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Abstract. In this work, we study an approximate controllability problem with constraint on the
control. This problem appears naturally in the notion of discriminating sentinel with instantaneous
observation. The main tool is a theorem of uniqueness of the solution of ill-posed Cauchy problem
for the heat equation.
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1 Statement of the problem

1.1 Problem formulation

For d ∈ N∗, let Ω be a bounded open subset of Rd with boundary Γ of class C2, T > 0, and let ω
be an open non empty subset of Ω. Set Q = Ω× (0, T ), Σ = Γ× (0, T ). We consider the parabolic
evolution equation: 

−q′ −∆q = 0 in Q,
q = 0 on Σ,

q(T ) = h+ kχω in Ω,
(1.1)
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where (·)′ is the partial derivative with respect to time t, h ∈ L2(Q), k ∈ L2(ω) and χω denotes
the characteristic function of ω. It is well known that problem (1.1) admits a unique solution q ∈
H2,1(Q) (see for instance [8], [9]).

Remark 1 System (1.1) is a backward parabolic problem. It appears under this form in J.L. Lions’
sentinels theory as the associated adjoint state. (cf. [10, p. 22]. See also below in Section 3).

We will use the notation
q = q(x, t; k) (1.2)

to mean that the solution q of (1.1) depends on the control k which plays a particular role. More
precisely, let ε > 0; we would like to choose k in order to achieve the following objective: let h be
a given function in L2(Ω), lo ∈ L2(ω) and

M a real closed vector subspace of L2(ω). (1.3)

Denoting byM⊥ the orthogonal subspace ofM in L2(ω) we look for a control variable k ∈ L2(ω)
such that

k ∈M⊥, (1.4)

and such that if q = q(x, t; k) is the unique solution of (1.1), then

‖q(., 0; k) + lo χω‖L2(Ω) ≤ ε in Ω, (1.5)

and
‖k‖L2(ω) = minimum (1.6)

to mean that k is the control of minimal norm inL2(ω). The role of k is to guarantee the approximate
controllability property (1.5) in the presence of the forcing term h and under the restriction (1.4).
The approximate controllability problem (1.1), (1.4) and (1.5) is by now well understood in the case
M = {0}. It has been studied by several authors using different methods. We refer to , C. Fabre
and al. [2], J. P Puel [18], E. Zuazua [21], and references therein for other related controllability
problems.

To the best of our knowledge, this paper is the first one dealing with the caseM 6= {0}. We
study the case when M is of finite dimension. In this case, some compatibility conditions are
required for controllability to hold. We shall return to this matter later on. We encounter this
problem in the notion of instantaneous discriminating sentinel with the observation at t = 0 and
t = T.

1.2 The main result

The main result is the following

Theorem 2 For ε > 0, h ∈ L2(Ω) and lo ∈ L2(ω), there exist some control k and some state q
such that (1.1), (1.4) and (1.5) hold. Moreover, there exists a unique pair (k̂ε, q̂ε) with k̂ε of minimal
norm in L2(ω), i.e. such that (1.1), (1.4),(1.5) and (1.6) hold.
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The optimality system satisfied by (k̂ε, q̂ε) is established as follows. Set

P = the orthogonal projection operator from L2(ω) ontoM, (1.7)

and for ϕ ∈ L2(Q)
Pϕ = the orthogonal projection of ϕχω. (1.8)

Let ϕo ∈ L2(Ω) and ϕ the associated solution of
ϕ′ −∆ϕ = 0 in Q,

ϕ = 0 on Σ,
ϕ (0) = ϕo in Ω.

(1.9)

We now introduce the functional Jε defined by

Jε (ϕo) =
1

2

∫
ω

|ϕ(T )− P (ϕ(T )χω)|2 dx +
√
ε ‖ϕo‖L2(Ω)

(1.10)
+

∫
Ω

(ϕ(T )h+ ϕo lo χω) dx.

Consider the following unconstrained problem:

(Pε)

{
min Jε (ϕo)

ϕo ∈ L2(Ω)
. (1.11)

Then, we have

Theorem 3 Problem (1.11) has a unique solution ϕ̂o ∈ L2(Ω). Furthermore, if ϕ̂ is the solution
of (1.9) associated to ϕ̂o, then

(
k̂ = ϕ̂(T )χω − Pϕ̂(T ), q

)
is solution such that (1.1), (1.4), (1.5)

and (1.6) hold.

The paper is organized as follows: Section 2 is devoted to prove Theorem 2, the main tool being
Lemma 4. In Section 3, we prove Theorem 3 using the result of Fenchel-Rockafellar. In Section 4,
we give an application of the above results to the approximate instantaneous discriminating sentinels
theory of J. L. Lions.

2 Approximate controllability with constraints on the control

Lemma 4 Let m ∈M. Then there is no ϕ ∈ L2(Q) / ϕ 6= 0 such that ϕ satisfies
ϕ′ −∆ϕ = 0 in Q,

ϕ = 0 on Σ,
ϕ(T )χω = mχω.

(2.1)

Proof. If the problem (2.1) admits a solution, then it is given by

ϕ (x, t) =

∞∑
j=1

αj(T )wj (x) , (2.2)
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where wj are eigenfunctions of {
−∆w = λw in Ω,

w = 0 on Γ.
(2.3)

Differentiate the solution (2.2) once with respect to t and twice with respect to x and substitute these
derivatives into the first equation of (2.1). We then obtain

∞∑
j=1

(
α′j (t) + λjαj(T )

)
wj (x) = 0. (2.4)

Thus,
α′j(T ) + λjαj(T ) = 0, (2.5)

because (wj) form an orthonormal base of L2(Ω). Furthermore, the function ϕ satisfies the bound-
ary conditions if and only if

∞∑
j=1

αj(T )wj (x) = mχω. (2.6)

As mχω ∈ L2(Ω) then

mχω =

∞∑
j=1

〈mχω, wj〉L2(Ω)wj (x) . (2.7)

Consequently
αj(T ) = 〈mχω, wj〉L2(Ω) . (2.8)

Finally, we have {
α′j(T ) + λjαj(T ) = 0 in (0, T )

αj(T ) = 〈mχω, wj〉L2(Ω)
(2.9)

Then the solution of the first order linear is given by

αj(T ) = 〈mχω, wj〉L2(Ω) e
λj(T−t). (2.10)

Consequently, if the problem (2.1) admits a solution, it is necessarily in the form:

ϕ (x, t) =
∞∑
j=1

〈mχω, wj〉L2(Ω) e
λj(T−t)wj (x) .

We prove now that ϕ /∈ L2(Q). Indeed,∫ T

0
|αj(T )|2 dt =

∣∣∣〈mχω, wj〉L2(Ω)

∣∣∣2 ∫ T

0
e2λj(T−t) dt

=
∣∣∣〈mχω, wj〉L2(Ω)

∣∣∣2 [−1

2λj
+

1

2λj
e2λjT

] (2.11)

But, λj is the eigenvalue of Problem (2.3), then λj −→
j−→∞

∞. Consequently,

∫ T

0
|αj(T )|2 dt −→

j−→∞
∞. (2.12)

which means that the series whose general term αj (t) is not normally convergent. So, Problem
(2.1) admits no solution. �
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2.1 Proof of theorem 2

Let q be a solution of the system (1.1) and q1 a solution of the following system:
L∗q1 = 0 in Q,
q1 = 0 on Σ,

q1(T ) = h in Ω,
(2.13)

where L∗ is the adjoint differential operator defined by

L∗ = − ∂

∂t
−∆. (2.14)

We put
z = q − q1. (2.15)

Then, z is the solution of the following problem:
L∗z = 0 in Q,
z = 0 on Σ,

z(T ) = kχω in Ω.
(2.16)

We now introduce the set of states reachable at time 0 defined by:

R(0) = {z(k, 0) , k ∈M⊥}. (2.17)

We give now the proof of Theorem 2.

It is clear that R(0) is a vector subspace of L2(Ω). According to the Hahn-Banach theorem, it
will be dense in L2(Ω) if and only if its orthogonal in L2(Ω) is reduced to zero. As {0} ⊂ R(0)⊥,
it remains to show that R(0)⊥ ⊂ {0}. Let ϕo ∈ R(0)⊥, then

〈ϕo, z(0)〉L2(Ω) =

∫
Ω

ϕoz(0) dx = 0, (2.18)

where z is solution of (2.16). It is therefore natural to define the adjoint ϕ of z, this is the solution
of the following problem: 

Lϕ = 0 in Q,
ϕ = 0 on Σ,

ϕ (0) = ϕo in Ω,

where L is the differential operator defined by

L =
∂

∂t
−∆. (2.19)

The system (1.9) is a classical problem of heat equation which has a unique solution ϕ ∈
C
(
[0, T ] ;L2(Ω)

)
∩ L2(0, T ;H1

0 (Ω)).

Now multiply the first equation of system (1.9) by z. After integration by parts on Q, it comes

0 =

∫ T

0

∫
Ω
ϕL∗z dx dt+

∫
Ω
ϕ(T )z(T ) dx−

∫
Ω
ϕ (0) z (0) dx

(2.20)
−
∫ T

0

∫
Γ

∂ϕ

∂ν
z dγ dt+

∫ T

0

∫
Γ
ϕ
∂z

∂ν
dγ dt.
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Since z and ϕ are solutions of (2.16) and (1.9) respectively, (2.20) becomes∫
Ω

ϕ(T )kχω dx−
∫
Ω

ϕoz(0) dx = 0. (2.21)

This is equivalent to ∫
Ω

ϕ(T )kχω dx = 0 ∀k ∈M⊥, (2.22)

because, ϕo ∈ R(0)⊥ and z(0) ∈ R(0). Finally, we have

ϕ(T )χω ∈M. (2.23)

Therefore, ϕ satisfies (1.9) and (2.23) and by applying Lemma 4, we deduce that

ϕ = 0 in Ω× (0, T ) .

As a consequence, ϕo = 0 which shows that R(0)⊥ = {0} .

3 Characterization of optimal control

In this section, we will characterize the optimal control using a result of Fenchel-Rockafellar duality
(cf. [4]).

Proposition 5 The functional Jε defined in (1.10) is coercive.

Proof. To prove that Jε is coercive, it suffices to show the following relation:

lim
‖ϕo‖L2(Ω)−→∞

Jε (ϕo)

‖ϕo‖
L2(Ω)

≥
√
ε. (3.1)

Let
(
ϕoj

)
⊂ L2(Ω) be a sequence of initial data for the adjoint system (1.9) with

∥∥∥ϕoj∥∥∥
L2(Ω)

→∞.

We normalize them as follows

ϕ̃oj =
ϕoj(T )− P

(
ϕoj(T )χω

)
∥∥∥ϕoj∥∥∥

L2(Ω)

, (3.2)

so that
∥∥∥ϕ̃oj∥∥∥

L2(Ω)
≤ 1. On the other hand, let ϕ̃j be the solution of (1.9) with initial data ϕ̃oj . Then,

we have

Jε

(
ϕoj

)
∥∥∥ϕoj∥∥∥

L2(Ω)

=
1

2

∥∥ϕoj∥∥L2(Ω)

∫
ω

|ϕ̃j(T )|2 dx+
√
ε

(3.3)
+

∫
Ω

ϕ̃j(T )hdx+

∫
Ω

Pϕj(T )h+ ϕoj lo χω∥∥∥ϕoj∥∥∥
L2(Ω)

dx.



CONTROLLABILITY WITH CONSTRAINT FOR THE HEAT EQUATION 103

We now show that the last integral in Equation (3.3) is bounded. Indeed, we know that ϕj is the
solution of the problem 

Lϕj = 0 in Q,
ϕj = 0 on Σ,

ϕj (0) = ϕoj in Ω.
(3.4)

Multiplying the first equation of system (3.4) by ϕj then integrating by parts on Q , yields

0 =

T∫
0

∫
Ω

Lϕj ϕj dx dt =
1

2
‖ϕj(T )‖2L2(Ω) −

1

2

∥∥ϕoj∥∥2

L2(Ω)
+ ‖∇ϕj‖2L2(Q) . (3.5)

By the Poincaré inequality, (3.5) becomes,

Co ‖ϕj‖2L2(Q) ≤ ‖∇ϕj‖
2
L2(Q) ≤

1

2

∥∥ϕoj∥∥2

L2(Ω)
. (3.6)

Now, by Cauchy Schwartz inequality, one finds∫
Ω

Pϕj(T )h ϕoj lo χω∥∥∥ϕoj∥∥∥
L2(Ω)

dx ≤ C1

‖ϕj‖L2(Q)∥∥∥ϕoj∥∥∥
L2(Ω)

+ ‖lo χω‖L2(Ω) . (3.7)

From (3.6), (3.7) and the fact that lo χω ∈ L2(Ω), we conclude that∫
Ω

Pϕj(T )h+ ϕoj lo χω∥∥∥ϕoj∥∥∥
L2(Ω)

dx ≤ C. (3.8)

Returning to relation (3.3), two cases can occur:

1.
∫
ω
|ϕ̃j(T )|2 dx > 0. In this case, we immediately obtain

Jε

(
ϕoj

)
∥∥∥ϕoj∥∥∥

L2(Ω)

−→
‖ϕo

j‖L2(Ω)
−→+∞

+∞. (3.9)

2.
∫
ω
|ϕ̃j (T )|2 dx = 0. In this case, since

(
ϕ̃oj

)
j

is bounded in L2(Ω), we can extract a subse-

quence
(
ϕ̃oj

)
j

such that:

{
ϕ̃oj ⇀ ψo weakly in L2(Ω),

ϕ̃j ⇀ ψ weakly in L2(0, T ;H1
o (Ω)),

(3.10)

where ψ is solution of system (1.9) with initial data ψo. Moreover, by lower semi continuity
of the norm, it comes ∫

ω

|ψ(T )|2 dx ≤ lim inf

∫
ω

|ϕ̃j(T )|2 dx = 0. (3.11)
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Therefore,
ψ(T ) = 0 in ω. (3.12)

And as ψ is solution of (1.9), and in view of (3.12), we have

ψ = 0 in Ω× (0, T ) .

Thus,
ϕ̃j ⇀ 0 weakly in L2(0, T ;H1

o (Ω)). (3.13)

Moreover, from inequality (3.6), we deduce that

 ϕj∥∥∥ϕoj∥∥∥
L2(Ω)


j

is bounded in

L2(0, T ;H1
o (Ω)). Hence

ϕj∥∥∥ϕoj∥∥∥
L2(Ω)

⇀ ξ in L2(0, T ;H1
o (Ω)). (3.14)

This implies that
ϕj(T )∥∥∥ϕoj∥∥∥

L2(Ω)

⇀ ξ(T ) in L2(Ω).

And as P is a compact operator, then

Pϕj(T )∥∥∥ϕoj∥∥∥
L2(Ω)

−→ Pξ(T ) strongly in L2(ω), (3.15)

But,

ϕ̃j =
ϕj − P (ϕj)∥∥∥ϕoj∥∥∥

L2(Ω)

⇀ 0. (3.16)

From (3.14), (3.15) and (3.16), we conclude that

Pξ(T ) = ξ(T ). (3.17)

Therefore,
ξ(T ) ∈M and Lξ = 0 in L2(Q). (3.18)

So by Lemma 4, it comes
ξ = 0 in Q (3.19)

As a consequence,
Pϕj(T )∥∥∥ϕoj∥∥∥

L2(Ω)

−→ 0. (3.20)

But,

Jε

(
ϕoj

)
∥∥∥ϕoj∥∥∥

L2(Ω)

=

√ε+

∫
Ω

ϕ̃j (T )hdx+

∫
Ω

Pϕj (T )h+ ϕoj lo χω∥∥∥ϕoj∥∥∥
L2(Ω)

dx

 . (3.21)
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Thus,

lim inf
j→+∞

Jε

(
ϕoj

)
∥∥∥ϕoj∥∥∥

L2(Ω)

≥
√
ε. (3.22)

Hence relation (3.1) is satisfied.

�

3.1 Proof of theorem 3

Here, we give the proof of Theorem 3.

As Jε attains its minimum value at ϕ̂o ∈ L2(Ω), then, for any ψo ∈ L2(Ω) and any s ∈ R we
have

Jε (ϕ̂o) ≤ Jε (ϕ̂o + sψo) . (3.23)

On the other hand,

Jε (ϕ̂o + sψo) =
1

2

∫
ω

|ϕ̂(T )− Pϕ̂(T )|2 dx+
s2

2

∫
ω

|ψ(T )− Pψ(T )|2 dx

+
√
ε ‖ϕ̂o + sψo‖L2(Ω) + s

∫
ω

(ϕ̂(T )− Pϕ̂(T )) (ψ(T )− Pψ(T )) dx

+

∫
Ω

[(ϕ̂ (T ) + sψ(T ))h− (ϕ̂o + sψo) lo χω] dx. (3.24)

Substituting (3.24) in (3.23) and after simplifications, we find

0 ≤
√
ε
[
‖ϕ̂o + sψo‖L2(Ω) − ‖ϕ̂

o‖L2(Ω)

]
+
s2

2

∫
ω

|ψ(T )− Pψ(T )|2 dx

+ s

∫
ω

(ϕ̂(T )− Pϕ̂(T )) (ψ(T )− Pψ(T )) dx (3.25)

+

∫
Ω

(ψ(T )h+ ψo lo χω) dx

 . (3.26)

On the other hand

‖ϕ̂o + sψo‖L2(Ω) − ‖ϕ̂
o‖L2(Ω) ≤ |s| ‖ψ

o‖L2(Ω) . (3.27)
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From (3.26) and (3.27), we obtain

0 ≤
√
ε |s| ‖ψo‖L2(Ω) +

s2

2

∫
ω

|ψ(T )− Pψ (T )|2 dx

+ s

∫
ω

(ϕ̂(T )− Pϕ̂(T )) (ψ(T )− Pψ(T )) dx

+

∫
Ω

(ψ(T )h+ ψo lo χω) dx

 ∀ψo ∈ L2(Ω) and s ∈ R.

Dividing by s > 0 and by passing to the limit s −→ 0, we obtain

0 ≤
√
ε ‖ψo‖L2(Ω) +

∫
ω

(ϕ̂(T )− Pϕ̂(T )) (ψ(T )− Pψ(T )) dx

+

∫
Ω

(ψ(T )h+ ψo lo χω) dx.

The same calculations with s < 0 give∣∣∣∣∣∣
∫
ω

(ϕ̂(T )− Pϕ̂(T ))ψ(T ) dx+

∫
Ω

(ψ(T )h+ ψo lo χω) dx

∣∣∣∣∣∣
≤
√
ε ‖ψo‖L2(Ω) ∀ ψo ∈ L2(Ω).

Also if we take k̂ = ϕ̂(T )χω−Pϕ̂(T ) in (1.1) and we multiply the first equation of the system (1.1)
by ψ solution of (1.9) and we get after integration by parts over Q,∫

Ω

q(0)ψo dx =

∫
Ω

hψ (T ) dx+

∫
ω

(ϕ̂(T )− Pϕ̂(T ))ψ(T ) dx. (3.28)

It comes from the last two relations:∣∣∣∣∣∣
∫
Ω

(q(0) + lo χω)ψo dx

∣∣∣∣∣∣ ≤ √ε ‖ψo‖L2(Ω) ∀ψ
o ∈ L2(Ω).

Consequently,
‖q(0) + lo χω‖L2(Ω) ≤

√
ε. (3.29)

4 Approximate instantaneous discriminating sentinels

The notion of sentinel was introduced by J. L. Lions to study systems of incomplete data [10]. It is
based on the following considerations:

− a state equation with incomplete data,
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− a system of observations,

− a functional called a sentinel and who allows to distinguish two types of missing data.

More precisely, in the first step, we consider the semilinear parabolic equation: y′ −∆y = ξ + λξ̂ in Q,
y = 0 on Σ,

y(0) = y0 + τ ŷ0 in Ω.

(4.1)

We are interested in systems with data that are not completely known. The functions ξ and y0 are

known with ξ in L2(Q) and y0 in L2(Ω). However, the terms λξ̂ and τ ŷ0 are unknown, but are such
that {

‖ξ̂‖L2(Q) ≤ 1, ‖ŷ0‖L2(Ω) ≤ 1

and that the reals λ and τ are small enough.
(4.2)

The problem (4.1) admits a unique solution in C([0, T ], L2(Ω)). For the sake of simplicity, we
denote

y(x, t;λ, τ) = y(λ, τ)

the unique solution of (4.1). Therefore, the map{
(λ, τ) 7−→ y(λ, τ)

is in C1(R×R;C([0, T ], L2(Ω)).
(4.3)

In the second step, we consider the observation. More precisely, we give an observation system,

i.e. an open subset O nonempty of Ω, called an observatory and observation yobs of the state y on
O × {0, T}. If y is a representation ”faithful” of the phenomenon studied, then y (λ, τ) = yobs on
O × {0, T} .

Assume that the observation at t = 0 and t = T was noisy i.e.

yobs (t = 0) = eo +
N∑
i=1

αiei (4.4)

yobs (t = T ) = mo +
M∑
j=1

βjmj , (4.5)

where the functions eo, e1, ..., eN and m0,m1, ...,mM are given measurements of y in L2(O), but
where the real coefficients αi, βj are unknown. We assume that αi, βj are small. We refer to the
terms αiei and βjmj as the interference terms. We can assume without lossing of generality that

the functions ei and mj are linearly independent on O.

Finally, we introduce now the notion of sentinel. However, we give now ho ∈ L2(O), qo ∈
L2(Ω), and we consider also ω an open subset nonempty of Ω such that ω ⊂ ω ⊂ O. For a control
variable (u, v) ∈ L2(ω)× L2(ω), we set:

S (λ, τ) =

∫
Ω

(ho χO + vχω)y(x, T ;λ, τ) dx+

∫
Ω

(qo + uχω) y(x, 0;λ, τ) dx, (4.6)
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where χO and χω are the characteristic functions of O and ω respectively.

More precisely, We seek (u, v) such that

(i) S is stationary at first order with respect to the missing terms τ ŷ0, that is

∂S

∂τ
(0, 0) = 0, ∀ŷ0 (4.7)

(ii) S is stationary with respect to the interference terms αiei, that is∫
Ω
qoei dx+

∫
ω
uei dx = 0, 1 ≤ i ≤ N. (4.8)

(iii) S is stationary with respect to the interference terms βjmj , that is∫
O
h0mj dx+

∫
ω
vmj dx = 0, 1 ≤ j ≤M. (4.9)

and

(iv) (u, v) is of minimal norm in L2(ω) × L2(ω) among control functions in L2(ω) ×
L2(ω) which satisfy the above conditions, that is

‖ (u, v) ‖L2(ω)×L2(ω) = min . (4.10)

Any S such that (4.7), (4.23), (4.24) and (4.10) hold, is called instantaneous discriminating sentinel.

4.1 Equivalence to the null-controllability

4.1.1 Interpretation of (i)

The condition (4.7) is equivalent to:∫
Ω

(ho χO + vχω)yτ (T ) dx+

∫
Ω

(qo + uχω) yτ (0) dx = 0, (4.11)

where yτ =
∂y

∂τ
(0, 0) is the solution of system:

Lyτ = 0 in Q,
yτ = 0 on Σ,

yτ (0) = ŷo in Ω,
(4.12)

and where L is the differential operator defined in (2.19).

To transform the condition (4.11), we introduce the adjoint state q solution of the following
retrograde problem: 

L∗q = 0 in Q,
q = 0 in Σ,

q(T ) = ho χO + v χω on Ω,
(4.13)
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with L∗ is the adjoint differential operator defined in (2.14). The problem (4.13) has a unique
solution q ∈ H2,1 (Q).

We multiply the first equation of system (4.13) by yτ and we integrate by parts on Q. We find∫
Ω

(ho χO + v χω)yτ (T ) dx dt =

∫
Ω

q(0)ŷo dx ∀ŷo ∈ L2(Ω). (4.14)

Thus, the condition (4.7) (or (4.11) ) is satisfied if and only if

q(0) = − (qo + uχω) . (4.15)

4.1.2 Interpretation of (ii)

Now consider condition (4.8). Let E be the vector subspace of L2 (ω) generated by the N linearly
independent functions eiχω. Then, condition (4.8) is satisfied if and only if there exists a unique
lo ∈ E such that

u = lo + l / l ∈ E⊥, (4.16)

where E⊥ is orthogonal to E .

4.1.3 Interpretation of (iii)

To transform the condition (4.9) we introduceM the vector subspace of L2(Ω) generated by the M
linearly independent functionsmiχω. Then, the condition (4.9) is satisfied if and only if there exists
a unique ko ∈M such that

v = ko + k / k ∈M⊥, (4.17)

whereM⊥ is the orthogonal ofM.

Therefore, the problem of finding a control (u, v) ∈ L2(ω) × L2(ω) such that (S, u, v) veri-
fies (4.7)–(4.10) is equivalent to find the control pair (l, k) such that:

l ∈ E⊥, k ∈M⊥, (4.18)

and if q is the solution of the system:
L∗q = 0 in Q,
q = 0 on Σ,

q(T ) = h+ kχω in Ω,
(4.19)

we have
q(0) = − (qo + l0 + lχω) , (4.20)

with
‖ (l, k) ‖L2(ω)×L2(ω) = min . (4.21)

Remark 6 We cannot hope to solve the problem of exact controllability (4.18)–(4.20). Indeed, for
k ∈ L2(ω) the solution of (4.18)–(4.19) be very regular and of regularity difficult to characterize.
This is due to the regulating effect of the heat equation. So, if we take (qo + l0 + lχω) in a classical
Sobolev space (here L2(Ω) ), it will be useless to look k such that q(0) = − (qo + l0 + lχω).
That is why, it is reasonable to content ourselves with the approximate controllability, which brings
naturally to the notion of approximate sentinel.
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Definition 7 Let ε > 0. The functional S defined in (4.6) assumed non-zero is called an approx-
imate discriminating sentinel if there is a control (u, v) ∈ L2(ω) such that the triplet (S, u, v)
satisfies the following conditions:

(i) S is insensitive in an approximate way with respect to missing terms τ ŷ0, that is∣∣∣∣∂S∂τ (0, 0)

∣∣∣∣ ≤ ε (4.22)

(ii) S is stationary with respect to the interference terms αiei, that is∫
Ω
qoei dx+

∫
ω
uei dx = 0, 1 ≤ i ≤ N. (4.23)

(iii) S is stationary with respect to the interference terms βjmj , that is∫
O
h0mj dx+

∫
ω
vmj dx = 0, 1 ≤ j ≤M. (4.24)

and

(iv) (u, v) is of minimal norm in L2(ω) × L2(ω) among control functions in L2(ω) ×
L2(ω) which satisfy the above conditions, that is

‖ (u, v) ‖L2(ω)×L2(ω) = min . (4.25)

Finally, the problem of existence of an approximate instantaneous discriminating sentinel is
equivalent to the following problem: Find (l, k) such that:

l ∈ E⊥, k ∈M⊥, (4.26)

and if q is the solution of the system:
L∗q = 0 in Q,
q = 0 on Σ,

q(T ) = h+ kχω in Ω,
(4.27)

we have

‖q(0) + qo + l0 + lχω‖ ≤ ε, (4.28)

with

‖ (l, k) ‖L2(ω)×L2(ω) = min . (4.29)

Remark 8 There exists l = 0 ∈ E⊥ satisfying (4.26) and (4.28), so the problem (4.26)–(4.29) is
reduced to a problem (1.1) which was studied in Section 1.
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