) ae. in Ug
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and
xoTk (ue — @) = xoTk (u—¢) ae. inUg as e — 0,

which implies that
E (xoTy (ue — ¢)) = E (xaTk (u — ¢)) ae.in Ug as e — 0.

Consequently, we have
VE (xoTk (uc = ) = VE (xaTk (u = ) in (L0 (Ug))™,

Thus, by using the fact that F' € (L7'() (UQ))N, we deduce that

lim FVE (xoTy (ue — ¢)) dz = / FVE (xoTi (u—)) dz. (3.59)
e—0 UQ UQ

Hence, by passing to the limit in (3.57) and using (3.58) and (3.59), we obtain

lim [ Tk (ue — ) dpe = / (T (u—y)) de + FVE (xoT (u—¢)) dz.
Q Q

e—0 Uq

= fE (xa Tk (u—))) de + /U FVE (xoTi (u—¢)) dz.

Uq
= (u, E (Tis (u — ¢)))
- /Q Te (u — ) du. (3.60)

By using again the Lebesgue dominated convergence theorem, we get

lim T1 (9) Tk, (ue — ) do = / 9Tk (u — ) do. (3.61)
e—0 o0 ¢ a0

We can rewrite the third term of (3.51) as
[l =) do = [ (a2~ 1P ) T — ) da
Q Q
+ [ 162 (u, — ) da
Q

Let us note that (|u|?™® 2w, — |pP®—2 Ty (ue — ) is non-negative and converges to
® 2

(\u\p(x)_2 u— |pP®)=2 <p> T (u — @) a.e. in §2. So, thanks to the Fatou’s lemma, we have

| (2= o2 ) T (u - ) o
@ (3.62)
< lim p(@)=2, _ | p(@)—-2 _ )
< hrg:glf/g <\u€\ ue — || <p> Ty (ue — ) dx
Moreover, (T}, (e — ¢)) o converges weak-* to Ty, (u — ) in L (€2) and |g0]p(x)72 o€ L' (Q);
it follows that
lim/ p[P@) =2 T3, (ue — ) da = / P2 Ty, (u — ) da. (3.63)
Q Q

e—0
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Now, we focus our attention on the fourth term of (3.51). We have
T1 (a0 (ue)) T (ue — @) = a(u) T, (u — ) a.e. in Q (3.64)

and
T% (o (ue)) Th (ue — @)| < ko (ue)| € L' (). (3.65)

From the assumption (H;) we know that
ko (ue)| — k| (u)] ae. in (3.66)

and
Elo(uo)| < kMy € L (Q). (3.67)

Then, thanks to the Lebesgue dominated convergence theorem, we deduce that the sequence
(ko (ue)]) oo converges to k|a (u)| in L (Q2). Consequently, using the Lebesgue generalized
convergence theorem, we get

lir% T1 (a(ue)) T (ue — @) do = / a(u) Ty (u— @) dz. (3.68)
€E—> 0 € Q

Similarly, we have

hH(l) T1 (v (ue)) T (ue — ) do = / v (u) T, (u — ) do. (3.69)
e~V Jjaq  © o0

Finally, by passing to the limit as ¢ — 0 in the inequality (3.51) and using the re-
sults (3.55), (3.60), (3.61), (3.62), (3.63), (3.68) and (3.69), we deduce that v is an entropy solution

of the problem P (u). O
This concludes the proof of the second step and thus of the Theorem. (|
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