# STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN $\mathcal{L}$ -FUZZY n-NORMED SPACES

### NASRIN EGHBALI\*

Department of Mathematics, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran

### FATEMEH HEYDARI<sup>†</sup>

Department of Mathematics, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran

Received October 10, 2011, Revised February 8, 2012

Accepted February 8, 2012

Communicated by Mouffak Benchohra

**Abstract.** In this paper, we prove the Hyers–Ulam–Rassias stability of the following version of a quadratic functional equation in non-Archimedean  $\mathcal{L}$ –fuzzy n–normed spaces

$$f(l x + y) + f(l x - y) = 2 l^2 f(x) + 2 f(y)$$
.

**Keywords:** Non-Archimedean fuzzy n-normed space; quadratic functional equation; stability.

**2010 Mathematics Subject Classification:** Primary 46S40; Secondary 39B52, 39B82, 26E50, 46S50.

### 1 Introduction

Fuzzy notion as first introduced by Zadeh [20] has been widely involved in different subjects of mathematics. In Zadeh's definition, a fuzzy set is characterized by a function from a nonempty set X to [0,1]. Goguen generalized the notion of a fuzzy subset of X to an  $\mathcal{L}$ -fuzzy subset, namely a function from X to a lattice L [6].

<sup>\*</sup>e-mail address: nasrineghbali@gmail.com and eghbali@uma.ac.ir

<sup>†</sup>e-mail address: fheidari207@gmail.com

70

Fuzzy set theory is a powerful tool for modelling uncertainty and vagueness in various problems arising in the field of science and engineering.

Gähler [5] introduced an attractive theory of 2-norm and n-norm on a linear space. A systematic development of an n-normed linear space has been extensively made by Kim and Cho [11], A. Misiak [13] and Gunawan [7]. Gunawan and Mashadi [7] gave a simple way to derive an (n-1)-norm from the n-norm and realized that any n-normed space is an (n-1)-normed space. A detailed theory of fuzzy normed linear space can be found in [2, 3, 4]. Narayanan and Vijayabalaji [14] have extended the notion of n-normed linear space to fuzzy n-normed linear space.

Stability problem of a functional equation was first posed in [19] which was answered in [8] and then generalized in [1, 15] for additive mappings and linear mappings respectively. Since then, several stability problems for various functional equations have been investigated in [16, 9, 10, 12].

Several results for the Hyers–Ulam–Rassias stability of many functional equations have been proved by several researchers. Our goal is to determine some stability results concerning the functional equation

$$f(l x + y) + f(l x - y) = 2 l^2 f(x) + 2 f(y)$$

in non-Archmedian  $\mathcal{L}$ -fuzzy n-normed spaces.

## 2 Preliminaries

In this section, we provide a collection of definitions and related results which are essential and used in the next discussions.

**Definition 2.1** ([5]). Let X be a real vector space of dimension greater than 1 and let  $\| \bullet, \bullet \|$  be a real-valued function on  $X \times X$  satisfying the following conditions:

- (1) ||x,y|| = 0 if any only if x and y are linearly dependent,
- (2) ||x,y|| = ||y,x||,
- (3)  $\|\alpha x, y\| = |\alpha| \|x, y\|$ , where  $\alpha \in \mathbb{R}$ ,
- (4)  $||x, y + z|| \le ||x, y|| + ||x, z||$ .

Then,  $\|\bullet, \bullet\|$  is called a 2-norm on X and the pair  $(X, \|\bullet, \bullet\|)$  is called a 2-normed linear space.

**Definition 2.2** ([7]). Let  $n \in \mathbb{N}$  and X be a real linear space of dimension  $d \ge n$ . (Here we allow d to be infinite.) A real valued function  $\| \bullet, ..., \bullet \|$  on  $\underbrace{X \times \cdots \times X}_{n} = X^{n}$  satisfying the following four properties:

- (1)  $||x_1, x_2, \dots, x_n|| = 0$  if any only if  $x_1, x_2, \dots x_n$  are linearly dependent,
- (2)  $||x_1, x_2, \dots, x_n||$  is invariant under any permutation of the arguments,
- (3)  $||x_1, x_2, \dots, \alpha x_n|| = |\alpha| ||x_1, x_2, \dots, x_n||$ , for any  $\alpha \in \mathbb{R}$ ,
- (4)  $||x_1, x_2, \dots x_{n-1}, y + z|| \le ||x_1, x_2, \dots, x_{n-1}, y|| + ||x_1, x_2, \dots, x_{n-1}, z||$

is called an n-norm on X and the pair  $(X, \| \bullet, \dots, \bullet \|)$  is called an n-normed linear space.

**Definition 2.3** ([7]). A sequence  $(x_k)$  in an n-normed linear space  $(X, \| \bullet, \dots, \bullet \|)$  is said to be convergent to  $x \in X$  (in the n-norm) if for any  $a_1, \dots, a_{n-1} \in X$ ,

$$\lim_{k \to \infty} ||a_1, a_2, \dots, a_{n-1}, x_k - x|| = 0.$$

**Definition 2.4** ([7]). A sequence  $(x_k)$  in an n-normed linear space  $(X, \| \bullet, \dots, \bullet \|)$  is called a Cauchy sequence if for any  $a_1, \dots, a_{n-1} \in X$ ,

$$\lim_{k,m\to\infty} ||a_1, a_2, \dots, a_{n-1}, x_k - x_m|| = 0.$$

**Definition 2.5** ([7]). An n-normed linear space is said to be complete if every Cauchy sequence is convergent.

**Definition 2.6** ([14]). Let X be a linear space over a field  $\mathbb{F}$ . A fuzzy subset N of  $X^n \times \mathbb{R}$  is called a fuzzy n-norm on X if and only if:

- (N1) For all  $t \in \mathbb{R}$  with  $t \leq 0$ ,  $N(x_1, x_2, \dots, x_n, t) = 0$ ,
- (N2) For all  $t \in \mathbb{R}$  with t > 0,  $N(x_1, x_2, ..., x_n, t) = 1$  if and only  $x_1, x_2, ... x_n$  are linearly dependent,
- (N3)  $N(x_1, x_2, \dots, x_n, t)$  is invariant under any permutation of  $x_1, x_2, \dots, x_n$
- (N4) For all  $t \in \mathbb{R}$  with t > 0,  $N(x_1, x_2, \dots, cx_n, t) = N(x_1, x_2, \dots, x_n, \frac{t}{|c|})$ , if  $c \neq 0$ ,  $c \in \mathbb{F}$ ,
- (N5) For all  $s, t \in \mathbb{R}$ ,

$$N(x_1, x_2, \dots, x_n + x'_n, s + t) \ge \min\{N(x_1, x_2, \dots, x_n, s), N(x_1, x_2, \dots, x'_n, t)\},$$

(N6)  $N(x_1, x_2, ..., x_n, t)$  is a non-decreasing function of  $t \in \mathbb{R}$  and

$$\lim_{t\to\infty} N(x_1, x_2, \dots, x_n, t) = 1.$$

Then (X, N) is called a fuzzy n-normed linear space or in short f-n-NLS.

**Example 2.7** Let  $(X, \| \bullet, \bullet, \dots, \bullet \|)$  be an n-normed space. Define

$$\forall t \in \mathbb{R}, \ (x_1, x_2, \dots, x_n) \in X^n : \ N(x_1, x_2, \dots, x_n, t) = \begin{cases} \frac{t}{t + \|x_1, x_2, \dots, x_n\|} & t > 0, \\ 0 & t < 0 \end{cases}$$

Then (X, N) is an f-n-NLS.

**Definition 2.8** Let  $\mathcal{L} = (L, \leq_L)$  be a complete lattice and let U be a non-empty set called the universe. An  $\mathcal{L}$ -fuzzy set in U is defined as a mapping  $\mathcal{A} : U \to L$ . For each u in U,  $\mathcal{A}(u)$  represents the degree (in L) to which u is an element of  $\mathcal{A}$ .

72

**Definition 2.9** A t-norm on  $\mathcal{L}$  is a mapping  $*_L: L^2 \to L$  satisfying the following conditions:

- (i)  $\forall x \in L : x *_L 1_{\mathcal{L}} = x$  (boundary condition),
- (ii)  $\forall (x,y) \in L^2 : x *_L y = y *_L x$  (commutativity),
- (iii)  $\forall (x, y, z) \in L^3$ :  $x *_L (y *_L z) = (x *_L y) *_L z$  (associativity),
- (iv)  $\forall (x, y, x', y') \in L^4$ :  $x \leq_L x'$  and  $y \leq_L y' \Rightarrow x *_L y \leq_L x' *_L y'$ ) (monotonicity).

**Definition 2.10** A t-norm  $*_L$  on  $\mathcal{L}$  is said to be continuous if, for any  $x, y \in \mathcal{L}$  and any sequences  $\{x_n\}$  and  $\{y_n\}$  which converge to x and y, respectively,  $\lim_{n\to\infty} (x_n *_L y_n) = x *_L y$ .

**Definition 2.11** The triple  $(V, \mathcal{P}, *_L)$  is said to be an  $\mathcal{L}$ -fuzzy n-normed space if V is vector space,  $*_L$  is a continuous t-norm on  $\mathcal{L}$  and  $\mathcal{P}$  is an  $\mathcal{L}$ -fuzzy set on  $V^n \times (0, \infty)$  satisfying the following conditions:

For all  $x_1, x_2, \ldots, x_n, x_n' \in V$  and  $t, s \in (0, \infty)$ :

- (a)  $\mathcal{P}(x_1, x_2, \dots x_n, t) >_L 0_{\mathcal{L}}$ ,
- (b)  $\mathcal{P}(x_1, x_2, \dots x_n, t) = 1_{\mathcal{L}}$  if and only if  $x_1, x_2, \dots x_n$  are linearly dependent,
- (c)  $\mathcal{P}(x_1, x_2, \dots x_n, t)$  is invariant under any permutation of  $x_1, x_2, \dots x_n$ ,
- (d)  $\mathcal{P}(x_1, x_2, \dots, \alpha x_n, t) = \mathcal{P}(x_1, x_2, \dots, \frac{t}{|\alpha|})$  for each  $\alpha \neq 0$ ,
- (e)  $\mathcal{P}(x_1, x_2, \dots x_n, t) *_L \mathcal{P}(x_1, x_2, \dots x_n', s) \leq_L \mathcal{P}(x_1, x_2, \dots, x_n + x_n', t + s)$ ,
- (f)  $\mathcal{P}(x_1, x_2, \dots x_n, \bullet) : (0, \infty) \to L$  is continuous and  $\lim_{t \to \infty} \mathcal{P}(x, t) = 1_{\mathcal{L}}$ .

*In this case,* P *is called an* L-*fuzzy* n-*norm.* 

**Definition 2.12** [17]. A negator on  $\mathcal{L}$  is any decreasing mapping  $\mathcal{N}: L \to L$  satisfying  $\mathcal{N}(0_{\mathcal{L}}) = 1_{\mathcal{L}}$  and  $\mathcal{N}(1_{\mathcal{L}}) = 0_{\mathcal{L}}$ .

**Definition 2.13** If  $\mathcal{N}(\mathcal{N}(x)) = x$  for all  $x \in L$ , then  $\mathcal{N}$  is called an involutive negator.

In this paper, the involutive negator  $\mathcal{N}$  is fixed.

**Definition 2.14** A sequence  $(x_k)$  in an  $\mathcal{L}$ -fuzzy n-normed space  $(V, \mathcal{P}, *_L)$  is called a Cauchy sequence if, for each  $\varepsilon \in L - \{0_{\mathcal{L}}\}$  and t > 0 and any  $a_1, ..., a_{n-1} \in X$ , there exists  $n_0 \in \mathbb{N}$  such that, for all  $k, m \geq n_0$ ,  $\mathcal{P}(a_1, a_2, ..., a_{n-1}, x_k - x_m, t) >_L \mathcal{N}(\varepsilon)$ , where  $\mathcal{N}$  is a negator on  $\mathcal{L}$ .

A sequence  $(x_k)$  is said to be convergent to  $x \in V$  in the  $\mathcal{L}$ -fuzzy n-normed space  $(V, \mathcal{P}, *_L)$  if  $\mathcal{P}(a_1, a_2, \ldots a_{n-1}, x_k - x, t) \to 1_{\mathcal{L}}$ , whenever  $n \to +\infty$  for all t > 0 and  $a_1, \ldots, a_{n-1} \in X$ .

An  $\mathcal{L}$ -fuzzy n-normed space  $(V, \mathcal{P}, *_L)$  is said to be complete if and only if every Cauchy sequence in V is convergent.

**Definition 2.15** [17]. Let  $\mathbb{K}$  be a field. A non-Archimedean absolute value on  $\mathbb{K}$  is a function  $|\cdot|: \mathbb{K} \to \mathbb{R}$  such that for any  $a, b \in \mathbb{K}$  we have:

(1)  $|a| \ge 0$ , and equality holds if and only if a = 0,

$$(2) |ab| = |a| |b|,$$

(3) 
$$|a+b| \le \max\{|a|, |b|\}.$$

Note that  $|n| \le 1$  for each integer n. We always assume, in addition that |.| is non-tivial, i.e., there exists an  $a_0 \in \mathbb{K}$  such that  $|a_0| \ne 0, 1$ .

# 3 Stability of quadratic functional equation in $\mathcal{L}$ -fuzzy n-normed spaces

Let  $\mathbb{K}$  be a non-Archimedean field, X a vector space over  $\mathbb{K}$  and  $(Y, \mathcal{P}, *_L)$  a non-Archimedean  $\mathcal{L}$ -fuzzy n-Banach space over  $\mathbb{K}$ .

In this section we investigate the quadratic functional equation. We define an  $\mathcal{L}$ -fuzzy approximately quadratic mapping.

**Definition 3.1** Let  $\Psi$  be an  $\mathcal{L}$ -fuzzy set on  $\underbrace{X \times \ldots \times X}_n \times [0, \infty)$  such that  $\Psi(x_1, x_2, \ldots x_n, \bullet)$  is nondecreasing,

$$\Psi(cx_1, cx_2, \dots cx_n, t) \ge_L \Psi(x_1, x_2, \dots, x_n, \frac{t}{|c|}), \ \forall x_1, x_2, \dots, x_n \in X, \ c \ne 0$$

and

$$\lim_{t \to \infty} \Psi(x_1, x_2, \dots, x_n, t) = 1_{\mathcal{L}}, \ \forall x_1, x_2, \dots, x_n \in X, \ t > 0.$$

A mapping  $f: X \to Y$  is said to be  $\Psi$ -approximately quadratic in non-Archimedean  $\mathcal{L}$ -fuzzy n-normed space if

$$\mathcal{P}(f(l\,x+y) + f(l\,x-y) - 2\,l^2 f(x) - 2\,f(x\,y), x_2, \dots x_n, t) \ge_L \Psi(x, x_2, \dots x_n, t)$$

$$\forall x, y, x_2, \dots x_n \in X, t > 0$$
(3.1)

Throughout this paper, we denote  $a_1 *_L a_2 *_L ... *_L a_n$  by  $\prod_{j=1}^n a_j$ .

**Theorem 3.2** Let  $\mathbb{K}$  be a non-Archimedean field, X a vector space over  $\mathbb{K}$  and  $(Y, \mathcal{P}, *_L)$  a non-Archimedean  $\mathcal{L}$ -fuzzy n-normed space over  $\mathbb{K}$ . Let  $f: X \to Y$  be a  $\Psi$ -approximately quadratic mapping in non-Archimedean  $\mathcal{L}$ -fuzzy n-normed space. If there exist an  $\alpha \in \mathbb{R}$   $(\alpha > 0)$  and an integer  $k, k \geq 2$  with  $|l^k| < \alpha$  and  $|l| \neq 1$  and  $l \neq 0$  such that

$$\Psi(l^{-k}x, l^{-k}x_2, \dots, l^{-k}x_n, t) \ge_L \Psi(x, x_2, \dots x_n, \alpha t), \tag{3.2}$$

and

$$\lim_{n\to\infty}\prod_{j=n}^{\infty}\mathcal{M}(x,x_2,\ldots,x_n,\frac{\alpha^jt}{|l|^{kj}})=1_{\mathcal{L}},$$

then there exists a unique quadratic mapping  $Q: X \to Y$  such that

$$\mathcal{P}(f(x) - Q(x), x_2, \dots x_n, t) \ge_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots x_n, \frac{\alpha^{i+1}t}{|l|^{ki}}), \quad \forall x_i \in X, \ t > 0,$$
 (3.3)

where

$$\mathcal{M}(x, x_2, \dots x_n, t) = \mathcal{M}_k(x, x_2, \dots x_n, t) := \Psi(x, x_2, x_3, \dots x_n, t) *_L \Psi(lx, x_2, x_3, \dots x_n, t)$$

$$*_L \dots *_L \Psi(l^{k-1}x, x_2, x_3, \dots, x_n, t) .$$

*Proof.* First we show by induction on j that for  $x, x_2, ..., x_n \in X, t > 0$  and  $j \ge 1$ ,

$$\mathcal{P}(f(l^{j}x) - l^{2j}f(x), x_{2}, \dots, x_{n}, t) \ge_{L} \mathcal{M}_{j}(x, x_{2}, \dots, x_{n}, t)$$
(3.4)

Putting y = 0 in (3.1), we obtain

$$\mathcal{P}(2 f(l x) - 2 l^2 f(x), x_2, \dots, x_n, t) \ge_L \Psi(x, x_2, x_3, \dots, x_n, t),$$

and

$$\mathcal{P}(f(lx) - l^2 f(x), x_2, \dots, x_n, t) \ge_L \Psi(x, x_2, x_3, \dots, x_n, 2t) \ge_L \Psi(x, x_2, x_3, \dots, x_n, t).$$

This proves (3.4) for j = 1. Let (3.4) hold for some j > 1. Replacing y by 0 and x by  $l^j x$  in (3.1), we get

$$\mathcal{P}(f(l^{j+1}x) - l^2f(l^jx), x_2, \dots, x_n, t) \ge_L \Psi(l^jx, x_2, x_3, \dots, x_n, t),$$

Since |l| < 1, it follows that

$$\mathcal{P}(f(l^{j+1}x) - l^{2(j+1)}f(x), x_{2}, \dots, x_{n}, t) 
\geq_{L} \mathcal{P}(f(l^{j+1}x) - l^{2}f(l^{j}x), x_{2}, \dots, x_{n}, t) *_{L} \mathcal{P}(l^{2}f(l^{j}x) - l^{2(j+1)}f(x), x_{2}, \dots, x_{n}, t) 
= \mathcal{P}(f(l^{j+1}x) - l^{2}f(l^{j}x), x_{2}, \dots, x_{n}, t) *_{L} \mathcal{P}(f(l^{j}x) - l^{2j}f(x), x_{2}, \dots, x_{n}, \frac{t}{|l^{2}|}) 
\geq_{L} \mathcal{P}(f(l^{j+1}x) - l^{2}f(l^{j}x), x_{2}, \dots, x_{n}, t) *_{L} \mathcal{P}(f(l^{j}x) - l^{2j}f(x), x_{2}, \dots, x_{n}, t) 
\geq_{L} \mathcal{\Psi}(l^{j}x, x_{2}, x_{3}, \dots, x_{n}, t) *_{L} \mathcal{M}_{j}(x, x_{2}, \dots, x_{n}, t) = \mathcal{M}_{j+1}(x, x_{2}, \dots, x_{n}, t),$$

and thus (3.4) holds for all j > 1. In particular, we have

$$\mathcal{P}(f(l^k x) - l^{2k} f(x), x_2, \dots, x_n, t) \ge_L \mathcal{M}(x, x_2, \dots, x_n, t).$$
(3.5)

Replacing x by  $l^{-(kn+k)}x$  in (3.5) and using inequality (3.1), we obtain

$$\mathcal{P}(f(\frac{x}{l^{kn}}) - l^{2k}f(\frac{x}{l^{kn+k}}), x_2, \dots, x_n, t) \geq_L \mathcal{M}(\frac{x}{l^{kn+k}}, x_2, \dots, x_n, t)$$
$$\geq_L \mathcal{M}(x, x_2, \dots, x_n, \alpha^{n+1}t),$$

and so

$$\mathcal{P}((l^{2k})^n f(\frac{x}{(l^k)^n}) - (l^{2k})^{n+1} f(\frac{x}{(l^k)^{n+1}}), x_2, \dots, x_n, t) \geq_L \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{n+1}}{|(l^{2k})^n|} t)$$

$$\geq_L \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{n+1}}{|(l^k)^n|} t).$$

Hence it follows that

$$\mathcal{P}((l^{2k})^n f(\frac{x}{(l^k)^n}) - (l^{2k})^{n+p} f(\frac{x}{(l^k)^{n+p}}), x_2, \dots, x_n, t)$$

$$\geq_L \prod_{j=n}^{n+p} (\mathcal{P}((l^{2k})^j f(\frac{x}{(l^k)^j}) - (l^{2k})^{j+p} f(\frac{x}{(l^k)^{j+p}}), x_2, \dots, x_n, t))$$

$$\geq_L \prod_{j=n}^{n+p} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{j+1}}{|(l^k)^j|} t).$$

Since  $\lim_{n\to\infty}\prod_{j=n}^{\infty}\mathcal{M}(x,x_2,\ldots,x_n,\frac{\alpha^{j+1}}{|(l^k)^j|}t)=1_{\mathcal{L}}$ , the sequence

$$\left\{ (l^{2k})^n f(\frac{x}{(l^k)^n}) \right\}_{n \in \mathbb{N}}$$

is a Cauchy sequence in the non-Archmedean  $\mathcal{L}$ -fuzzy n-normed space  $(Y, \mathcal{P}, *_L)$ . Hence we can define a mapping  $Q: X \to Y$  such that

$$\lim_{n \to \infty} \mathcal{P}((l^{2k})^n f(\frac{x}{(l^k)^n}) - Q(x), x_2, \dots, x_n, t) = 1_{\mathcal{L}}.$$
(3.6)

Next, for all  $n \ge 1$ , we have

$$\mathcal{P}(f(x) - (l^{2k})^n f(\frac{x}{(l^k)^n}), x_2, \dots, x_n, t)$$

$$= \mathcal{P}\left(\sum_{i=0}^{n-1} (l^{2k})^i f(\frac{x}{(l^k)^i}) - (l^{2k})^{i+1} f(\frac{x}{(l^k)^{i+1}}), x_2, \dots, x_n, t\right)$$

$$\geq_L \prod_{i=0}^{n-1} \mathcal{P}\left((l^{2k})^i f(\frac{x}{(l^k)^i}) - (l^{2k})^{i+1} f(\frac{x}{(l^k)^{i+1}}), x_2, \dots, x_n, t\right)$$

$$\geq_L \prod_{i=0}^{n-1} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}}{|(l^k)^i|} t),$$

and so

$$\mathcal{P}(f(x) - Q(x), x_{2}, \dots, x_{n}, t) \geq_{L} \mathcal{P}\left(f(x) - (l^{2k})^{n} f(\frac{x}{(l^{k})^{n}}), x_{2}, \dots, x_{n}, t\right)$$

$$*_{L} \mathcal{P}\left((l^{2k})^{n} f(\frac{x}{(l^{k})^{n}}) - Q(x), x_{2}, \dots, x_{n}, t\right)$$

$$\geq_{L} \prod_{i=0}^{n-1} \mathcal{M}(x, x_{2}, \dots, x_{n}, f(\frac{\alpha^{j+1}}{|(l^{k})^{i}|}))$$

$$*_{L} \mathcal{P}\left((l^{2k})^{n} f(\frac{x}{(l^{k})^{n}}) - Q(x), x_{2}, \dots, x_{n}, t\right). \quad (3.7)$$

Taking the limit as  $n \to \infty$  in (3.7), we obtain

$$\mathcal{P}(f(x) - Q(x), x_2, \dots, x_n, t) \ge_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}}{|(l^k)^i|} t)$$

which proves (3.4). As  $*_L$  is continuous, from a well-known result in  $\mathcal{L}$ -fuzzy normed space (see [18, Chapter 12]), it follows that

$$\lim_{n \to \infty} \mathcal{P}((l^{2k})^n f(l^{-kn}(l x + y)) + (l^{2k})^n f(l^{-kn}(l x - y))$$

$$-2 (l^{2k})^n f(l^{-kn}(x)) - 2 (l^{2k})^n f(l^{-kn}(y)), x_2, \dots, x_n, t)$$

$$= \mathcal{P}(Q(l x + y) + Q(l x - y) - 2 l^2 Q(x) - 2 Q(y), x_2, \dots, x_n, t).$$

for almost all t > 0.

On the other hand, replacing  $x_i$  by  $l^{-kn}x_i$  in (3.2) and (3.1), we get

$$\lim_{n \to \infty} \mathcal{P}((l^{2k})^n f(l^{-kn}(l x + y)) + (l^{2k})^n f(l^{-kn}(l x - y)) - 2(l^{2k})^n f(l^{-kn}(x)) - 2(l^{2k})^n f(l^{-kn}(y)), l^{-kn} x_2, \dots, l^{-kn} x_n, t)$$

$$\geq_L \Psi(l^{-kn} x, l^{-kn} x_2, \dots, l^{-kn} x_n, \frac{t}{|l^{2k}|^n})$$

$$\geq_L \Psi(x, x_2, \dots, x_n, \frac{\alpha^n t}{|l^k|^n}).$$

Since  $\lim_{n\to\infty} \Psi(x_1,x_2,\ldots,x_n,\frac{\alpha^n t}{|l^k|^n})=1_{\mathcal{L}}$ , we infer that Q is a quadratic mapping.

For the uniqueness of Q, let  $Q': X \to Y$  be another quadratic mapping such that

$$\mathcal{P}(Q'(x) - f(x), x_2, \dots, x_n, t) \geq_L \mathcal{M}(x, x_2, \dots, x_n, t).$$

Then we have,

$$\mathcal{P}(Q(x) - Q'(x), x_2, \dots, x_n, t) \\
\geq_L \mathcal{P}(Q(x) - (l^{2k})^n f(\frac{x}{(l^k)^n}), x_2, \dots, x_n, t) *_L \mathcal{P}((l^{2k})^n f(\frac{x}{(l^k)^n}) - Q'(x), x_2, \dots, x_n, t).$$

Therefore from (3.6), we conclude that Q = Q'. This completes the proof.

# 4 Stability of pexiderized quadratic functional equation in $\mathcal{L}$ -fuzzy n-normed spaces

In this chapter we consider the stability problem for the pexiderized functional equation.

**Definition 4.1** Let  $\Psi$  be as in Definition 3.1 and  $g, h: X \to Y$  be functions. A mapping  $f: X \to Y$  is said to be  $\Psi$ -approximately pexiderized quadratic in non-Archimedean  $\mathcal{L}$ -fuzzy n-normed space if

$$\mathcal{P}(f(x+y) + f(x-y) - 2g(x) - 2h(y), x_2, \dots, x_n, t) \ge_L \Psi(x, x_2, \dots, x_n, t), \tag{4.1}$$

for all  $x, y, x_2, ..., x_n \in X$  and all t > 0.

**Proposition 4.2** Let  $\mathbb{K}$  be a non-Archimedean field, X a vector space over  $\mathbb{K}$  and  $(Y, \mathcal{P}, *_L)$  a non-Archimedean  $\mathcal{L}$ -fuzzy Banach space over  $\mathbb{K}$ . Let  $f: X \to Y$  be a  $\Psi$ -approximately pexiderized quadratic mapping in non-Archimedean  $\mathcal{L}$ -fuzzy n-normed space. Suppose that f, g and h are odd. If there exist  $\alpha \in \mathbb{R}$   $(\alpha > 0)$  and an integer  $k \geq 2$  with  $|2^k| < \alpha$  and  $|2| \neq 0$  such that

$$\Psi(2^{-k}x, 2^{-k}x_2, \dots, 2^{-k}x_n, t) \ge_L \Psi(x, x_2, \dots, x_n, \alpha t), \quad \forall x, x_2, \dots, x_n \in X, \ t > 0,$$
 (4.2)

and

$$\lim_{m \to \infty} \prod_{j=m}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^j t}{|2|^{kj}}) = 1_{\mathcal{L}}, \quad \forall x, x_2, \dots, x_n \in X, \ t > 0,$$

then there exists an additive mapping  $T: X \to Y$  such that

$$\mathcal{P}(f(x) - T(x), x_2, \dots, x_n, t) \ge_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2|^{ki}}), \quad \forall x, x_2, \dots, x_n \in X, \ t > 0,$$
(4.3)

and

$$\mathcal{P}\big(g(x) + h(x) - T(x), x_2, \dots, x_n, t\big) \geq_L \prod_{i=1}^{\infty} \mathcal{M}\big(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2|^{ki}}\big)$$

where

$$\mathcal{M}(x, x_2, \dots, x_n, t) = \Psi(x, x_2, \dots, x_n, t) *_L \Psi(2x, x_2, \dots, x_n, t), \dots,$$
$$*_L \Psi(2^{k-1}x, x_2, \dots, x_n, t) *_L \Psi(0, x_2, \dots, x_n, t) \quad \forall x, x_2, \dots, x_n \in X, t > 0.$$

*Proof.* By changing the roles of x and y in (4.1) we get,

$$\mathcal{P}(f(x+y) - f(x-y) - 2g(y) - 2h(x), x_2, \dots, x_n, t) \ge_L \Psi(y, x_2, \dots, x_n, t). \tag{4.4}$$

It follows from (4.1) and (4.4) that

$$\mathcal{P}(f(x+y) - g(x) - h(y) - g(y) - h(x), x_2, \dots, x_n, t) 
\geq_L \mathcal{P}(f(x+y) - g(x) - h(y) - g(y) - h(x), x_2, \dots, x_n, \frac{t}{|2|}) 
\geq_L \mathcal{P}(f(x+y) + f(x-y) - 2g(x) - 2h(y), x_2, \dots, x_n, t) 
*_L \mathcal{P}(f(x+y) - f(x-y) - 2g(y) - 2h(x), x_2, \dots, x_n, t) 
\geq_L \Psi(x, x_2, \dots, x_n, t) *_L \Psi(y, x_2, \dots, x_n, t).$$
(4.5)

If we put y = 0 in (4.5), then we get

$$\mathcal{P}(f(x) - g(x) - h(x), x_2, \dots, x_n, t) \ge_L \Psi(x, x_2, \dots, x_n, t) *_L \Psi(0, x_2, \dots, x_n, t). \tag{4.6}$$

Similarly by putting x = 0 in (4.5), we have

$$\mathcal{P}(f(y) - g(y) - h(y), x_2, \dots, x_n, t) \ge_L \Psi(0, x_2, \dots, x_n, t) *_L \Psi(y, x_2, \dots, x_n, t). \tag{4.7}$$

From (4.5), (4.6) and (4.7) we conclude that

$$\mathcal{P}(f(x+y) - f(x) - f(y), x_2, \dots, x_n, t) 
\geq_L \mathcal{P}(f(x+y) - g(x) - h(y) - g(y) - h(x), x_2, \dots, x_n, t) 
*_L \mathcal{P}(f(x) - g(x) - h(x), x_2, \dots, x_n, t) *_L \mathcal{P}(f(y) - g(y) - h(y), x_2, \dots, x_n, t) 
\geq_L \Psi(x, x_2, \dots, x_n, t) *_L \Psi(y, x_2, \dots, x_n, t) *_L \Psi(0, x_2, \dots, x_n, t).$$
(4.8)

We show by induction on j, that for all  $x, x_2, ..., x_n \in X, t > 0$  and  $j \ge 1$ ,

$$\mathcal{P}(f(2^{j} x) - 2^{j} f(x), x_{2}, \dots, x_{n}, t) \geq_{L} \mathcal{M}_{j}(x, x_{2}, \dots, x_{n}, t). \tag{4.9}$$

If we put x = y in (4.8), then we get

$$\mathcal{P}(f(2x) - 2f(x), x_2, \dots, x_n, t)$$

$$\geq_L \Psi(x, x_2, \dots, x_n, t) *_L \Psi(0, x_2, \dots, x_n, t).$$
(4.10)

This proves (4.9) for j = 1. Let (4.9) holds for some j > 1. Replacing x by  $2^{j}x$  in (4.10), we get

$$\mathcal{P}(f(2^{j+1}x) - 2 f(2^{j}x), x_2, \dots, x_n, t)$$

$$\geq_L \Psi(2^{j}x, x_2, \dots, x_n, t) *_L \Psi(0, x_2, \dots, x_n, t).$$

Since  $|2| \le 1$ , it follows that

$$\mathcal{P}(f(2^{j+1}x) - 2^{j+1}f(x), x_2, \dots, x_n, t) 
\geq_L \mathcal{P}(f(2^{j+1}x) - 2f(2^jx), x_2, \dots, x_n, t) *_L \mathcal{P}(2f(2^jx) - 2^{j+1}f(x), x_2, \dots, x_n, t) 
= \mathcal{P}(f(2^{j+1}x) - 2f(2^jx), x_2, \dots, x_n, t) *_L \mathcal{P}(f(2^jx) - 2^jf(x), x_2, \dots, x_n, \frac{t}{|2|}) 
\geq_L \mathcal{P}(f(2^{j+1}x) - 2f(2^jx), x_2, \dots, x_n, t) *_L \mathcal{P}(f(2^jx) - 2^jf(x), x_2, \dots, x_n, t) 
\geq_L \mathcal{\Psi}(2^jx, x_2, \dots, x_n, t) *_L \mathcal{\Psi}(0, x_2, \dots, x_n, t) *_L \mathcal{M}_j(x, x_2, \dots, x_n, t) 
= \mathcal{M}_{j+1}(x, x_2, \dots, x_n, t).$$

Thus (4.9) holds for all  $j \ge 1$ . In particular, we have

$$\mathcal{P}(f(2^k x) - 2^k f(x), x_2, \dots, x_n, t) \ge_L \mathcal{M}(x, x_2, \dots, x_n, t). \tag{4.11}$$

Replacing x by  $2^{-(kn+k)}x$  in (4.11) and using inequality (4.1), we obtain

$$\mathcal{P}(f(\frac{x}{2^{kn}}) - 2^k f(\frac{x}{2^{kn+k}}), x_2, \dots, x_n, t) \geq_L \mathcal{M}(\frac{x}{2^{kn+k}}, x_2, \dots, x_n, t)$$
$$\geq_L \mathcal{M}(x, x_2, \dots, x_n, \alpha^{n+1}t).$$

and so

$$\mathcal{P}(2^{kn}f(\frac{x}{2^{kn}}) - 2^{k(n+1)}f(\frac{x}{2^{k(n+1)}}), x_2, \dots, x_n, t) \ge_L \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{n+1}t}{|2^{kn}|}).$$

Hence it follows that

$$\mathcal{P}(2^{kn}f(\frac{x}{2^{kn}}) - 2^{k(n+p)}f(\frac{x}{2^{k(n+p)}}), x_2, \dots, x_n, t)$$

$$\geq_L \prod_{j=n}^{n+p} \mathcal{P}(2^{kj}f(\frac{x}{2^{kj}}) - 2^{k(j+1)}f(\frac{x}{2^{k(j+1)}}), x_2, \dots, x_n, t) \geq_L \prod_{j=n}^{n+p} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{j+1}t}{|2^{kj}|}).$$

Since  $\lim_{n\to\infty}\prod_{j=n}^\infty \mathcal{M}(x,x_2,\ldots,x_n,\frac{\alpha^{j+1}t}{|2^{kj}|})=1_{\mathcal{L}}$  for  $x\in X$  and t>0,  $\{2^{kn}f(\frac{x}{2^{kn}})\}_{n\in\mathbb{N}}$  is a Cauchy sequence in the non-Archmedean  $\mathcal{L}$ -fuzzy Banach space  $(Y,\mathcal{P},*_L)$ . Hence we can define a mapping  $T:X\to Y$  such that

$$\lim_{n \to \infty} \mathcal{P}(2^{kn} f(\frac{x}{2^{kn}}) - T(x), x_2, \dots, x_n, t) = 1_{\mathcal{L}}.$$
 (4.12)

Next, for all  $n \ge 1, x \in X$  and t > 0, we have

$$\mathcal{P}\Big(f(x) - 2^{kn} f(\frac{x}{2^{kn}}), x_2, \dots, x_n, t\Big) = \mathcal{P}\Big(\sum_{i=0}^{n-1} 2^{ki} f(\frac{x}{2^{ki}}) - 2^{k(i+1)} f(\frac{x}{2^{k(i+1)}}), x_2, \dots, x_n, t\Big)$$

$$\geq_L \prod_{i=0}^{n-1} \mathcal{P}\Big(2^{ki} f(\frac{x}{2^{ki}}) - 2^{k(i+1)} f(\frac{x}{2^{k(i+1)}}), x_2, \dots, x_n, t\Big)$$

$$\geq_L \prod_{i=0}^{n-1} \mathcal{M}\Big(x, x_2, \dots, x_n, \frac{\alpha^{i+1} t}{|2^{ki}|}\Big)$$

and so

$$\mathcal{P}(f(x) - T(x), x_2, \dots, x_n, t) 
\geq_L \mathcal{P}(f(x) - 2^{kn} f(\frac{x}{2^{kn}}), x_2, \dots, x_n, t) *_L \mathcal{P}(2^{kn} f(\frac{x}{2^{kn}}) - T(x), x_2, \dots, x_n, t) 
\geq_L \prod_{i=0}^{n-1} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1} t}{|2^{ki}|}) *_L \mathcal{P}(2^{kn} f(\frac{x}{2^{kn}}) - T(x), x_2, \dots, x_n, t).$$
(4.13)

Taking the limit as  $n \to \infty$  in (4.13), we obtain

$$\mathcal{P}(f(x) - T(x), x_2, \dots, x_n, t) \ge_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2^{ki}|}),$$
 (4.14)

which proves (4.3). As  $*_L$  is continuous, from a well-known result in  $\mathcal{L}$ -fuzzy n-normed space (see [18, Chapter 12]), it follows that

$$\lim_{n \to \infty} \mathcal{P}(2^{kn} f(2^{-kn} (x+y)) - 2^{kn} f(2^{-kn} x) - 2^{kn} f(2^{-kn} y), x_2, \dots, x_n, t)$$

$$= \mathcal{P}(T(x+y) - T(x) - T(y), x_2, \dots, x_n, t)$$

for almost all t > 0.

On the other hand, replacing x by  $2^{-kn}x$  in (4.8), we get

$$\mathcal{P}(2^{kn}f(2^{-kn}(x+y)) - 2^{kn}f(2^{-kn}x) - 2^{kn}f(2^{-kn}y), x_2, \dots, x_n, t)$$

$$\geq_L \Psi(2^{-kn}x, x_2, \dots, x_n, \frac{t}{|2^{kn}|}) *_L \Psi(2^{-kn}y, x_2, \dots, x_n, \frac{t}{|2^{kn}|}) *_L$$

$$*_L \Psi(0, x_2, \dots, x_n, \frac{t}{|2^{kn}|})$$

$$\geq_L \Psi(x, x_2, \dots, x_n, \frac{\alpha^n t}{|2^{kn}|}) *_L \Psi(y, x_2, \dots, x_n, \frac{\alpha^n t}{|2^{kn}|}) *_L$$

$$*_L \Psi(0, x_2, \dots, x_n, \frac{\alpha^n t}{|2^{kn}|})$$

Since each items of the right hand side of above inequality tends to 1 as  $n \to \infty$ , we infer that T is an additive mapping.

It follows from (4.6) and (4.14) that

$$\mathcal{P}(g(x) + h(x) - T(x), x_2, \dots, x_n, t) \\
\geq_L \mathcal{P}(f(x) - T(x), x_2, \dots, x_n, t) *_L \mathcal{P}(g(x) + h(x) - f(x), x_2, \dots, x_n, t) \\
\geq_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2^{ki}|}) *_L \Psi(x, x_2, \dots, x_n, t) *_L \Psi(0, x_2, \dots, x_n, t) \\
\geq_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2^{ki}|}).$$

For the uniqueness of T, let  $T': X \to Y$  be another additive mapping such that

$$\mathcal{P}(T'(x) - f(x), x_2, \dots, x_n, t) \geq_L \mathcal{M}(x, x_2, \dots, x_n, t).$$

Then we have for all  $x, x_2, \ldots, x_n \in X$  and t > 0,

$$\mathcal{P}(T(x) - T'(x), x_2, \dots, x_n, t)$$

$$\geq_L \mathcal{P}(T(x) - 2^{kn} f(\frac{x}{2^{kn}}), x_2, \dots, x_n, t) *_L \mathcal{P}(2^{kn} f(\frac{x}{2^{kn}}) - T'(x), x_2, \dots, x_n, t).$$

Therefore we conclude from (4.12), that T = T'. This completes the proof.

**Proposition 4.3** Let  $\mathbb{K}$  be a non-Archimedean field, X a vector space over  $\mathbb{K}$  and  $(Y, \mathcal{P}, *_L)$  a non-Archimedean  $\mathcal{L}$ -fuzzy Banach space over  $\mathbb{K}$ . Let  $f: X \to Y$  be a  $\Psi$ -approximately pexiderized quadratic mapping in non-Archimedean  $\mathcal{L}$ -fuzzy n-normed space. Suppose that f,g and h are even and f(0) = g(0) = h(0) = 0. If there exist an  $\alpha \in \mathbb{R}$   $(\alpha > 0)$  and an integer  $k, k \geq 2$  with  $|2^k| < \alpha$  and  $|2| \neq 0$  such that

$$\Psi(2^{-k}x, 2^{-k}x_2, \dots, 2^{-k}x_n, t) \ge_L \Psi(x, x_2, \dots, x_n, \alpha t), \quad \forall x, x_2, \dots, x_n \in X, \ t > 0,$$

and

$$\lim_{m\to\infty} \prod_{j=m}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^j t}{|2|^{kj}}) = 1_{\mathcal{L}}, \quad \forall x, x_2, \dots, x_n \in X, \ t > 0,$$

then there exists a quadratic mapping  $Q: X \to Y$  such that

$$\mathcal{P}(f(x) - Q(x), x_2, \dots, x_n, t) \ge_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2|^{ki}}), \quad \forall x, x_2, \dots, x_n \in X, \ t > 0,$$
(4.15)

and

$$\mathcal{P}(Q(x) - g(x), x_2, \dots, x_n, t) \ge_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2|^{ki}}),$$

and

$$\mathcal{P}(Q(x) - h(x), x_2, \dots, x_n, t) \ge_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2|^{ki}}),$$

where  $\forall x, x_2, ..., x_n \in X, t > 0$ ,

$$\mathcal{M}(x, x_2, \dots, x_n, t) = \Psi(x, x_2, \dots, x_n, t) *_L \Psi(2x, x_2, \dots, x_n, t), \dots,$$

$$*_L \Psi(2^{k-1}x, x_2, \dots, x_n, t) *_L \Psi(0, x_2, \dots, x_n, t) \quad \forall x, x_2, \dots, x_n \in X, t > 0.$$

*Proof.* Put x = y in (4.1). Then for all  $x, x_2, ..., x_n \in X$  and t > 0,

$$\mathcal{P}(f(2x) - 2g(x) - 2h(x), x_2, \dots, x_n, t) \ge_L \Psi(x, x_2, \dots, x_n, t).$$

Put x = 0 in (4.1), we get

$$\mathcal{P}(2f(y) - 2h(y), x_2, \dots, x_n, t) \ge_L \Psi(0, x_2, \dots, x_n, t), \tag{4.16}$$

for all  $x, x_2, ..., x_n \in X$  and t > 0. For y = 0, (4.1) becomes

$$\mathcal{P}(2f(x) - 2g(x), x_2, \dots, x_n, t) \ge_L \Psi(x, x_2, \dots, x_n, t). \tag{4.17}$$

Combining (4.1), (4.16) and (4.17) we get

$$\mathcal{P}(f(x+y) + f(x-y) - 2f(x) - 2f(y), x_2, \dots, x_n, t) 
\geq_L \mathcal{P}(f(x+y) + f(x-y) - 2g(x) - 2h(y), x_2, \dots, x_n, t) *_L 
*_L \mathcal{P}(2f(y) - 2h(y), x_2, \dots, x_n, t) *_L \mathcal{P}(f(2x) - 2g(x), x_2, \dots, x_n, t) 
\geq_L \Psi(x, x_2, \dots, x_n, t) *_L \Psi(0, x_2, \dots, x_n, t).$$
(4.18)

We show by induction on j, that for  $x \in X, t > 0$  and  $j \ge 1$ ,

$$\mathcal{P}(f(2^{j}x) - 4^{j}f(x), x_{2}, \dots, x_{n}) \ge_{L} \mathcal{M}_{j}(x, x_{2}, \dots, x_{n}, t).$$
(4.19)

Similarly to the proof of Proposition 4.2, we can obtain the results. Here, by (4.15) and (4.17) we get

$$\mathcal{P}(Q(x) - g(x), x_2, \dots, x_n, t) 
\geq_L \mathcal{P}(Q(x) - f(x), x_2, \dots, x_n, t) *_L \mathcal{P}(f(x) - g(x), x_2, \dots, x_n, t) 
\geq_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2|^{ki}}) *_L \Psi(x, x_2, \dots, x_n, t) 
= \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2|^{ki}}).$$

A similar inequality holds for h.

**Theorem 4.4** Let  $\mathbb{K}$  be a non-Archimedean field, X a vector space over  $\mathbb{K}$  and  $(Y, \mathcal{P}, *_L)$  a non-Archimedean  $\mathcal{L}$ -fuzzy Banach space over  $\mathbb{K}$ . Let  $f: X \to Y$  be a  $\Psi$ -approximately quadratic mapping in non-Archimedean  $\mathcal{L}$ -fuzzy n-normed space. Suppose that f(0) = 0. If there exist an  $\alpha \in \mathbb{R}$  ( $\alpha > 0$ ) and an integer  $k, k \geq 2$  with  $|2^k| < \alpha$  and  $|2| \neq 0$  such that

$$\forall x, x_2, ..., x_n \in X, t > 0 : \Psi(2^{-k}x, 2^{-k}x_2, ..., 2^{-k}x_n, t) \ge_L \Psi(x, x_2, ..., x_n, \alpha t),$$

and

$$\lim_{m \to \infty} \prod_{i=n}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^j t}{|2|^{kj}}) = 1_{\mathcal{L}},$$

then there are unique mappings T and Q from X to Y such that T is additive, Q is quadratic and

$$\mathcal{P}(f(x) - T(x) - Q(x), x_2, \dots, x_n, t) \ge_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2|^{ki}}), \tag{4.20}$$

for all  $x, x_2, ..., x_n \in X$  and all t > 0, where

$$\mathcal{M}(x, x_2, \dots, x_n, t) = \Psi(x, x_2, \dots, x_n, t) *_L \Psi(2x, x_2, \dots, x_n, t), \dots,$$

$$*_L \Psi(2^{k-1}x, x_2, \dots, x_n, t) *_L \Psi(0, x_2, \dots, x_n, t) \quad \forall x, x_2, \dots, x_n \in X, t > 0.$$

*Proof.* Passing to the odd part  $f^o$  and even part  $f^e$  of f we deduce from (4.1) that

$$\mathcal{P}(f^{o}(x+y) + f^{o}(x-y) - 2f^{o}(x) - 2f^{o}(x), x_{2}, \dots, x_{n}, t) \geq_{L} \Psi(x, x_{2}, \dots, x_{n}).$$

And

$$\mathcal{P}(f^{e}(x+y) + f^{e}(x-y) - 2f^{e}(x) - 2f^{e}(y), x_{2}, \dots, x_{n}, t) \geq_{L} \Psi(x, x_{2}, \dots, x_{n}).$$

Using the proof of Proposition 4.2 and 4.3, we get a unique additive mapping T and a unique quadratic mapping Q satisfying

$$\forall x, x_2, ..., x_n \in X, t > 0: \ \mathcal{P}\left(f^o(x) - T(x), x_2, ..., x_n, t\right) \ge_L \prod_{i=1}^{\infty} \mathcal{M}\left(x, x_2, ..., x_n, \frac{\alpha^{i+1}t}{|2|^{ki}}\right),$$

also

$$\forall x, x_2, ..., x_n \in X, t > 0: \ \mathcal{P}(f^e(x) - Q(x), x_2, ..., x_n, t) \ge_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, ..., x_n, \frac{\alpha^{i+1}t}{|2|^{ki}}),$$

therefore

$$\mathcal{P}(f(x) - T(x) - Q(x), x_2, \dots, x_n, t)$$

$$\geq_L \mathcal{P}(f^o(x) - T(x), x_2, \dots, x_n, t) *_L \mathcal{P}(f^e(x) - Q(x), x_2, \dots, x_n, t)$$

$$\geq_L \prod_{i=1}^{\infty} \mathcal{M}(x, x_2, \dots, x_n, \frac{\alpha^{i+1}t}{|2|^{ki}}).$$

**Remark 4.5** By replacing  $\Psi(x, x_2, ..., x_n, t)$  with  $\Psi(x, x_2, ..., x_n, t) *_L \Psi(y, x_2, ..., x_n, t)$  in the right hand of inequalities (3.1) and (4.1) in Definitions 3.1 and 4.1 we can have similar results as in Theorem 3.2, Propositions 4.2, 4.3 and Theorem 4.4.

## References

- [1] T. Aoki, On the stability of the linear transformation in Banach spaces. Journal of the Mathematical Society of Japan 2 (1950), 64–66.
- [2] T. Bag and S. K. Samanta, *Finite dimensional fuzzy normed linear spaces*. International Journal of Fuzzy Systems **11** (3) (2003), 687–705.
- [3] S. C. Chang and J. N. Mordesen, *Fuzzy linear operators and fuzzy normed linear spaces*. Calcutta Mathematical Society. Review Bulletin **86** (5) (1994), 429–436.
- [4] C. Felbin, *Finite-dimensional fuzzy normed linear space*. Fuzzy Sets and Systems **48** (2) (1992), 239–248.
- [5] S. Gähler, Lineare 2-normierte Raume. Mathematische Nachrichten 28 (1964), 1–43.
- [6] J. A. Goguen, *L-fuzzy sets*. The Australian Journal of Mathematical Analysis and Applications **18** (1967), 145–174.
- [7] H. Gunawan and M. Mashadi, *On n-normed spaces*. International Journal of Mathematics and Mathematical Sciences **27** (10) (2001), 631–639.
- [8] D. H. Hyers, *On the stability of the linear functional equation*. Proceedings of the National Academy of Sciences **27** (1941), 222–224.
- [9] K. W. Jun and H. M. Kim, *On the Hyers–Ulam–Rassias stability of a general cubic functional equation*. Mathematical Inequalities and Applications **6** (1) (2003), 87–95.
- [10] K. W. Jun and H. M. Kim, On the Hyers–Ulam stability of a generalized quadratic and additive functional equation. Bulletin of the Korean Mathematical Society 42 (1) (2005), 133–148.
- [11] S. S. Kim and Y. J. Cho, *Strict convexity in linear n–normed spaces*. Demonstratio Mathematica **29** (4) (1996), 739–744.
- [12] Y. S. Lee and S. Y. Chung, *Stability of the Jensen type functional equation*. Banach Journal of Mathematical Analysis **1** (1) (2007), 91–100.
- [13] A. Misiak, *n-inner product spaces*. Mathematische Nachrichten **140** (1989), 299–319.
- [14] Al. Narayanan and S. Vijayabalaji, *Fuzzy n–normed linear space*. International Journal of Mathematics and Mathematical Sciences **24** (2005), 3963–3977.
- [15] Th. M. Rassias, *On the stability of the linear mapping in Banach spaces*. Proceedings of the American Mathematical Society **72** (1978), 297–300.
- [16] Th. M. Rassias, *On the stability of functional equations and a problem of Ulam*. Acta Applicandae Mathematicae **62** (2000), 123–130.
- [17] R. Saadati and C. Park, *Non-Archimedean L-fuzzy normed spaces and stability of functional equations*. Computers and Mathematics with Applications **60** (2010), 2488–2496.
- [18] B. Schweizer and A. Sklar, *Probabilistic metric spaces*, Elsevier, North Holand, New York, 1983.

- [19] S. M. Ulam, *Problems in Modern Mathematics*, John Wiley and Sons, New York, 1960.
- [20] A. Zadeh, Fuzzy sets. Information and Control 8 (1965), 338–353.