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1 Introduction

The subject of fractional calculus is as old as the differential calculus and it has been developed up
to nowadays (see Kilbas et al. [12], Hilfer [11]). Fractional differential and integral equations have
recently been applied in various areas of engineering, mathematics, physics and bio-engineering
and so on. There has been a significant development in ordinary and partial fractional differential
and integral equations in recent years; see the monographs of Abbas et al. [4], Baleanu et al. [8],
Hilfer [11], Kilbas et al. [12], Lakshmikantham et al. [13], Podlubny [14], and Tarasov [19], and
the papers by Abbas et al. [1, 2, 3, 5], Agarwal et al. [6], Cuevas et al. [9], Qian et al. [15, 16, 17],
Tenreiro Machado er al. [20], Vityuk and Golushkov [21].

In [16], Qian studied the global attractivity of solutions of the following nonlinear delay diffe-
rential equation

2/(t) = p(t)z(t)[f(2(t) — g(x(t — 7))} t 20, (L.1)

where 7 € (0,00) and p, f, g : [0,00) — [0, 00) are given continuous functions. Notice that equa-
tion (1.1) has applications in population dynamics, dynamics of price, production, and consumption
of a particular commodity.

Motivated by [16], in this paper we establish sufficient conditions for the existence and the
stability of solutions of the following system of nonlinear delay differential equations of fractional
order of the form

“Dyu(t,z) = p(t, z) u(t, x) [f(t, zyu(t,x)) — g(t,z,u(t — 1,28 — &)y oy u(t — Ty — &) |

for (t,z) € J : =Ry x [0, b], (1.2)

u(t,z) = ®(t, x), for (t,z) € J := [T, 00) x [—&,b] \ (0,00) x (0,0], (1.3)
u(t7 0) = So(t); te [07 OO),

{u(O, ) = (z); v €0,b]. 14

where b > 0, § = (0,0), Ry = [0,00), 73,& > 0; 6 = 1...,m, T = max {ri}, &€ =

max {&;}, Dy is the Caputo fractional derivative of order r = (r1,72) € (0,1] x (0,1], p: J —

i=1....m

R, f: JxR—=R, g:JxR™ — Rare given continuous functions, ¢ : Ry — R, ¢ : [0,b] = R
are absolutely continuous functions with lim;—,oc (t) = 0, and 9 (z) = ¢(0) for each x € [0, b],
and @ : J — R" is continuous with ¢(t) = ®(¢,0) for each t € R, and ¢)(x) = ®(0, x) for each
x € [0,b].

This paper initiates the concept of local attractivity of solutions of problem (1.2)-(1.4).

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout
this paper. By L([0,a] x [0,b]); a,b > 0, we denote the space of Lebesgue-integrable functions
u: [0,a] x [0,b] — R with the norm

a b
lully = / / lu(t, )| dz dt.
0 0
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By BC := BC(|-T,0) x [—£,b]) we denote the Banach space of all bounded and continuous
functions from [—T', 00) X [—¢&, b] into R equipped with the standard norm

lullBo = sup Ju(t, z)].
(t,x)E[fT,oo) X [7§7b]

For uy € BC and 1 € (0,00), we denote by B(ug, ), the closed ball in BC' centered at uy with

radius 7.

Definition 2.1 [21] Let r = (r1,72) € (0,00) x (0,00), 8 = (0,0) and u € L*([0,a] x [0,b]).
The left-sided mixed Riemann-Liouville integral of order v of u is defined by

A -t Y — )N — )2 (s, ) dsdr
(]é10(t’$)__'TTT1)TKTQ)‘/£ jﬁ (t—7)" Yz —s) (s,7)dsdr.

In particular,
t prx
(Ifu)(t.2) = ult,a), (Futo) = [ [ u(rs)dsar
0 Jo

for almost all (¢,z) € [0,a] x [0,b], where 0 = (1,1). For instance, Iju exists for all r1,ry €
(0,00), when u € L'([0,a] x [0,b]). Note also that when u € C([0,a] x [0,b]), then (Iju) €
C([0,a] x [0, b]), moreover

(Igu)(t,0) = (Iju)(0,2) = 0; t € [0,a], x € [0, b)].

Example 2.2 Let \,w € (—1,00) andr = (r1,1r2) € (0,00) x (0,00), then

T(1+ A1+ w)
F1+A+7r) (14 w+re)

Ihtra® = Tt for almost all (t,x) € [0,a] x [0,b].

By 1 — 7 we mean (1 — 71,1 — ) € (0,1] x (0, 1]. Denote by D?, := %, the mixed second
order partial derivative.

Definition 2.3 [21] Let r € (0,1] x (0,1] and u € L*([0, a] x [0, b]). The Caputo fractional-order
derivative of order T of w is defined by the expression “Dyu(t, ) = (I,”"D%u)(t, z).

The case o = (1, 1) is included and we have
(°Dgu)(t,z) = (D2,u)(t, z), for almost all (t,z) € [0,a] x [0, ).
Example 2.4 Let \,w € (—1,00) and r = (r1,72) € (0,1] % (0, 1], then

cDrt)\xw — F(l + A)F(l + w) t)\*Tlxw*TQ
0 D1+ A—7r)0(1+w—r) ’

for almost all (t,z) € [0,a] x [0,b].

Let ) # Q C BC, and let G :  — ), and consider the solutions of equation
(Gu)(t,z) = u(t, ). (2.1)

We introduce the following concept of attractivity of solutions for equation (2.1).
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Definition 2.5 Solutions of equation (2.1) are locally attractive if there exists a ball B(ug,n) in
the space BC' such that, for arbitrary solutions v = v(t,x) and w = w(t,z) of equations (2.1)
belonging to B(ug,n) N, we have that, for each x € [0, b],

lim (v(t,x) — w(t,z)) = 0. (2.2)

t—00

When the limit (2.2) is uniform with respect to B(ug,n) N Y, solutions of equation (2.1) are said
to be uniformly locally attractive (or equivalently that solutions of (2.1) are locally asymptotically
stable).

Lemma 2.6 ([7], p. 62) Let D C BC. Then D is relatively compact in BC' if the following
conditions hold:

(a) D is uniformly bounded in BC,

(b) The functions belonging to D are almost equicontinuous on R x [0,b],

i.e. equicontinuous on every compact of R4 x [0, b,

(c) The functions from D are equiconvergent, that is, given ¢ > 0, x € [0, b] there corresponds
T(e,x) > 0 such that |u(t, ) — limy_o0o u(t, )| < € foranyt > T'(e,x) and u € D.

3 Main Results

Let us start by defining what we mean by a solution of of the problem (1.2)-(1.4).

Definition 3.1 A functiola u € BC' is said to be a solution of (1.2)-(1.4) if u satisfies equation (1.2)
on J, equation (1.3) on J and condition (1.4) is satisfied.

Lemma 3.2 ([1]) Let f € L*([0,a] x [0,b]); a,b > 0. A function u € AC([0,a] x [0,b]) is a
solution of problem

(CDEU)(t»l“) = f(t,x), (tvx) € [O,CL] X [0’ b],
u(t,0)=p(t); te€][0,q,
u(0,2) =¢(x); =z €0,b],
©(0) = ¥(0),

if and only if u(t, x) satisfies
u(t,x) = p(t, z) + (g f)(t, z); (t,2) € [0,a] x [0,0],

where
u(t, @) = o(t) + (x) — ¢(0).

The following hypotheses will be used in the sequel:

(Hp) The function ® is in BC' and p is continuous and bounded on J.
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(H2) There exist a nondecreasing function A : Ry — R and a continuous function d : Ry x
[0,b] — R such that

|f(t,z,u)| < d(t,x)A(|u|), for (t,z) € Jandu € R.

Moreover, assume that
tlirgolgd(t,m) =0; z € [0,b],
(Hs) There exist continuous functions ¢; : Ry x [0,b] — R4 such that
m m
<1 +) |ui|) |9t @, ur,uz, ey u)| <Y fuilailt, @);
i=1 i=1

for (t,z) € Ry x [0,b] and for u; € R; i = 1...m. Moreover, assume that

tlg(r)lo.f@qi(t,x) =0;z€[0,b;i=1...m.

Remark 3.3 Set

O := sup D(¢,x), " = sup p(t), p* = sup p(t, ),
(t,x)ed teR4 (t,x)ER 4 x[0,b]
d* = sup Iyd(t,x) and g = sup  Ipgi(t,x); i=1...m.
(t,2)€R | x[0,0] (t,z)€R 4 x [0,

From the hypotheses, we infer that ®*, ©*, p*, d* and q;; i = 1...m are finite.

Now, we shall prove the following theorem concerning the existence and the stability of a solution
of problem (1.2)-(1.4).

Theorem 3.4 Assume that (Hy) — (H3) and the following hypothesis hold

(Hy) There exists a constant n > 0, such that

max {fb*, " +p'n (d*/\(n) + Z%*) } <.

=1

Then the problem (1.2)-(1.4) has at least one solution in the space BC. Moreover, if there exists a
constant n* > 0, such that

P A +0T) +p" D af <1,
=1
and
2p™n <d*A(n NEDY q;“) <n (1 —p*d A+ —p*y q;") :
i=1 =1

then solutions of problem (1.2)-(1.4) are locally asymptotically stable.
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Proof. Let us define the operator IV such that, for any u € BC,

@(t,x); (t,i(}) e J,
(Nu)(t,z) = § o) + I p(t, x)u(t, z) (f(t, z, u(t,z)) 3.1
—g(t,z,u(t — 1,2 — &), ey u(t — Ty — Em)))]; (L x) € J

The operator N maps BC' into BC. Indeed the map N () is continuous on [—7', 00) x [—¢, b] for
any u € BC, and for each (¢, z) € J we have

[(Nu)(t, z)| < [e(t)] + Iglp(t, x)ult, x)(f(t z, u(t, r))
—g(t, @, u(t — o u(t = T, T = &m)))|

Tla
¢ t— 7’1 1 1
P01+ T // e )

X Ip(t, )| |u<t,x>r [ld(t,2) | Afu(t, )

4 <Z lu(T — 73,8 — &)] (T, 3)>

=1

m -1
X (1 +;|u(7’—7’i,s—§i)]> } dsdr

< " +p'lule (d*A(HUHBC) + Z(ﬁ) )
i=1
and for (t,z) € J, we have
|(Nu)(t, 2)| = [®(t, z)| < D
Thus,
IN(u)l|pe < max {‘I’*, ¢" +p*|lulle (d*A(\UHBc) + Zqi‘) } : 32)
i=1

Hence, N (u) € BC. This proves that the operator N maps BC' into itself.

By Lemma 3.2, the problem of finding the solutions of the problem (1.2)-(1.4) is reduced to finding
the solutions of the operator equation N (u) = u. Equation (3.2) and hypothesis (H4) implies that
N transforms the ball B, := B(0,n) into itself. We shall show that N : B, — B, satisfies the
assumptions of Schauder’s fixed point theorem [10]. The proof will be given in several steps.

Step 1: N is continuous.
Let {uy, }nen be a sequence such that u,, — v in B,;. Then, for each (¢, z) € [T, 00) x [=£, ], we
have

(Nun) (¢, 2) — (Nu)(t,2)
< I [Ip(t )] un(t @) (F (8 2, un(t, @)
—g(t,x,un(t — 1,2 — &), ooy un(t — Ty @ — §m))>
— u(t,x) (f(t,a:,u(t,x)) —g(t,z,u(t — 1,2 — &), ey u(t — Ty @ — ﬁm))) H

I [Ip(t, )| Jun(t, ) — w(t, 2)] | f(t, 2, un(t, x))
—g(t,zyun(t — 11,28 — &1), ooy Un(t — Tiny @ — &) ]

IN
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+ I [Ip(t, ) ult, 2)| | f(t, 2, un(t, @) = £(t, 2, ult, x))
—g(t,z,un(t — 1,2 — &)y oy Un(t — Ty, T — &)
+og(t,z,u(t — 1,2 — &)y ooy u(t — Ty @ — £m))H

< p* I [lun(t, @) —u(t, )| | f(t, 2, un(t, x))
—g(t,x,un(t—ma}—51),...,un(t—7'm,x—fm))ﬂ
—f—p*nIg\f(t,:c,un(t,x)) - f(t,x,u(t,a:))]
+p nIlg(t, x,un(t — 11,2 — &1)y ey un(t — Ty @ — &)
—g(t,z,u(t — 1,2 — &), ey u(t — Ty @ — Em))|

< p (d*A(n)JquZ‘) [un — ullBc

i=1

+p 1y |f(t z, un(t, 2)) — (2, u(t, x))|
+p* 77‘[5 \g(t,x,un(t —T1,T — 51)) ’un(t —Tm, L — fm))

—g(t,x,u(t — 1,2 — &),y u(t — Ty — &) | - (3.3)

Case 1. If (t,z) € J U ([0,a] x [0,b]); a > 0, then, since u, — wasn — oo and f, g are
continuous, (3.3) gives
IN(u,) — N(u)||pc =0 asn — oo.

Case 2. If (t,x) € (a,00) x [0,b]; a > 0, then from our hypotheses and (3.3), we get

[(Nun)(t, 2) — (Nu)(t, x)] < p* (d*A(n) + Z(ﬁ) [un — ullBc

i=1

+2p A () I5d(t x) + 2p™n > (Igai(t, @) (3.4)
i=1

Since u, — u asn — oo and t — oo, then (3.4) gives

|IN(u,) — N(u)||pc =0 asn — oo.

Step 2: N (B)) is uniformly bounded.
This is clear since N (B,) C B, and B,, is bounded.

Step 3: N(B,)) is equicontinuous on every compact subset [=T,a| x [=£,b] of [-T,00) x
[_57 b]7 a > 0.
Let (t1,21), (t2,2) € [0,a] x [0,b], t1 < t2, 1 < x2 and let w € B,,. Thus we have
[(Nu)(tz, z2) = (Nu)(ty, 21)]
< feolta) = p(t)| + 1y | (p(t2, x2)|ulte, 22)[ — p(tr, 21)|u(ts, 21)]) (f(tz@zau(tza@))
— g(t2, o, u(tz — 71,22 — &1), - ults — T, T2 — §m))>}

+ Ig [p(t1, m1)[u(ty, 1) || f (t2, 22, u(te, 22)) — f(t1, 21, u(t1, 21))|

+ |g(t2, z2,u(ts — 71,22 — &1)s ooy ulte — Ty T2 — Em))
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- g(tl)x17u(t1 —T1,%1 — 51)’ ...,U(tl — Tm, 21 _é-m))|>i| .

Thus

[(Nu)(t2, w2) — (Nu)(t1, 21)]
n|p(te, x2) — p(ty, z1)| (d*/\(ﬁ) + Y ailta, 962))]
=1

+p'nly [|f(t2,$27u(t2,$2)) — f(tr, z1,u(ty, 21))|
+ |g(to, w2, u(te — 71,02 — &1), -y ulta — T, 22 — E)
— gtz u(ty — 1,21 — &1), oy u(ty — Ty 1 — {m))q

< p(t2) — ()] + Iy

From continuity of ¢, p, f, g and as t; — ¢ and z; — x2, the right-hand side of the above inequality
tends to zero. The equicontinuity for the cases t; < to < 0,1 < z3 < Oand t; < 0 < to,
z1 < 0 < x5 is obvious.

Step 4: N(B,)) is equiconvergent.
Let (t,z) € Ry x [0,b] and u € By, then we have

(Nu)(t,2)| < o) + p"AF(”) // (t— 7)1 — 8) Nd(r,s)dsdr

i (/ /0 (t—7)"" e —s) g1, 5)ds dr)

ZZO
m
< o) +p nAMm)Id(t.2) + p*n Yy Lipi(t, ).
i=0
Thus, for each = € [0, b], we get

|(Nu)(t,x)] — 0, as t — 4o0.

Hence,
|(Nu)(t,x) — (Nu)(+o00,x)| = 0, as t — 4o0.

As a consequence of Steps 1 to 4 together with the Lemma 2.6, we can conclude that N : B,, — B,
is continuous and compact. From an application of Schauder’s theorem [10], we deduce that [V has
a fixed point u which is a solution of the problem (1.2)—(1.4).

Step 5: The uniform local attractivity for solutions.
Let us assume that ug is a solution of problem (1.2)-(1.4) with the conditions of this theorem. Taking
u € B(ug,n*), we have

|((Nu)(t,2) —uo(t, )| = [(Nu)(t,z) — (Nuo)(t, z)|

p*I [[ult, x) — uo(t, 2)| | f(t, 2, ult, ))
—g(t,x,u(t—Tl,:c—fl),...,u(t—Tm,x—fm))]]

+p'n Iy [f (@, u(t, @) — f(E, @, u(t, 2))|

+p'nIylglt,z,ult — 11,0 — &)y ooy u(t — Ty @ — &)
—g(t,zup(t — 1,2 — &1)y ey ug(t — Ty @ — Em))|

IN
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m
< pr2n+n) (d*A(n +0)+ > qz*)
i=1
< .
Thus we observe that IV is a continuous function such that

N(B(ug,n")) € B(up,n™).

Moreover, if u is a solution of problem (1.2)-(1.4), then

u(t,z) —uo(t,x)] = |[(Nu)(t,x) — (Nuo)(t, )| -
< p (A(ﬂ + ) pd(tx) + Y (Tt x))) lu = uollBe
=1
+2p* nA(n + ) I5d(t, ) + 20" Y (I5ai(t, x)).
=1
Thus m
u(t, ) — uo(t, 2)| < "2+ 7°) (Am S () + 3 (T, x))) G
=1

By using (3.5) and the fact that lim, o Ijd(t,z) = lim, o Ijgi(t,z) = 0; i = 0...m we
deduce that
tlig& ’U’(tv $> - U()(t, .’IJ)‘ =0.

Consequently, all solutions of problem (1.2)-(1.4) are locally asymptotically stable.
4 An Example

As an application of our results we consider the following system of Lotka-Volterra type model of
nonlinear delay differential equations of fractional order of the form

“Dhu(t, ) = p(t, 2)ult, ) [f(t,x,u(t,x)) g (t,x,u (t - i) ,

u<t—§,x—;>>}; for (t,z) € J := R, x [0,1], 4.1)

u(t, ) Hth for (£,2) € J 1= [—1,00) x [—2,1]\(0, o) x (0,1, (42
1

u(t,0) = 755 T €[0,00), 43)

_ (11 — 1
where (11, 72) = (17 Q)a p(t,x) = 1+2422>

fit ) 3catT |u| sint

y L, U) = )
64(1 + /1)

f(0,z,u) = 0; x €0,1], u € R,

(t,xz) € (0,00) x [0,1], u € R,
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N

16> and

C =

-1 . 1
crt® <|u| sint + |v|e” t)

t7x7 u7U = ;
o) = S G+l + )
9(0,x,u,v) = 0; x €[0,1] and u,v € R.

(t,z) € (0,00) x [0,1], u,v € R,

*

First, we can see that the hypothesis (H1) is satisfied with ®* = ¢* = p* = 1. The function f is
continuous and satisfies assumption (Hs), witch A(w) = w and

—1
3ext™™ |sint
Sert T[Sl oy e (0,00) x [0, 1,

64(1 + V1)
d(0,z) = 0; x € [0,1].

d(t,x) =

The function g satisfies assumption (H3), with ¢1 (¢, z) = 2d(t, z), and

_1
t

0o (t,7) = ‘”{“ ef) (t,2) & (0,00) x [0,1],
q2(0,z) = 0; x € [0,1].

Also, for each = € [0, 1], we get

ngl(t,{L‘) = W /0 /Or(t — 7—)7“1—1(x — s)rz—lql('r, 8) dsdr

)
< 16 // (t—1) ey $—3)2374|s1n7']dsd7'
41+t 2)I(H0(E)
< 1C // (t—r1) ES :C—s)2374 dsdr
41+t 25)I($)T(3)
-1 3
1tz
4(1+412)
1 -1 8
< Zt2x2—>0ast—>oo
and
1 t T 1 1
I)go(t = — (t—7)""(x—s)"?" ,8)dsd
0q2(t, x) F(Tl)F(Tg)// T) (x —s)"? "qo(7,s)dsdr
c -3 -1 -3 _1
< - Ord) t—T4l‘—S)2ST4€TdeT
41+ t2)rHr@)
-1 3
< 16c t2z22
T I2ym(14¢72)
1,213
< Zt2m2—>0ast%oo
Thus

lim I)d(t,z) = lim Ijq;(t,2) =0; z €[0,1]; i =0,1,2,
9 t—o0 4

t—o00
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and d* = eé G =q¢ = i. Finally, we can see that the hypothesis (Hy) is satisfied. Indeed,

3
0 +pn< +Zqz> 1+ n+@n
So,
o+ <d*A(n)+ZQZ‘> <,

implies that

which is satisfies for = 3. Thus,

max {<I>*, 0" +p'n <d*A(n) + Z%*) } <.

=1
Also,
m
AN+ Y g <1,
=1

implies that n* < 2. We can take n* = 5, because the inequality

2p™n (d*A(n+n*)+Zq§> <7 (1—p*d*/\ n+n’)—p Zqz),

=1

is satisfies with n = 3 and n* = 5. This inequality gives %Tl < 4—85. Hence by Theorem 3.4, the
problem (4.1)-(4.3) has a solution defined on [—1, 00) X [—%, 1] and solutions of this problem are

locally asymptotically stable.
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