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1 Introduction

The study on almost periodic random functions in probability is initiated in [7]. Since then, several
author have made contributions on such almost periodic random functions (see, e.g., [3, 5, 6] and
references therein). To the best of our knowledge, it seems that all the known results concerning
such functions are devoted to numerical valued random functions. So, in this paper, we aim to study
some basic and fundamental properties of Banach space valued almost periodic random functions
in probability.

On the other hand, it is needed to note that another kind of almost periodic random functions,
which is called p-th mean almost periodic random functions, has been introduced and studied by
many authors (see, e.g., [1, 4, 8] and references therein). We refer the reader to the monograph [1]
for a detailed knowledge on p-th mean almost periodic random functions.
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2 Main results

Throughout the rest of this paper, let (Ω,F , P ) be a probability space, and X be a Banach space.

Definition 2.1 A random function f : R×Ω→ X is called almost periodic in probability provided
that (i) f is continuous in probability on R, i.e., for every t0 ∈ R and ε, η > 0, there exists δ > 0
such that for all t ∈ R with |t− t0| < δ, there holds

P{ω; ‖f(t, ω)− f(t0, ω)‖ ≥ ε} < η;

(ii) for every ε > 0 and η > 0, there exists a number l(ε, η) > 0 with the property that every
interval of length l contains at least one number τ such that

P{ω; ‖f(t+ τ, ω)− f(t, ω)‖ ≥ ε} < η

for all t ∈ R. We denote the set of all such functions by APR(R× Ω, X).

Remark 2.2 The notion of almost periodicity in probability for complex valued random functions
has been studied in some earlier works. For a detailed knowledge about complex valued almost
periodic random functions, we refer the reader to [5]. In addition, if f is independent of ω ∈ Ω,
i.e., f is deterministic, then Definition 2.1 equals to the classical definition of vector valued almost
periodic functions (cf. [5]). Throughout the rest of this paper, we denote the set of all deterministic
almost periodic functions from R to X by AP (R, X).

Before we study the properties of almost periodic random functions in probability. We would
like first compare almost periodic random functions in probability with p-th mean almost periodic
random functions.

Definition 2.3 [1] Let p ≥ 1. A random function f : R × Ω → X is called p-th mean almost
periodic provided that f̃ ∈ AP (R, Lp(Ω, X)), where

[f̃(t)](ω) = f(t, ω), t ∈ R, ω ∈ Ω.

For convenience, we denote the set of all such functions by AP (R, Lp(Ω, X)).

Remark 2.4 It is not difficult to show thatAPR(R×Ω, X) ⊂ AP (R, Lp(Ω, X)) by using the def-
initions. However, the contrary is not true since for a random function from R×Ω to X , continuity
in probability does not necessarily mean p-th mean continuity.

Lemma 2.5 The following properties hold true:

(i) for every c ∈ R, cf ∈ APR(R× Ω, X) provided that f ∈ APR(R× Ω, X);

(ii) for every a ∈ R, f(·+ a, ·) ∈ APR(R× Ω, X) provided that f ∈ APR(R× Ω, X);

(iii) f is uniformly continuous in probability on R provided that f ∈ APR(R× Ω, X);
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(iv) if {fn} ⊂ APR(R×Ω, X) is uniformly convergent in probability on R to a random function
f : R× Ω→ X , then f ∈ APR(R× Ω, X);

(v) if f : R×Ω→ X is continuous in probability on R, then a necessary and sufficient condition
for f ∈ APR(R × Ω, X) is that f is normal in probability, i.e., for every real sequence
{s′n}, there exists a subsequence {sn} such that {f(t + sn, ω)} is uniformly convergent in
probability on R.

(vi) Let f ∈ APR(R × Ω, X) and a : R+ → R+ satisfying
∫ +∞
0 a(t)dt < +∞. Then F ∈

APR(R× Ω, X), where F (t, ω) =
∫ +∞
0 a(s)f(t− s, ω)ds.

Proof. One can show (i) and (ii) easily by the definition. The proof of (iii) can be deduced from
the proof for necessity part of Theorem 2.11. One can also prove (iv) by the definition and some
standard ε

3 −
η
3 arguments. So we omit the details. The proof of (v) is similar to that of [5, Theorem

2.20]. As for the proof of (vi), by using (iii), for every ε, η > 0, there exists δ > 0 such that for all
t1, t2 ∈ R with |t1 − t2| < δ, there holds

P{ω; ‖F (t1, ω)− F (t2, ω)‖ ≥
∫ +∞

0
a(t)dt · ε} ≤ P{ω; ‖f(t1, ω)− f(t2, ω)‖ ≥ ε} < η.

This means that F is uniformly continuous in probability on R. Then, similarly to the above proof,
one can verify (ii) of Definition 2.1. So F ∈ APR(R× Ω, X). 2

Lemma 2.6 Let f1, . . . , fk ∈ APR(R×Ω, X), where k is a fixed positive integer. Then, for every
ε > 0 and η > 0, there exists a number l(ε, η) > 0 with the property that every interval of length l
contains at least one common number τ such that

P{ω; ‖fi(t+ τ, ω)− fi(t, ω)‖ ≥ ε} < η, i = 1, . . . , k, t ∈ R.

Proof. It is well-known that Xk is Banach space under the norm ‖(x1, . . . , xk)‖ =
∑k

i=1 ‖xi‖.
We define a Xk-valued random function:

F (t, ω) = (f1(t, ω), . . . , fk(t, ω)), t ∈ R, ω ∈ Ω.

Then, by using (v) of Lemma 2.5, we can get F ∈ APR(R× Ω, Xk), which yields the conclusion
by using the definition of APR(R× Ω, Xk). 2

The following lemma shows that the range of an almost periodic random function has some kind
of compactness.

Lemma 2.7 Let f ∈ APR(R×Ω, X). Then for every ε > 0 and η > 0, there exists finite random
variables X1, . . . , Xn : Ω→ X such that for all t ∈ R, there holds

P{ω; ‖f(t, ω)−Xi(ω)‖ ≥ ε, i = 1, . . . , n} < η.

Moreover, it follows that f is bounded in probability, i.e., for every η > 0 there corresponds a
number M > 0 such that

P{ω; ‖f(t, ω)‖ ≥M} < η for all t ∈ R.
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Proof. Let ε, η > 0 and l = l(ε/2, η/2) be as in Definition 2.1. Since f is uniformly continuous
in probability on [0, l], there exists finite t1, . . . , tn ∈ [0, l] such that for every t ∈ [0, l], there exists
ti ∈ {t1, . . . , tn} satisfying

P{ω; ‖f(t, ω)− f(ti, ω)‖ ≥ ε/2} < η/2.

Letting Xi = f(ti, ·), we have

P{ω; ‖f(t, ω)−Xi(ω)‖ ≥ ε/2, i = 1, . . . , n} < η/2

for all t ∈ [0, l].

For every s ∈ R, by Definition 2.1, we can choose τ ∈ [−s,−s+ l] such that

P{ω; ‖f(s+ τ, ω)− f(s, ω)‖ ≥ ε/2} < η/2,

which yields that

P{ω; ‖f(s, ω)−Xi(ω)‖ ≥ ε, i = 1, . . . , n}
≤ P{ω; ‖f(s, ω)− f(s+ τ, ω)‖ ≥ ε/2}+ P{ω; ‖f(s+ τ, ω)−Xi(ω)‖ ≥ ε/2, i = 1, . . . , n}
< η.

It remains to show that f is bounded in probability. Let η > 0 be fixed. By the above proof, we
know that there exists finite random variables X1, . . . , Xn : Ω → X such that for all t ∈ R, there
holds

P{ω; ‖f(t, ω)−Xi(ω)‖ ≥ 1, i = 1, . . . , n} < η/2.

Since
lim

M→+∞
P{ω; ‖Xi(ω)‖ ≥M} = 0, i = 1, . . . , n,

there exist M1, . . . ,Mn > 0 such that

P{ω; ‖Xi(ω)‖ ≥Mi} <
η

2n
, i = 1, . . . , n.

Then, we have

P{ω; ‖f(t, ω)‖ ≥ max
1≤i≤n

Mi + 1}

≤ P{ω; ‖f(t, ω)−Xi(ω)‖ ≥ 1, i = 1, . . . , n}+
n∑
i=1

P{ω; ‖Xi(ω)‖ ≥Mi}

< η.

This completes the proof. 2

Lemma 2.8 Let f, g ∈ APR(R× Ω, X). Then, the following properties hold true:

(i) f + g ∈ APR(R× Ω, X);

(ii) f · g ∈ APR(R× Ω, X) provided that X = R;



VECTOR VALUED ALMOST PERIODIC RANDOM FUNCTIONS IN PROBABILITY 33

(iii) f/g ∈ APR(R× Ω, X) provided that X = R and for every η > 0, there exists m > 0 such
that

sup
t∈R

P{ω; |g(t, ω)| ≤ m} ≤ η.

Proof. By using (v) of Lemma 2.5, it not difficult to show that (i) holds. Noting that f and g are
bounded in probability, again using (v) of Lemma 2.5, one can prove (ii). The proof of (iii) is similar
to that of (ii). 2

Lemma 2.9 Let f ∈ APR(R×Ω, X). Then, t 7→ ∂f(t,ω)
∂t belongs to APR(R×Ω, X) if and only

if t 7→ ∂f(t,ω)
∂t is uniformly continuous in probability on R, provided that ∂f(t,ω)

∂t exists for every
t ∈ R and ω ∈ Ω.

Proof. We only need to show the if part. Let

fn(t, ω) = n[f(t+
1

n
, ω)− f(t, ω)], t ∈ R, ω ∈ Ω.

It follows from (i), (ii) of Lemma 2.5 and (i) of Lemma 2.8 that fn ∈ APR(R×Ω, X). On the other
hand, using the fact that t 7→ ∂f(t,ω)

∂t is uniformly continuous in probability on R, we can conclude
that fn(t, ω) is uniformly convergent in probability to ∂f(t,ω)

∂t on R, which and (iv) of Lemma 2.5
yields that t 7→ ∂f(t,ω)

∂t belongs to APR(R× Ω, X). 2

Definition 2.10 A random function f : R × X × Ω → X is called uniform almost periodic in
probability provided that (i) f is continuous in probability on R ×X; (ii) for every ε > 0, η > 0,
and compact subset K ⊂ X , there exists a number l(ε, η,K) > 0 with the property that every
interval of length l contains at least one number τ such that

P{ω; ‖f(t+ τ, x, ω)− f(t, x, ω)‖ ≥ ε} < η

for all t ∈ R and x ∈ K. We denote the set of all such functions by APR(R×X × Ω, X).

Theorem 2.11 A necessary and sufficient condition for f ∈ APR(R × X × Ω, X) is that the
following two assertions hold:

(i) for every compact subset K ⊂ X , f is uniformly continuous in probability on R×K;

(ii) for every x ∈ X , f(·, x, ·) ∈ APR(R× Ω, X).

Proof. ”Necessity”. Let f ∈ APR(R × X × Ω, X). Then (ii) is obviously holds. It remains to
show (i). Let ε, η > 0, K be a compact subset of R, and l = l(ε/3, η/3,K) be as in the Definition
2.10. Since f is uniformly continuous in probability on [−1, 1 + l] × K, for the above ε, η > 0,
there exists δ ∈ (0, 1), such that for all (t1, x1), (t2, x2) ∈ [−1, 1 + l] ×K with |t1 − t2| < δ and
|x1 − x2| < δ, there holds

P{ω; ‖f(t1, x1, ω)− f(t2, x2, ω)‖ ≥ ε

3
} < η

3
. (2.1)
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Now, for every (t1, x1), (t2, x2) ∈ R × K with |t1 − t2| < δ and |x1 − x2| < δ, taking
τ ∈ [−t1,−t1 + l] as in Definition 2.10 such that

P{ω; ‖f(t+ τ, x, ω)− f(t, x, ω)‖ ≥ ε

3
} < η

3
(2.2)

for all t ∈ R and x ∈ K.

Noting that (t1 + τ, x1), (t2 + τ, x2) ∈ [−1, 1 + l]×K, by (2.1) and (2.2), we get

P{ω; ‖f(t2, x2, ω)− f(t1, x1, ω)‖ ≥ ε}

≤ P{ω; ‖f(t2, x2, ω)− f(t2 + τ, x2, ω)‖ ≥ ε

3
}+ P{ω; ‖f(t2 + τ, x2, ω)− f(t1 + τ, x1, ω)‖ ≥ ε

3
}

+P{ω; ‖f(t1 + τ, x1, ω)− f(t1, x1, ω)‖ ≥ ε

3
}

<
η

3
+
η

3
+
η

3
= η,

which means that f is uniformly continuous in probability on R×K.

”Sufficiency”. Let (i) and (ii) hold. It follows from (i) that f is continuous in probability on
R×X . It remains to show that (ii) of Definition 2.10 holds.

Let ε, η > 0, K be a compact subset of R. Then, by the uniform continuity of f on R × K,
there exists δ > 0 such that for all t ∈ R and x′, x′′ ∈ K with |x′ − x′′| < δ, there holds

P{ω; ‖f(t, x′, ω)− f(t, x′′, ω)‖ ≥ ε

3
} < η

3
. (2.3)

In addition, sinceK is compact, there exists x1, . . . , xk ∈ K such that for every x ∈ K, there exists
xix ∈ {x1, . . . , xk} such that ‖x− xix‖ < δ.

On the other hand, since f(·, xi, ·) ∈ APR(R × Ω, X), i = 1, . . . , k, by Lemma 2.6, there
exists a number l > 0 with the property that every interval of length l contains at least one number
τ such that

P{ω; ‖f(t+ τ, xi, ω)− f(t, xi, ω)‖ ≥ ε/3} < η/3 (2.4)

for all t ∈ R and i ∈ {1, . . . , n}.

Combining (2.3) and (2.4), we conclude that

P{ω; ‖f(t+ τ, x, ω)− f(t, x, ω)‖ ≥ ε}
≤ P{ω; ‖f(t+ τ, x, ω)− f(t+ τ, xix , ω)‖ ≥ ε/3}+ P{ω; ‖f(t+ τ, xix , ω)− f(t, xix , ω)‖ ≥ ε/3}

+P{ω; ‖f(t, xix , ω)− f(t, x, ω)‖ ≥ ε/3}
< η,

for all t ∈ R and x ∈ K. This means that f ∈ APR(R×X × Ω, X). 2

Theorem 2.12 Let f ∈ APR(R ×X × Ω, X) and x ∈ AP (R, X). Then f̃ ∈ APR(R × Ω, X),
where f̃(t, ω) = f(t, x(t), ω).

Proof. Let ε, η > 0 be fixed, and K = {x(t) : t ∈ R}. Then K ⊂ X is compact, and by Theorem
2.11, f is uniformly continuous in probability on R×K. Thus, there exists δ ∈ (0, ε) such that for
all x′, x′′ ∈ K with ‖x′ − x′′‖ < δ, there holds

P{ω; ‖f(t, x′, ω)− f(t, x′′, ω)‖ ≥ ε} < η, t ∈ R. (2.5)
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In addition, there is finite x1, . . . , xk ∈ X such that for every t ∈ R, there exists xit ∈ {x1, . . . , xk}
such that

‖x(t)− xit‖ < δ. (2.6)

Noting that f ∈ APR(R ×X × Ω, X) and x ∈ AP (R, X), there exists a number l > 0 with
the property that every interval of length l contains at least one number τ such that

P{ω; ‖f(t+ τ, xi, ω)− f(t, xi, ω)‖ ≥ ε} < η, t ∈ R, i = 1, . . . , k, (2.7)

and
‖x(t+ τ)− x(t)‖ < δ, t ∈ R. (2.8)

Now, combining (2.5)-(2.8), for every t ∈ R, we have

P{ω; ‖f̃(t+ τ, ω)− f̃(t, ω)‖ ≥ 4ε}
= P{ω; ‖f(t+ τ, x(t+ τ), ω)− f(t, x(t), ω)‖ ≥ 4ε}
≤ P{ω; ‖f(t+ τ, x(t+ τ), ω)− f(t+ τ, x(t), ω)‖ ≥ ε}

+ P{ω; ‖f(t+ τ, x(t), ω)− f(t, x(t), ω)‖ ≥ 3ε}
< η + P{ω; ‖f(t+ τ, x(t), ω)− f(t, x(t), ω)‖ ≥ 3ε}
≤ η + P{ω; ‖f(t+ τ, x(t), ω)− f(t+ τ, xit , ω)‖ ≥ ε}

+ P{ω; ‖f(t+ τ, xit , ω)− f(t, xit , ω)‖ ≥ ε}+ P{ω; ‖f(t, xit , ω)− f(t, x(t), ω)‖ ≥ ε}
< 4η,

which yields that f̃ ∈ APR(R× Ω, X). 2

Remark 2.13 In the above composition theorem, x is deterministic. For the more general case, i.e.,
x ∈ APR(R × Ω, X), it seems difficult to obtain a similar composition theorem. We leave it as a
problem to the reader.
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