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Abstract. The present paper is concerned with a calcium model of muscle at rest and a dynamical
analysis of it. We show that the model is well-posed; that is, the solution representing the state of
the model inside a special pyramid never leaves it as time evolves. Moreover, an analysis of its
steady states is given.
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1 Introduction

In this paper we analyze the dynamics of a physiological model (see the diagrams (A) and (B) below)
near equilibrium, see [9]. The full model accounts for a complete set of chemical states associated
with calcium regulation of vertebrate striated muscle, but the analysis here is confined to the subset
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of states directly related to calcium binding. These are states that are physically confined to the
thin filament of muscle. Specifically, we focus on two reversible reactions, namely, an interaction
between the protein complexes, troponin (T) and actin, and the interaction between T and calcium.
An interaction with actin is required for tropomyosin in the ground state (C) to transition to an
excited state (B). To simplify the analysis here, we do not consider a competing reaction responsible
for the transition of C to another excited state (M). The competing reaction is prevented in a muscle
stretched beyond the overlap between thin and thick filaments. Given the overstretched condition,
we examine how the states of the thin filament in our model evolve in time following a perturbation
by calcium.

Mathematically, the dynamics of the model (A) & (B) can be described by the system of ordinary
differential equations (3.1) or (3.2). Biologically, for our study to make sense, a special pyramid
in the 3-dimensional Euclidean space R3, namely, {(x1, x2, x3) ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥
0, x1 +x2 +x3 = 1}, is of our interest. We will show that the system of equations (3.2) generates a
dynamical system that leaves the pyramid invariant as time evolves forward (Theorems 3.1 ). This
yields a sequence of mathematical conclusions on the general behavior of the system. For example,
we will show that the system should have at least one steady state inside the pyramid (Corollary
(3.2)). And, this leads to an investigation of the behavior of the system around all possible steady
states (Corollary 3.4 ). In addition to the proofs of Theorem 3.1, Corollary 3.2, which are given in
a traditional, way we propose a proof of Corollary 3.4 with assistance of a software to verify the
conditions of Routh-Hurwitz Theorem for the exponential stability of linear systems of differential
equations.

For related works on calcium dynamics in muscle we refer the reader to [7, 5] and especially
to [6] and the references therein, as well as [4]. A thorough understanding of the qualitative proper-
ties of the dynamical systems modeling the calcium dynamics would lead to predictions as discussed
in [7].

2 Preliminaries

2.1 Diagram Model and System of ODE

In [9] we have proposed a model of muscle regulation with the following diagram model that depicts
the essential chemical states of the model.
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The equilibrium relationships among the complete set of states are as expressed as follows:

M =
k0
k−0

C Un , B1 =
k1
k−1

C T1 , B2 =
k3
k−3

C T2 , T2 =
k2
k−2

, B2 =
k4
k−4

, (2.1)

where, as in [9], U = 1 + (α − 1)M , ki’s are rate constants. Only the latter four equations above
operate under the conditions of the present analysis, i.e. reactions of the thin filament absent thick
filament overlap. We introduce the calcium concentration [Ca2+] as a variable that enters in the
variables k2 and k4.

3 Dynamical Analysis of the Model

3.1 The ODE Model of Overstretched Muscle Near Equilibrium

From the above diagram the following system of equations describes the dynamics of the chemical
states 

dM
dt = k0C (1 + (α− 1)M)n − k−0M.

dB1
dt = k1C T1 + k−4B2 − (k−1 + k4)B1

dB2
dt = k3C T2 + k4B1 − (k−4 + k−3)B2

dT2
dt = k2 T1 + k−3B2 − (k3C + k−2)T2 ,

(3.1)

where C = 1−B1 −B2 and T1 = 1−B1 −B2 − T2.

For our convenience we will re-write (3.1) in the following form:

dM
dt = k0C (1 + (α− 1)M)n − k−0M
dx1
dt = k2 (1−

∑3
i=1 xi) + k−3 x3 − (k−2 + k3(1− x2 − x3))x1

dx2
dt = k1 (1− x2 − x3)(1−

∑3
i=1 xi) + k−4 x3 − (k−1 + k4)x2

dx3
dt = k4 x2 + k3 x1(1− x2 − x3)− (k−4 + k−3)x3.

(3.2)

that is obtained from (3.1) by replacing T1, B1, B2 with x1, x2, x3, and C with (1 − x2 − x3), T2
by (1− x1 − x2 − x3), respectively.

We will study the behavior of the system when M = 0 (or more reasonably, k0 = 0). Then, the
system of equations takes the form

dx1
dt = k2 (1−

∑3
i=1 xi) + k−3 x3 − (k−2 + k3 (1− x2 − x3))x1

dx2
dt = k1 (1− x2 − x3) (1−

∑3
i=1 xi) + k−4 x3 − (k−1 + k4)x2

dx3
dt = k4 x2 + k3 x1 (1− x2 − x3)− (k−4 + k−3)x3 .

(3.3)

with (x1, x2, x3) in the pyramid {(x1, x2, x3) ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 +x2 +x3 = 1}.
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For simplicity we will use the vector form of the system of equations (3.3) in which X :=
(x1, x2, x3)

T and F (X) = (F1(X), F2(X), F3(X))T denotes the vector field, that is, the right
hand side of the equation. Therefore, the equation is of the form

dX

dt
= F (X).

Below we will denote by 〈a, b〉 the inner product of two given vectors a, b in the space R3, that is,
if a = (a1, a2, a3)

T and b = (b1, b2, b3)
T , then

〈a, b〉 :=
3∑
j=1

aj bj .

3.2 Analysis of the model

Biologically, the following theorem on the invariance of the pyramid P := {(x1, x2, x3) ∈ R3 |
0 ≤ x1; 0 ≤ x2; 0 ≤ x3; x1 + x2 + x3 ≤ 1} means that if the muscle is started at a state it must
evolve, but does not disappear as time evolves. Therefore, this question is of our primary concern.

Theorem 3.1 Let all parameters ki, i = 1, 2, 3, 4, k−i, i = 1, 2, 3, 4 in the model (3.3) be positive.
Then the system generates a dynamical system that leaves the pyramid P invariant as time evolves.
This means every solution starting from a point within the pyramid remains in the pyramid for all
later time.

Proof. The main idea of the proof is to show that every solution starting from a point of the pyramid
cannot escape from the pyramid. We refer the reader to [1], [2] for a more detailed explanation of
the idea.

Step 1: We show that except for the four vertices each solution cannot cross the four planes. In
fact, for the plane 1−x1−x2−x3 = 0: At each point on the plane the normal vector is ~n = (1, 1, 1),
so we have

〈F,~n〉 = k2(1−
3∑
i=1

xi) + k−3x3 − (k−2 + k3(1− x2 − x3))x1

+k1(1− x2 − x3)(1−
3∑
i=1

xi) + k−4x3 − (k−1 + k4)x2

+k4x2 + k3x1(1− x2 − x3)− (k−4 + k−3)x3

= k−4x3 − (k−1 + k4)x2 + k4x2 + k3x1(1− x2 − x3)
−(k−4 + k−3)x3 + k−3x3 − (k−2 + k3(1− x2 − x3))x1

= −k−2x1 − k−1x2
< 0

whenever x21 + x22 6= 0. Therefore, the solutions starting from the inside the pyramid cannot cross
this plane except for the vertex (0, 0, 1).
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Similarly, we show that each solution starting out from inside the pyramid cannot cross the
plane x2 = 0. At each point on this plane the outward normal vector is of the form ~m(0,−1, 0).
Therefore,

〈F, ~m〉 = −k1 (1− x3) (1− x1 − x3)− k−4 x3
< 0,

unless x3 = 0 and x1 = 1. The only possibility for all solutions starting out from the inside of the
pyramid to cross the plane x2 = 0 is via the vertex (1, 0, 0).

Similarly, we show that each solution starting out from the inside of the pyramid cannot cross
the plane x3 = 0. In fact, the inner product of the vector filed at each point on the plane and the
outward normal vector ~p = (0, 0,−1) of the plane is

〈F, ~p〉 = −k4x2 − k3x1(1− x2)
< 0,

unless the point is (0, 0, 1).

Next, we show that each solution starting out from inside the pyramid cannot cross the plane
x1 = 0. In fact, the inner product of the vector filed at each point on the plane and the outward
normal vector ~q = (−1, 0, 0) of the plane is

〈F, ~q〉 = −k2(1−
3∑
i=1

xi)− k−3x3

< 0,

if the point is not the vertex (1, 0, 0).

Step 2:: Vector field at the four vertices:
(i) At the origin X0 := (0, 0, 0). The vector field at this point is

−→
F (0, 0, 0) = (k2, k1, 0).

Let Y (t) = (x1(t), x2(t), x3(t)) be the solution starting from X0 = (0, 0, 0). Since the vector
field is analytic for sufficiently small t > 0 the components x1(t), x2(t) may be approximated by
k1t, k2t, respectively. Therefore, x1(t), x2(t) will be positive for sufficiently small t > 0. To show
that Y (t) is directed inward the pyramid it suffices to prove that x3(t) is positive for sufficiently
small t > 0.

Referring to the vector field, we have that x1(t) = k2 t+ o(t), x2(t) = k1 t+ o(t), so

ẋ3 ' k4k1t+ k3k2t(1− k1t− x3)− (k−4 + k−3)x3

= k4k1t+ k3k2t− k3k2k1t2 − k3k2tx3 − (k−4 + k−3)x3

= −(k−4 + k−3 − k3k2t)x3 + (k4k1 + k3k2)t− k3k2k1t2

= a(t)x3 + b(t),

where

a(t) = −(k−4 + k−3 − k3k2t)
b(t) = (k4k1 + k3k2)t− k3k2k1t2.
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Therefore, for x3(0) = 0, if we set

U(t, ξ) := e
∫ t
ξ a(η) dη,

then, by the Variation-of-Constants Formula,

x3(t) ' U(t, 0)x3(0) +

∫ t

0
U(t, ξ)b(ξ) dξ =

∫ t

0
U(t, ξ)b(ξ) dξ

=

∫ t

0
e
∫ t
ξ a(η) dη

(
(k4k1 + k3k2)ξ − k3k2k1ξ2

)
dξ.

For sufficiently small t > 0, since all parameters ki > 0, for 0 ≤ ξ ≤ t we have (k4k1 + k3k2)ξ −
k3k2k1ξ

2 > 0. Therefore, from this formula x3(t) should be positive for sufficiently small t > 0.

(ii) At the vertex X2 = (0, 1, 0) the vector field at this point is

−→
F (0, 1, 0) = (0,−(k−1 + k4), k4).

To show that the solution starting out from this vertex is attracted inward the pyramid it suffices to
prove that x1(t) is positive for sufficiently small t > 0. We will use the idea as above. At this vertex
for small t > 0 we have

x2(t) = 1− (k−1 + k4)t+ o(t)

x3(t) = k4t+ o(t).

Therefore, referring to the vector field we arrive at

ẋ1 ' k2[1− (1− (k−1 + k4)t)− k4t] + k−3k4t

−[k−2 + k3(1− (1− (k−1 + k4)t)− k4t)]x1
= −[k−2 + k3(k−1 + 2k4)t]x1 + [k2(k−1 + 2k4) + k−3k4]t

= c(t)x1 + d(t),

where

c(t) = −[k−2 + k3(k−1 + 2k4)t]

d(t) = [k2(k−1 + 2k4) + k−3k4]t.

Using exactly an estimate similar to the above we can show that both x1(t) and its derivative ẋ1(t)
should be positive for small t > 0. And hence, the solution starting out from this vertex should be
attracted inward the pyramid.

(iii) At the vertex X3 := (0, 0, 1): the field vector at this point is of the form

−→
F (0, 0, 1) = (k−3, k−4,−(k−4 + k−3)).

This vector is directed inward the triangle with vertices being X1 := (1, 0, 0), X2 :=
(0, 1, 0), X3 := (0, 0, 1). We are going to show that the solution starting out from the vertexX3 will
be attracted inward the pyramid. Let X(t) = (x1(t), x2(t), x3(t)) be that solution. We will show
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that for sufficiently small ε, and 0 < t < ε, if φ(t) := 〈X(t),−→n 〉, then φ(t) < 0. For sufficiently
small ε > 0 and 0 ≤ t < ε we have

dφ(t)

dt
=

d

dt
(x1(t) + x2(t) + x3(t))

=
d

dt
(−k−1 x2(t)− k−2 x1(t))

= −k−1
dx2(t)

dt
− k−2

dx1(t)

dt
' −k−1 k−4 − k−2 k−3
< 0.

This shows that φ(t) is decreasing, so φ(t) < φ(0) = 0. Therefore, X(t) cannot enter the region
x1 + x2 + x3 > 1 for t > 0.

Similarly we can show that X(t) cannot enter the regions x2 < 0 and x1 < 0. This yields that
each solution starting out from inside the pyramid cannot cross the plane 1− x1 − x2 − x3 = 0.

(iv) At the vertex X1 = (1, 0, 0) the vector field at this point is

−→
F (1, 0, 0) = (−(k−2 + k3), 0, k3).

Therefore, we have

x1(t) = 1− (k−2 + k3) t+ o(t)

x3(t) = k3 t+ o(t).

Referring to the vector field at this vertex we arrive at

ẋ2 ' k1(1− x2 − k3t)(1− x2 − k3t− (1− (k−2 + k3)t)) + k−4k3t

−(k−1 + k4)x2

= k1x
2
2 − (k1 + k−1 + k4 + k1k−2t− k1k3t)x2
k1k2t+ k3k−4t− k1k3k−2t2

= k1x
2
2 + α(t)x2 + β(t),

where

α(t) = −(k1 + k−1 + k4 + k1k−2t− k1k3t)
β(t) = k1k2t+ k3k−4t− k1k3k−2t2.

If we take sufficiently small ε, then α(t) > 0, β(t) ≥ 0 for t ∈ [0, ε]. If we set γ(t) = k1x
2
2(t)+β(t)

for t ∈ [0, ε], then, γ(t) > 0 for t ∈ (0, ε], and

ẋ2 = α(t)x2 + γ(t), t ∈ [0, ε]. (3.4)

Next, we use the same idea as above to show that x2(t) and its derivative must be positive for small
t > 0. Therefore, the solution starting out from this vertex is directed inward the pyramid. This
completes the proof of the theorem. �

Corollary 3.2 There exists at least a steady state inside the pyramid.
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Proof. This theorem is deduced from a general result from Topology (see e.g. [1]). In fact, we
can show that since every solution starting from any point of the pyramid cannot escape from the
pyramid the system generates a forward dynamical system in the pyramid P mentioned above, that
is, a mapping F : R+ × P → P that is continuous such that F (t, x) is the solution starting from
x ∈ P . By the properties of the autonomous equations, F (t + s, x) = F (t, F (s, x)) for any
t, s ≥ 0, x ∈ P . As P is convex and compact subset of R3, for each fixed T ∈ R+, by the Brouwer
Theorem on the fixed points there is a fixed point for F (T, ·) that corresponds to a T -periodic
solution of the equation. We may choose a sequence of numbers {Tn}∞n=1 such that Tn = 1/2n.
Then, there exists a sequence Xn(·) of Tn-periodic solutions contained inside the pyramid. Since
the pyramid is compact, there should be a limit point P of the sequence of their trajectories. By
the Ascoli Theorem and the Existence and Continuous Dependence Theorem we can show that
there exists a subsequence of solutions mentioned above that is convergent to the solution X0(·)
starting out from the limit point P uniformly on the interval [0, 1]. As all these solutions Xn(·) are
1-periodic the subsequence must be convergent uniformly on the whole real line. This show that the
solution X0(·) is Tn-periodic for any n. That is, for each positive integer n and each real t,

X0(t) = X0

(
t+

1

2n

)
.

Using the uniform continuity of this function on the compact interval [0, 1] we end up withX0 being
a constant function, that is, it is a steady state of the dynamical system. �

3.3 Behavior around the steady states

We are now investigating the behavior of the system around the steady states by using the local
theory of dynamical systems. Set X := (x1, x2, x3)

T ,


F1(X) = k2(1−

∑3
i=1 xi) + k−3x3 − (k−2 + k3(1− x2 − x3))x1

F2(X) = k1(1− x2 − x3)(1−
∑3

i=1 xi) + k−4 x3 − (k−1 + k4)x2

F3(X) = k4 x2 + k3 x1(1− x2 − x3)− (k−4 + k−3)x3.

(3.5)

The vector field at each point X can be re-written with F1, F2, F3 of the form

F1(X) = k2 − (k2 + k−2 + k3)x1 − k2x2 + (k−3 − k2)x3
+ k3x1x2 + k3x1x3

F2(X) = k1 − k1x1 − (2k1 + k−1 + k4)x2 − (2k1 − k−4)x3
+ (x2 + x3)(x1 + x2 + x3)

F3(X) = k3x1 + k4x2 − (k−4 + k−3)x3 − k3x1(x2 + x3).

Next, we consider an equilibrium of the system in the pyramid, say (c1, c2, c3)
T . It is easy to
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see that the Jacobian of the vector field at this point is of the form

J =(−(k2 + k−2 + k3) + k3(c2 + c3) −k2 + k3c1 k−3 − k2 + k3c1
−k1 + (2c1 + 2c2 + c3) −(2k1 + k−1 + k4) + 2c1 + 2c2 + c3 −(2k1 − k−4) + c2 + c3

k3 − k3(c2 + c3) k4 − k3c1 −(k−4 + k−3)− k3c1

)
(3.6)

Below we set

K1 := k1 − (2 c1 + 2 c2 + c3)

K−1 := k−1 − (2 c1 + 2 c2 + c3)

K2 := k2 − k3 c1
K3 := k3 − k3 (c2 + c3)

K−3 := k−3 + k3 c1

K4 := k4 − k3 c1
K−4 := k−4 + c2 + c3.

Below we will assume that all these parameters ki are positive for all i = 1, 2, 3, 4 or i =
−1,−2,−3,−4. In addition, we need the following conditions on ki, k−i for Ki, K−i to be
positive as well:

k1 ≥ 2 , k−1 ≥ 2 , k2 ≥ k3 , k4 ≥ k3 . (3.7)

With the above notation, the matrix J is now looks like

−(k2 + k−2 +K3) −K2 k−3 −K2

−K1 −(K1 + k1 + k−1 + k4) −(2 k1 −K−4)
K3 K4 −(K−4 + k−3)

 . (3.8)

Suppose that the characteristic polynomial of this matrix is of the form

P (λ) = p0 λ
3 + p1 λ

2 + p2 λ+ p3 . (3.9)

In order to study the stability of the dynamical system we associate with the characteristic polyno-
mial P (λ) the following determinants whose positivity needs to be verified

∆1 := p1 , (3.10)

∆2 := det

(
p1 p3
p0 p2

)
, (3.11)

∆3 := p3∆2 . (3.12)
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Next we are going to find the polynomial P (λ). We have

P (λ) := λ3 + (K−4 + k−3 +K1 + k1 + k−1 + k4 + k2 + k−2 +K3 )λ2

−(K1K2 − 2k1k2 − 2k1k−2 − 2k1K3 − k4k2 − k4k−2 − k4K3 −K3K2 − 2K4k1

+K4K−4 − k2k−3 − k−2k−3 − 2k1K−4 − k4K−4 −K−4k2 −K−4k−2 −K−4K3

−2k−3k1 − k−3k4 −K−1k2 −K−1k−2 −K−1K3 −K−1K−4 − k−3K−1)λ
+K3K2K−1 +K−4K−1k2 +K−4K−1k−2 +K−4K−1K3 + k−3K−1k2 + k−3K−1k−2

+K3K2K−4 +K4K1k−3 −K4K1K2 +K3K2k4 + 2K4k1k2 + 2K4k1k−2

+2K4k1K3 −K4K−4k2 −K4K−4k−2 −K4K−4K3 −K−4K1K2 + 2K−4k1k2

+2K−4k1k−2 + 2K−4k1K3 +K−4k4k2 +K−4k4k−2 +K−4k4K3

−k−3K1K2 + 2k−3k1k2 + 2k−3k1k−2 + k−3k4k2 + k−3k4k−2.

Therefore,

p1 :=K4 + k−3 +K1 + k1 + k−1 + k4 + k2 + k−2 +K3,

p2 := −K1K2 +K1k2 +K1k−2 +K1K3 + k1k2

+ k1k−2 + k1K3 + k−1k2 + k−1k−2

+ k−1K3 + k4k2 + k4k−2 + k4K3 +K3K2

+ 2K4k1 −K4K−4 + k2k−3 + k−2k−3

+K1k−3 +K1K−4 + k1K−4 + k−1K−4

+ k4K−4 +K−4k2 +K−4k−2 +K−4K3

+ k−3k1 + k−3k−1 + k−3k4 .

Notice that p1 > 0. As for p2, since

−K1K2 +K1 k2 = K1 (k2 −K2) = K1 k3 c1 > 0

and
k4K−4 −K4K−4 = k3 c1K−4 > 0 ,

we have
p2 > 0. (3.13)

As for p3 since

2K4 k1 k2 −K4K1K2 ≥ 0

K−4 k4 k2 −K4K−4 k2 ≥ 0

K−4 k4 k−2 −K4K−4 k−2 ≥ 0

K−4 k4K3 −K4K−4K3 ≥ 0

2K−4 k1 k2 −K−4K1K2 ≥ 0

2k−3 k1 k2 − k−3K1K2 ≥ 0

we have
p3 > 0 . (3.14)
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Next, we have

∆2 := p1 · p2 − p3
= 2K−4K−1k−2 + 2K−4K−1K3 + 2 k−3K−1k2 + 2K−4K−1k2

+2K3K2k1 −K4K1k−3 + 2 k−3K−1k−2

+2 k−3k4k2 +K4K1K2 +K4K−4k2 +K4K−4K3 +K−4K1K2 +K4K−4k−2

+3K−4k1k2 + 4K−4k1k−2 +K−4k4K3 + 4K−4k1K3 +K−4k4k2 +K−4k4k−2

+k−3K1K2 + 3 k−3k1k2 + 4 k−3k1k−2 + 2 k−3k4k−2 + 2K−4k−2k−3

+3 k1k4k2 + k3c1K−4 +K−1k3c1 + 2K−1k4k−2 + 2K−1K4k1 + 4 k1k4K3

+4 k−3k1K3 + 2 k1k3c1 +K−4k−3k4 + 2 k−3K−1K3 + 2K−4k−3K−1

+4 k1K−1k−2 + k−3K3K2 + 2K−1k4K3 + 4 k1k−3K−1 + 2K−1k4k2 + 4 k1K−1K3

+3 k1K−1k2 + 2K−4k2k−3 + 2 k−3k4K3 + k3c1K−4
2 + 4 k1K−1K−4 + 2K−4K4k1

+2 k−3K4k1 + k−3k3c1 + k−3K−4K3 + 4 k1k−3k4 + 4K−4k−3k1 + 2K−1k−3k4

+4 k1k4k−2 + k4K−1K−4 + 2 k4k1K−4 + k4k3c1 + 3 k2k1k−2 + 2 k2k4k−2

+3 k2k1K3 + k2K3K2 + 2 k2k4K3 + 2 k4K4k1 + 2 k2K−4k−2 + 2 k2k−2k−3

+2 k2K−4K3 + k2k3c1 + 2 k2K−1k−2 + 2 k2K−1K3 + 2 k1K−4
2 + 4 k−2k1K3

+2 k−2k4K3 + k−2K3K2 + 2 k−2K−4K3 + k−2k3c1 + 2 k−2K−1K3 +K3k−2k−3

+K3k2k−3 +K3k3c1 + 2 k−3c2 +K−4
2k2 +K−4

2k−2 +K−4
2K3 + 2K−4c1

+2K−4c2 +K−4c3 +K−1K−4
2 + k2k−3

2 + k−2k−3
2 + 2 k−3

2k1 + k−3
2k4

+2 k−3c1 + 4 k1c2 + k−3c3 + k−3
2K−1 + 2 k1

2k2 + 4 k1
2k−2 + 4 k1

2K3 + 4K4k1
2

+4 k1
2K−4 + 4 k−3k1

2 + 4 k1c1 + 2 k1c3 + 2K−1c1 + 2K−1c2 +K−1c3 +K−1
2k2

+K−1
2k−2 +K−1

2K3 +K−1
2K−4 + k−3K−1

2 + k4k2
2 + k4

2k2 + k4
2k−2

+k4
2K3 + k−3k4

2 + 2 k4c1 + 2 k4c2 + k4c3 + k1k2
2 + k4k−2

2 + k2
2k−3 +K−4k2

2

+2 k2c1 + 2 k2c2 + k2c3 +K−1k2
2 + 2 k1k−2

2 + 2 k1K3
2 + k−2

2k−3 +K−4k−2
2

+2 k−2c1 + 2 k−2c2 + k−2c3 +K−1k−2
2 +K−4K3

2 + 2K3c1 + 2K3c2 +K3c3

+k4K3
2 +K3

2K2 + k−3k3c1K−4 + 2 k1k3c1K−4 +K−1k3c1K−4 + k4k3c1K−4

+k2k3c1K−4 +K−1K3
2 + k−2k3c1K−4 +K3k3c1K−4 .

Proposition 3.3 Let all parameters ki, Ki, i = 1, 2, 3, 4 and k−i, K−i, i = 1, 2, 3, 4 be positive.
Then, all eigenvalues of the matrix J have negative real parts.

Proof. First we notice that no equilibrium lies on the boundary of the pyramid, so we may assume
c1 > 0, c2 > 0, c3 > 0, where (c1, c2, c3)

T is assumed to be an equilibrium of the dynamical
system in the pyramid. To show this proposition we will apply the Routh-Hurwitz Theorem (see
[3]). We can easily check (by hand and by any math software as above) that

p0 = 1

and p1, p2, p3 are determined by the above formulas. Since all parameters in the matrix J are
positive we have

∆1 = p1 > 0 .
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∆2 = p1 · p2 − p3 > 0

because k1 k−3 k4 −K1K4 k−3 > 0. Therefore,

∆3 = p3 ∆2 > 0 .

Finally, if all parameters in the equations are positive, then ∆1,∆2,∆3 are all positive, so by the
Routh-Hurwitz Theorem (see [3], and [8]) all real parts of the eigenvalues of the matrix J are
positive. �

Corollary 3.4 Let all parameters ki, i = 1, 2, 3, 4 and k−i, i = 1, 2, 3, 4 be positive. Then, all
steady states of the systems inside the pyramid are exponentially stable.

Proof. By the general theory of stability of dynamical systems at steady states this corollary follows
from the fact that all real parts of the linearized part are positive. �
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