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Abstract. In the paper, some basic properties for fundamental solutions of non-stationary third
order composite type equation are studied in the neighborhood of some hyperplane of the domain
in which fundamental solutions irregular. These properties give possibility to construct the classical
solution of the Cauchy problem and the boundary value problems by a method of potentials.
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1 Introduction

Fundamental solutions of an equation, i.e. solutions with singularities of a certain type, play the
important role in studying partial linear equations. Hence, special interest is spared to study of
their properties. Investigations concerned with properties of fundamental solutions for even order
equations, for example, for parabolic equations, were carried out sufficiently fully. Review of those
investigations can be found in [9].

However, odd order equations have been investigated a little. For example, in work by Block,
Del Vecchio, Cattabriga, Roetman, Djuraev and Abdinazarov [1,3-8, 11] series of properties of
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fundamental solutions for the equations

Bu  Ou
_du ou 1.1
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were studied.

The obtained results were insufficient for studying third order equations such extensively as par-
abolic equations. For example, investigations conducted in [3] - [11] were insufficient to construct
regular solutions of boundary value problems for equations of type (1.1)—(1.3) in multidimensional
domains.

S. Abdinazarov and Z. Sobirov constructed fundamental solutions for third order equations and
studied them in multidimensional domains (see [2]). They proved that the functions

U(x1_€17x2_€2,...,$ _én,t_T):
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are fundamental solutions for the non-stationary third order composite type equation
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were the functions

2) = / [exp(—A? — A2) +sin(A* — Az)] dA, 0 < z < o0,
0

f(2) :/COS()\B_)\Z)d)\, —00 < z < 00, here z = (t:E—T)gl/S

0
are Airy functions which satisfy to the equation (see [4])

P'(2) + 2p(z) = 0. (1.8)
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The following relations are valid for functions f(z), ¢(2) (see [1]):

p(”)(z) ~ct /214 sm( 1/3), as z — 00, (1.9)

n/2—1/4 % |z|3/2), as z — —00, (1.10)

P (z) ~ e |z exp (=

0 00 00

7f(z)dz:7r, /f(z)dz:g, /f(z)dz:i:r, /go(z)dz:O, (L11)
L %o 0

where ¢, ¢, are constants.
In the present paper we establish some important properties for potentials of fundamental solu-

tions of the equation (1.7) in the neighborhood of the hyperplane (z1 = 29, z2, ..., z,,t) € R?L

2y = const.

It should be noted, analogous study for the case of ¢ = 2 was carried out in [10].

2 Basic results

2.1 Properties of fundamental solutions

Let the equation (1.7) be defined in the domain D = Q x (0,7, Q = R™.

Consider the following integrals

t
I(l)(ffvt)://Uz( — a9 zy — @,...,xn—5n;t—7)a(£’,7)d§’d7, 1=0,n,

0¢Y

t
J0($,t) _//V( 1.171.2 527--~7xn_§n§t_7-) Oé(é.,,T)df/dT,

0Q

t
I{(%t)://ailUl( xl,xg 52,...,$n—§n;t—7') ald,r)d¢ dr, 1=0,n,

0Q

SU t // 851 "17171172 527'--axn_€n;t_7—) Oé(f/,’T)dgldT,

0¢Y
where Q' = {2/ : 2/ ¢ R" 1), 2/ = (w9, 23,...,2,),dE = d&dés ... dE,.
These integrals are analogs of simple layer potentials and they are continuous in a neighborhood

of the hyperplane (v1 = 2, z2,...,7,,t) C D. Since the scheme of investigation of the integrals
is the same as in [6], we shall not turn our attention to investigation of their properties.

It is known, double layer potentials are important in constructing regular solutions of boundary
value problems. Therefore we shall study some properties of the following potentials

I2$t //86 x17ﬂj2 527---)$n_§n§t_7—)a(£/77-) dgldTal:()?na
1

0Q
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and

9(x,t) //851 x2,x2 52,...,xn—§n;t—7)a(§/,7) d¢’ dr,
0gY
which are analogs of double layer potentials in the neighborhood of the hyperplane (z; =
2,29, ..., op,t) C D.

Now we show that expressions I4(x,t) and Ja(z,t) can have a discontinuity of the first kind
as (z1,22,...,Tn,t) — (x(l) +0,29,...,2,, t) of a different character depending on behavior of
fundamental solutions (1.4)—(1.6).

Let K be arbitrary bounded domain from €2, functions (1.4)—(1.6) be defined in K x (0,7").

Lemma 1 Let the function o2’ t) € C (K’ x [0,T)). Then

hm // Ug ¢, (z $1,1:2 &y — Enyt — 1€, T)dE dT
(1,22, ,Zn,t) (29 —0,22,....Tn,t)

0gY
n

= %a(l", t),

where K' C V' is an arbitrary bounded domain.

Proof. For definiteness, we suppose K = {z : \; < x; < A\iy1} C Q, i.e. itis sufficient to prove
the statement of Lemma 1 for domains of the canonical form. For simplicity, here we suppose that
the hyperplane (29, 2,...,2,,t) C K is the boundary of K, then in our case properties of the
potentials I9(z,t) as (z1, %9, ..., 7n,t) = (Mg — 0,22, ..., 2,,t) will be studied.

Using the relation (1.8), we transform the expression of I3 (z, t) in the domain K x [0, T, then
we obtain

t
T1 — T1 — Ao 1 . z — ¢ / /
_[2 x,t) 0/3(75 4/3 ((t—T)l/?)) dTK// (t—T)n_1/3f <(t—7-)1/3) a(g,)dg,

where K/ = {z; : \j <a; < \j} Cc @, j=2n,

Hamm) = ) (@) o ()

Transforming this integral, i.e. adding and subtracting the function (2, t), we obtain

t
xr1 — 1 — A2
(zx,t) = / (t—71/3 <(t—7')1/3) dr x
0

v ¢ , o
x/t—Tl/?, <(t_7_)1/3>(Mfﬁ)—a(w,t))dg_
K/
t
' 1 — A T1 — A2 1 [ ¢ /
_a($,t)0/3(t—7)1/3f<(t_7_)1/3> dTK// (t—T)1/3f ((t—7)1/3>d€

= I (z,t) + a2’ t) [z, 1). (2.1)
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Now we consider each integral in (2.1) separately.

If we change variables in the second integral Ioo(x,t) of (2.1): z = % and 0’ = L_gll,
(t—7) /3 (t—7)/3
then we obtain
r1—A2
t1/3
1222 Z, t J/f .f (127J/f ( )(169, (:2.:2)
Passing to the limit as (1, z2,...,Zn,t) = (A2 —0,29,...,x,,t) and taking (1.11) into ac-
count, we have
ﬂ.n
lim I (z,t) = —.
(#1,22,...,Tn,t) = (A2—0,22,...,2n,1) 3
Now we change variables in the integral I3, (z,t) of (2.1): z = Lﬂil, [/ . Then
(t—7)"/3 (t— T)

the integral I9, (,t) takes the form:

19, (z, 1) / F(— dz/f*(é?’) [a <m' - 9’0\2;:61),75 _ (e ;3:61)3) - oz(:v',t)] ¢’
od

Az 11

Further, since the function (2, t) is continuous on the point (2, t), for any € > 0 there can be
found 0 (¢) such that
la(2',t) — a(z’ — hi,t — ho)| <&,

as max{hy, ha} < d(e).
For the fixed ¢ > 0 one can always take 0 < §(¢) < /3. Then

Ao—21  A—1

5 50
and the following representation
Ao—zq
T doma) (o)
B = [ s [ r@e -2 ot e+
400 3 3 3
+ [ senas [ @) -o BTt Bem il o pjar -
z z
Ec i

=19 (2, t) + I95 (2, t)

is valid.

Considering continuity of the function «(z’, t) and properties of the function f(z), we infer:

Ag—z]
é(e)
11 (0,1) < 2agax (', 7) / yf(—z)|dz/\f*(9')yd9'.
Ag =] K’

(173
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Moreover, for the fixed §(¢) and ¢ > 0, by virtue of validity of the relation (1.10) for the function
f(=2), we have

(71,22, %0, t) = (A2—0,22,...,Tn,t)

Further, noting that for
)\2 — I

i(e)

0< <p<

the following inequality
Ao —
0< 22— < 5() < 0

p

takes place, we get

h1<6(e),ha<d(c)

+oo
Lyp(w,t) < max_ |a(§,7) = a(§ = hi, 7 = h)| / If(—Z)\dZ/ |[f7(@)] 40’
0 =L

Hence, considering (1.10), relations

o0

1
/xq sin(az + b) dz = a4 T(1 + q) cos(b + qg),a >0,-1<¢g<0,
0
o0
1 ) qm
x?cos(ax + b) de = a9t1T(1 + ¢) sin(b + 7),@ >0,-1<¢<0,
0

and also continuity of a(z’, ), and arbitrariness of €, we obtain

lim I5(z,t) = 0.

(z1,@2,. 0 t) = (A2—0,22,...,2n,t)

Finally

. 0 " /
lim Iy (z,t) = ?a(x , ).

(#1,22,.,Tn,t) = (A2—0,22,...,.Tn,t)

0

Lemma 2 Let the function a(z',t) € C (K’ x [0,T)) and be satisfied to the Holder inequality
with the index > % by t. Then

27"
— a7 — €t - r)a(€, T e dr = — o 1), @3
(1,2 ,t) —>(z?+0 @' \t) // 851 1 £ Ja(&',7)dé 3 ( ) (2.3)
CC, t—T1 /,7'(1,(17':07 24
(1,2t %(w0+0x t)// afl 1 5 Ja(&,7)dg (2.4)
lim // — Y , T t—Ta(e ) de dr = 0, 2.5)
(z1,2',t) —>(z1+0 x't) 651 1 5 ) (5 ) E

where K' C Q) is an arbitrary bounded domain.
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Proof. Let K = {x: \; < x; < \i11}, and the hyperplane (29 = A\, z2,...,7,,t) C K be the
boundary of K. We consider the case of (z1,x,...,t) = (A1 + 0,22, ...,2,,1).

Using the relation (1.8), transform the expression of I9(z,t). Then we obtain

r1— A\ T1— A\ 1 * x' = ¢ / /
it (=) dTK/, ot (o) o€ e

Transforming this integral, i.e. adding and subtracting the function (2, t), we obtain

¢
T — T1 — Ay
I(x,t) = / (t—T1/3 ((t—7)1/3> dr x
0

X/ - <(tx/—_7§/s) (€, m) — ala’,1)) €'~

Ig(x,t) = —

o _

K/
t
_ Al T1 — )\1 1 x/ _ 6/
_am/,t/xl < )dT/ *< d¢’
( ) 3(t—7')1/3f (t—T)1/3 (t—T)l/Sf (t—7)1/3 ¢
0 K/

= Iy (@, 1) + (2, 1) I55(x, ). (2.6)
Now we consider each integral in (2.6) separately. Then, if in I9,(z,t) we make change of
. . xT1—\ y . xl=¢

variables: z = (t—17)1>3 and 0" = 1A’ we get
122$t / f dz/f 9/ d@’
3 a3 |
t1/3
Hence, passing to the limit (1, x2,...,zpn,t) = (A1 + 0,22,...,2,,t) and taking (1.11) into
account, we have
. 0 2™
lim Ly(z,t) = ———.
(z1,22,...,Zn,t)—=>(A140,22,...,Tn,t) 3
Now we make change of variables in I3, (z,t) of (1.2): z = % and 0’ = ( ”",_)51,/3 . Then
t t—1

the integral 19, (,t) takes the following form

Lo (z, 1) / f(z z/ F5(0) [a (f _p@ . M)y @ ;3A1)3> —oz(:z’,t)] a0’
I°d

z1-M\
173

If we consider relations (1.9) and (1.10) and conditions of lemma 2, we obtain

lim 121(.1‘,15) =0.

(xl7x27"'79377«7t)4)(A1+07I27"'7In7t)

Hence, finally we have

n
27 '

lim Lz, t) = ——a(d,t).
(z1,22,..,%n,t)—=>(A1+0,22,...,xn,1t) 2( ’ ) 3 ( ’ )
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Taking (1.11) into account, one can analogously prove the relations (2.4) and (2.5). ]

Note, similar statement as (2.5) can be proved for functions Uz, Us, ..., Uy,.

2.2 First boundary value problem

It is necessary to find in the domain D = Q x (0,7), where Q = {z : \; < x; < xi},
x = (z1,x2,...,2,), regular solutions u(z,t) € Cﬁgﬂ’l(D) N Ci:i’o(ﬁ) of the equation (1.7),
satisfying the following boundary conditions:

u(z,0) = 0, 2.7)
u(z,t) = (2’ t), at 9Q x [0,T], j=1,2,...,2n, (2.8)
iu()\- t) =i(a,t), i=1,2 n (2.9)
ax 19 - (] b ) - ) AR ) *
where ©/ = (x1,22,...,%i—1,Tit1,..., %), and @;(2’,t),v;(2’,t) are smooth given functions

satisfying natural agreement conditions at corner points of the parallelepiped D.

To prove the uniqueness for the solution of boundary value problems (1.7), (2.7)—(2.9), we use
the method of integral energy, i.e. integrating the identity

t

" 9Pu Ou
Q =

0

by parts, we will prove that u(x,t) = 0 in D.
We find solutions of the problem (1.7), (2.7)—(2.9) in the following form:

o (f',T) d¢’ dr +
IFEY

u(xvt):Z//QUO(xl_517332_527~-a$n_€n;t_7_)

Bi (€, 7) d¢’dr +

&i=Xi

t
i 0
+4 / 87&(]0(371_flax2_§2a'--7$n_£n§t_7—)
0

Vi (5/7 T) dfl d7—7
§i=Xi

t
0
+ / Ui —&2e =&,y an — nst — 7)
=10

/ /. / / / /I __
where ' = {2/ : N <2/ < x'}, 2’ = (x1,29,. .., Tim1, Tit1, .-+, Tp)-

Now, using Lemmas 1 and 2, and applying Abel’s transformation [4] , we obtain a system of
Volterra integral equations of the second kind with respect to unknown functions «; (2, ), 5;(2', t)
and ~y; (2, t). This system is solvable in the class of continuous functions.
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