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Abstract. In this paper, we prove the Hyers—Ulam—Rassias stability of the following version of a
quadratic functional equation in non-Archimedean £—fuzzy n—normed spaces

flz+y)+ fle —y) =21 f(z) + 2 f(y) .
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1 Introduction

Fuzzy notion as first introduced by Zadeh [20] has been widely involved in different subjects of
mathematics. In Zadeh’s definition, a fuzzy set is characterized by a function from a nonempty set
X to [0, 1]. Goguen generalized the notion of a fuzzy subset of X to an L—fuzzy subset, namely a
function from X to a lattice L [6].
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Fuzzy set theory is a powerful tool for modelling uncertainty and vagueness in various problems
arising in the field of science and engineering.

Gihler [5] introduced an attractive theory of 2-norm and n—norm on a linear space. A sys-
tematic development of an n—normed linear space has been extensively made by Kim and Cho [11],
A. Misiak [13] and Gunawan [7]. Gunawan and Mashadi [7] gave a simple way to derive an (n—1)-
norm from the n—norm and realized that any n—normed space is an (n—1)-normed space. A detailed
theory of fuzzy normed linear space can be found in [2, 3, 4]. Narayanan and Vijayabalaji [14] have
extended the notion of n—normed linear space to fuzzy n—normed linear space.

Stability problem of a functional equation was first posed in [19] which was answered in [8]
and then generalized in [1, 15] for additive mappings and linear mappings respectively. Since then,
several stability problems for various functional equations have been investigated in [16, 9, 10, 12].

Several results for the Hyers—Ulam—Rassias stability of many functional equations have been
proved by several researchers. Our goal is to determine some stability results concerning the func-
tional equation

fla+y)+ fle—y) =20 f(2)+2 f(y)

in non-Archmedian £—fuzzy n—normed spaces.

2 Preliminaries

In this section, we provide a collection of definitions and related results which are essential and used
in the next discussions.

Definition 2.1 (/5]). Let X be a real vector space of dimension greater than 1 and let ||e, || be a
real-valued function on X x X satisfying the following conditions:

(1) ||z, y|| = 0 if any only if x and y are linearly dependent,

(2) ||z, yll = lly, |,

, where o € R,

(3) llaw,yll = [l |z, y
(4) e,y + 2 <z, yll + |l 2]

Then,

e, e|| is called a 2-norm on X and the pair (X, ||e, e||) is called a 2-normed linear space.

Definition 2.2 ([7]). Let n € N and X be a real linear space of dimension d > n. (Here we allow
d to be infinite.) A real valued function ||e,...,e| on X x --- x X = X" satisfying the following
—_—

four properties: n
(1) ||z1, 22, ..., 2| = 0 ifany only if 1, x2, . .. x, are linearly dependent,
(2) ||z1, 22, ..., x| is invariant under any permutation of the arguments,
(3) ||lx1,x2,...,azy| = |a|||z1, x2, ..., 24|, forany a € R,

(4) ||z1, 22, .. wp1,y + 2] < 21,20, Tno1, Yl + |21, 225 - T, 2|
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is called an n—norm on X and the pair (X, ||e, ..., o||) is called an n—normed linear space.

Definition 2.3 ([7]). A sequence (xy,) in an n—normed linear space (X, ||e, ..., o||) is said to be
convergent to x € X (in the n—norm) if for any ay, ..,an—1 € X,

lim ||a1,a2,...,an—1,2 — || =0.
k—o0
Definition 2.4 ([7]). A sequence (xy) in an n—normed linear space (X, ||e, ... o|) is called a

Cauchy sequence if for any a1, ..,an—1 € X,

lim [la1,a2,...,6n—1,7% — Tm|| =0.
,M—00

Definition 2.5 (/7]). An n—normed linear space is said to be complete if every Cauchy sequence is
convergent.

Definition 2.6 ([14]). Let X be a linear space over a field F. A fuzzy subset N of X™ x R is called
a fuzzy n—norm on X if and only if:

(N1) Forallt € Rwitht <0, N(x1,x2,...,2n,t) =0,

(N2) Forallt € Rwitht > 0, N(x1,22,...,2,,t) = 1 if and only x1,x9, ...z, are linearly
dependent,

(N3) N(z1,22,...,Tn,t) is invariant under any permutation of 1,2, . .., Ty,

(N4) Forallt € Rwitht >0, N(x1,x2,...,CTy,t) :N(a:l,wg,...,xn,ﬁ), ifc#0,c€eF,

(N5) Forall s,t € R,

N(z1,22,..., % + 20,8 +t) > min{N(x1,x2,...,7n,8), N(x1,20,..., 20, 1)},

rrn
(N6) N(z1,22,...,Tn,t) is a non-decreasing function of t € R and
lim N(xz1,z2,...,2n,t) =1.
t—00

Then (X, N) is called a fuzzy n—normed linear space or in short f-n-NLS.

Example 2.7 Let (X, ||o, 0, ..., o|) be an n-normed space. Define

n Femay (>0
VteR, (x1,22,...,2,) € X" : N(x1,29,...,2Tp,1) =
0 t<0

Then (X, N) is an f-n-NLS.
Definition 2.8 Let L = (L, <) be a complete lattice and let U be a non-empty set called the

universe. An L—fuzzy set in U is defined as a mapping A : U — L. For each u in U, A(u)
represents the degree (in L) to which u is an element of A.
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Definition 2.9 A t-norm on L is a mapping *, : L? — L satisfying the following conditions:
()VeeL : x * 1, = = (boundary condition),
(ii)V(z,y) € L? : x ¥ Y = Y% T (commutativity),
(iii)¥(z,y,2) € L? : =« %, (y* 2) = (x* y)* 2z (associativity),

(iv)V(x,y, o', y) e L* © v <pa' and y<py = xx y < 2’ y') (monotonicity).

Definition 2.10 A t-norm , on L is said to be continuous if, for any x,y € L and any sequences

{zn} and {yn} which converge to x and y, respectively, lim, o (Tn *, Yn) = T %, Y.

Definition 2.11 The triple (V, P, *L) is said to be an L—fuzzy n—normed space if V' is vector space,

*, IS a continuous t-norm on L and P is an L~fuzzy set on V™ x (0, 00) satisfying the following

conditions:
Forall x1,x9,...,xy,x, € Vandt,s € (0,00):
(a) P(x1,x2,...2Tn,t) >1 Of,
(b) P(x1,x9,...xn,t) = 1z ifand only if 1, 2, . . . x, are linearly dependent,
(¢c) P(x1,x2,...%n,t) is invariant under any permutation of x1,xa, ... Ty,
(d) P(x1,x2,...,axn,t) =P(x1,29,..., ﬁ)for each o # 0,
(e) P(x1,2,...7n,t) % P(z1,72,. .. xl,8) <p Plx1,xe,...,xn +x,,t+ 8),
(f) P(x1,x2,...2n,0): (0,00) = L is continuous and lim;_,o P(x,t) = 1.

In this case, P is called an L—fuzzy n—norm.

Definition 2.12 [17]. A negator on L is any decreasing mapping N : L — L satisfying N'(0) =
1pand N'(1z) = 0.

Definition 2.13 If N'(N (z)) = z for all x € L, then N is called an involutive negator.
In this paper, the involutive negator A is fixed.

Definition 2.14 A sequence (xy) in an L—fuzzy n—normed space (V, P, ) is called a Cauchy
sequence if, for eache € L — {0,} andt > 0 and any a1, ..,a,—1 € X, there exists ng € N such
that, for all k,m > ng, P(ai,az,...,an-1,Tk — Tm,t) > N(g), where N is a negator on L.

A sequence (zy) is said to be convergent to x € V' in the L—fuzzy n—normed space (V, P, *, ) if
Plai,ag,...apn—1,x, — x,t) — 1z, whenever n — 400 forallt > 0 and ay, ..,an,—1 € X.

An L—~fuzzy n—normed space (V, P, *L) is said to be complete if and only if every Cauchy se-
quence in 'V is convergent.

Definition 2.15 [I17]. Let K be a field. A non-Archimedean absolute value on K is a function
.| : K — R such that for any a,b € K we have:
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(1) |a| > 0, and equality holds if and only if a = 0,
(2) [ab] = [a] [b],
(3) |a + b < max{|al, |b|}.

Note that |n| < 1 for each integer n. We always assume, in addition that |.| is non-tivial, i.e.,
there exists an ag € K such that |ag| # 0, 1.

3 Stability of quadratic functional equation in £-fuzzy n-normed
spaces

Let K be a non-Archimedean field, X a vector space over K and (Y, P, *, ) a non-Archimedean
L~fuzzy n-Banach space over K.

In this section we investigate the quadratic functional equation. We define an £—fuzzy approxi-
mately quadratic mapping.

Definition 3.1 Let U be an L—fuzzy set on X X ... x X x[0,00) such that V(x1,x2,. .. %y, ®) is
—_———

nondecreasing, n
t
U(cxy, e, ... CIy,t) >, \Il(:cl,xg,...,xn,m), Vri,To,..., 2, € X, c#0
and
lim U(xy,29,...,20,t) =1z, Vai,29,...,2, € X, t>0.
t—o00

A mapping f : X — Y is said to be V—approximately quadratic in non-Archimedean L—fuzzy
n—normed space if

P(fla+y)+ flx—y) —2P%f(2) =2 f(zy),z9,...2n, 1) > V(x,22,...2n,t)  (3.1)

Ve, y,x2,...2, € X,t >0

: n
Throughout this paper, we denote a; % Q2% ... % an by I =1 G-

Theorem 3.2 Let K be a non-Archimedean field, X a vector space over K and (Y, P,*, ) a non-
Archimedean L—fuzzy n—normed space over K. Let f : X — Y be a V—approximately quadratic
mapping in non-Archimedean L—fuzzy n—normed space. If there exist an o € R (o > 0) and an
integer k, k > 2 with |I*| < aand |l| # 1 and | # 0 such that

Wk, 17 gy, .. 7Rz, 1) >, U(z,xg,...x,,at), (3.2)
and
. ad alt
nh_{go H M(z,x9,...,ZTn, m—kj) =1g,

j=n
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then there exists a unique quadratic mapping Q : X — Y such that
00 aitl
P(f(x) = Q(x),2,...Tn,t) >, Z];[1/\/1(:1:,:02, . T, W), Vr; € X, t >0, (3.3)
where
M(z, 22, ...y, t) = Mg(2, 22, .. T, t) := V(2,22, 73, ... T, 1) %, V(lT, 22,23, ... Tn, 1)

k—1
*L...*L‘Il(l X, T2, T3y ..., Tp,t).

Proof. First we show by induction on j that for x, zs,...,x, € X,t >0and j > 1,
P(f(ljx) — l2jf(x),:c2, ey Ty, t) > Mj(z,z2,...,2p,1) (3.4)
Putting y = 0 in (3.1), we obtain
P2 flx) =212 f(x),x2,...,Tn,1) > U(z,z2,23,...,Tn,1),
and
P(f(lz) — I2f(x), 2, ..., Tn,1) > V(z, 29,73, .., 20, 2t) >, V(z,22,73,...,Tn,1).

This proves (3.4) for j = 1. Let (3.4) hold for some j > 1. Replacing y by 0 and = by I’z in (3.1),
we get ' ' '
P(f(Fe) = 2f(PVx),x0,... 20, 1) > V(lx,x9,73,...,2n,1),

Since |{| < 1, it follows that

P(f(le x) — 2+ f(x),z2,... ,2p,t)

FUT ) =P f( x), 29, .. wn, t) 5, PP @) — 20T f(2), 29, @, 1)

P(f
= (f(lj+1 ) — f(lj$)’x27'”’xn’t)*LP(f(ljx)_l2jf(l‘),$2,.,,’xn’|lt2|)

ZL P(f(lj+lﬂf) - l2f(ljﬂf), Z2,... uSUnvt) * 'P(f(ljﬂ?) - l2jf(l‘),x2, cee 7$n7t)

> \If(ljx,mz,mg,...,a:n,t) *L/\/lj(x,azg,...,xn,t) = Mjn(z,2z9,...,2p,1),

and thus (3.4) holds for all 7 > 1. In particular, we have
Pf(IF) — 2 (@), 29, .. nyt) =, M@y, 20, t). (35)

Replacing z by 1~(kn+k) 2 in (3.5) and using inequality (3.1), we obtain

T T

P(f(lk—n)—l%f(m),xg,...,xn, t) > M(lmk, )
ZLM(:E,LEQ,...,:En,O[n_‘—lt),
and so
n+1
2k\n T _ (]12k\n+1 x > a
P((Z ) f((lk)n) (l ) f((lk)n_t,_l)?x%"'axnat) =3 M(ZIS‘,SBQ,...,ZL‘R, ‘(le)n|t)
an+1
>, M(z,x9,...,ZTn, t).

|(1%)"]
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75

P S (age) = R P F (g o)
>, ﬁ(?((ﬂ’f)jﬂ(lfy) = BT gy ) 20 t)
>, ﬁM(x,@,...,xn,mt).
jn
Since limy, o0 [132,, M(@, 72, . .., 2y, %t) = 1., the sequence
{er s,

is a Cauchy sequence in the non-Archmedean £—fuzzy n—normed space (Y, P, *L). Hence we can
define a mapping ) : X — Y such that

nh_ggolp((ﬂk)n f( (lk)n> — Q((L‘),l‘z, e ,xn,t) =1r. (3.6)

Next, for all n > 1, we have

=P (20 (i) — O ) oo t)

>, TTP(0 () = P ) 2, nt)

(Ikyitl

oitl
>, H M(z, 2o, .. Ty, = t)
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and so

PU@) = Qa)ya, . mst) 2 P(f() = (B9 S (s
*LP((l2k)n f((lkx)n) —Q(x),z2,... ,CBn,t)

n—1 j+1
>, [[ M. s f (o)

),Q}Q,...,I’n,t>

|(TF)°|
*LP((Z%)"f((lk)n) — Q@) w3, wnst) . (BT)

Taking the limit as n — oo in (3.7), we obtain

P(f(.’ﬂ) - Q(.I),.IQ,...,l'n,t) ZL HM(-T,I'Q,. -y T,

71'75)
1 %]

which proves (3.4). As * is continuous, from a well-known result in £—fuzzy normed space (see
[18, Chapter 12]), it follows that
Tim (25" FEF (U + ) + (29 FO ()
2(PF) fITF ™ (@) = 2(PF)" FIT* (), w2, - s s t)
= P(Q(laz—i—y) +Q(z—y)—217Q(z) — 2Q(y),:c2,...,xn,t) )

for almost all ¢ > 0.
On the other hand, replacing z; by [=k72; in (3.2) and (3.1), we get
lim P((25)" fU* ™1z +y)) + 5" FQF (12 —y))

o 2 (2R IR () — 2F) F ) L s 7 )
t

—k —k —k
ZL \I’(l n:I:,l nl’z,...,l nl’n,w)
at
ZL \I/(m,xg, . 71)”, W)
Since limy, o0 VU (21, 22, . . ., Tp, I(l);“%) = 1., we infer that () is a quadratic mapping.

For the uniqueness of @, let Q' : X — Y be another quadratic mapping such that
P(Q/<m) - f(w)7$27 te 7xn7t) EL M(x7$2, ey xn,t) .

Then we have,

P(Q(x) —Q(x),2,... ,xn,t)
2, P(QW) = BN F (i) v t) 3 P(EH)

Therefore from (3.6), we conclude that Q = @’. This completes the proof. g
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4 Stability of pexiderized quadratic functional equation in L-fuzzy
n—normed spaces

In this chapter we consider the stability problem for the pexiderized functional equation.

Definition 4.1 Let V be as in Definition 3.1 and g, h : X — Y be functions. Amapping f : X = Y
is said to be V—approximately pexiderized quadratic in non-Archimedean L—fuzzy n—normed space
if

P(f(x+y) + f(x—y) —29(x) = 2h(y), 22, ..., Tp, t) >, U(2,22,...,70,1), 4.1)
forall z,y,xo,...,xpn € X and all t > 0.

Proposition 4.2 Let K be a non-Archimedean field, X a vector space over K and (Y, P, %, ) a non-
Archimedean L—fuzzy Banach space over K. Let f : X — Y be a V—approximately pexiderized
quadratic mapping in non-Archimedean L—fuzzy n—normed space. Suppose that f, g and h are odd.
If there exist a € R (a > 0) and an integer k > 2 with |2F| < o and |2| # 0 such that

W2 Fe, 27 ey 27k, 1) > V(x,22,...,2n,0t), VI,T9,.70 € X, >0, (42)

and '

alt

W%E)IIOO'HMZ'.I‘Q,...,xn,W):lL‘,, Vx,xg,...,anX,t>0,
j=m

then there exists an additive mapping T : X — Y such that

00 i+1
o't
P(f(z) =T(z),x2,...,2n,t) >, HM(x,xg, ey Ty, W>7 Vo, z9,...,0n € X, t >0,
i=1
' 4.3)
and
0 ai-i—lt
P(g($)+h($)*T(SU),$27,ﬂj‘n,t) ZL HM(I’,CEQ,...,QL’TL, |2|kz
=1
where

M(z, 22, .. 20, t) = V(2, 22, .., Tn, 1) %, U (22,29, ..., Tp, 1), e,
* \11(2]“*11:,372, ceey Ty t) * U (0,z2,...,2n,t) Vr,zo9,....2p € X,t>0.

Proof. By changing the roles of z and y in (4.1) we get,
P(f(x+y) — flx—y) —29(y) — 2h(x), 2, ..., &0, t) >, C(y,22,...,Zn,t). (4.4)
It follows from (4.1) and (4.4) that
P(f(xz+y) —g(@) = h(y) — g(y) — h(x), 32, ..., T 1)
P(f(x+y) —g(@) = h(y) — g(y) — h(@), 22, ..., Tn, |;)
> P(f(z+y)+ flz—y) —29(z) — 2h(y), 22, ..., Tn,t)

. V(z, 20,0, T, )*L\I/(y,arg,...,xn,t). 4.5)
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If we put y = 0 in (4.5), then we get
P(f(z) = g(x) — h(z), 22, .., 2p,t) >, VU(2,22,...,2Zn,t) % V(0,22,...,2n,t). (4.6
Similarly by putting x = 0 in (4.5), we have

P(f(y) —g(y) — h(y),za,...,xpn,t) >, U(0,22,...,2Tn,t) % U(y,z9,...,on,t). 4.7)
From (4.5), (4.6) and (4.7) we conclude that
> P(f(xz+y) —g(x) —h(y) — g9(y) — h(z),22,...,2Zn,1)

* P(f(x) — g(x) — h(x), 22, ... 20, t) %, P(f(y) — 9(y) — h(y), 2, ..., Tn, t)
> Uz, 29, T, 1) #, U(y, @2, ..o, @, t) %, W(0, 20,00, T, 1), 4.8)

We show by induction on j, that for all z, zo, ...,x, € X, t > 0and j > 1,
P(f(27x) — 2 f(x), 29, .., 2n, 1) >, Mj(@,22,..., 25, 1). 4.9
If we put z = y in (4.8), then we get

P(f(2x) —2 f(z),x2,...,2n,t)
> U(z,x9,...,2Tn,1) % U(0,z9,...,Ty,t). (4.10)
This proves (4.9) for j = 1. Let (4.9) holds for some j > 1. Replacing z by 27z in (4.10), we get
P(f(2 ) =2 f(2x),xa,...,20,1)
>, U(2x,x9,...,2,,1) ¥, U(0,22,...,2n,1).

Since |2| < 1, it follows that

P27 x) — 27T f(2), 20, .., 2, 1)
ZL P(f(2j+1$) - 2f(2jx)71.2’ s 7xn7t) *L P(2f<2]$) - 2j+1f(‘r)7$27 s 7xn7t)

. . . . t
= P(f(2j+1x) - 2‘}0(2]37)?1.2’ o ,.In,t) *L P(f(zj'r) - 2‘7f($),{£2, ey Ty m)
>, P(f(2ZM0) =2 f(2a), @, .., t) %, P(f(20) — 2 f(x),22,..., 20, 1)
> U(x,x9,...,2,,1) % U(0,z9,...,Tn,t) % Mj(z,z2,...,2p,1)
= Mz, 22,...,2p,t).
Thus (4.9) holds for all 7 > 1. In particular, we have
P(f(252) — 25 f(2), 22, ..., 0, t) =, M(z,22,...,20,1). (4.11)

—(kn+k

Replacing x by 2 )z in (4.11) and using inequality (4.1), we obtain

X X X
P(f(ﬁ) - zkf(w)7x2, Ty t) > M S 020 .y Ty t)

>, M(z, 2, ... T, VT,
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and so

PO (L) T ) 2 Mz )
an 2k(n+1)’ 2y 5dn, -y y b2y ey, |2kn‘ .

Hence it follows that

n n x
(2k f(QIm) 2k +p)f(2k(n+p)),l'2,...,:L‘n,t)

+ + ;

kj g * 1
>, [IPEY i) - 20F )f(Qk(y+1))’x2”"’$”’t) “L HM(m’xQ’m’me)
J=n "

. . j+1 .
Since lim,,—so0 H;’in/\/{((ﬁ,l'g, ey T, (T;Ti\t) =1gforx € Xandt > 0, {Qk"f(zk%)}neN is a
Cauchy sequence in the non-Archmedean £—fuzzy Banach space (Y, P, *L). Hence we can define
amapping 7' : X — Y such that

lim P(Qk"f(

—T(x),xe,...,2n,t) =1r. (4.12)

Next, foralln > 1,2 € X and ¢ > 0, we have

n—1
n ip L i x
P(F(@) =25 f () was- o st :P(Z;T“ Foi) = 20D F ) e st

n— . T i .
> H 73(2’“ f(%) — 9k +1)f(2k(i+1))’m2’ . ,xn,t>

n_l i+1
a'
> E) M(w,xg, ey Ty NGl )

and so

P(f(z) —T(x),x2,...,2n,1)
>, P(f(z) - 2k”f(2]m) DY )* P(anf(zkm) T(z),z2,...,2n,t)

n—l it i
n
ZL H)M(xax27"'7xn7 ’2k’L| ) (2 f(2kn) T(JI),SUQ,...,JZn,t). (413)

Taking the limit as n — oo in (4.13), we obtain

0 ai+1t
P(f(z) =T(z),x2,...,2n,t) >, il;[l/\/l(a:,m, ey T, W), (4.14)

which proves (4.3). As #, is continuous, from a well-known result in £L-fuzzy n—-normed space (see
[18, Chapter 12]), it follows that

nli_)IEOP(Qk"f(Q_k”(x + 1)) =2k f27Rng) — 2kn p (2R g, L, t)
=P(T(z+y) - T(x) = T(y),z2,...,%n;t),

for almost all ¢ > 0.
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On the other hand, replacing = by 27*"z in (4.8), we get

PERM 7 (@ +y)) — 2P f(27Fma) — 2MF(27FMy) g, L g, 1)
t t

—k —k
ZL \Il(2 nﬂ:,x27...,xn,w) *L‘ll(2 ny,xg,...,xn,w) *L
t
*L \11(0,372, ey L, W)
at at
ZL \I/(a:,xg, RN ) W) *L \I/(y,xg, RN ) W) *L
at
*L \I/(O,J'Q, ey L, W)

Since each items of the right hand side of above inequality tends to 1 as n — oo, we infer that
T is an additive mapping.

It follows from (4.6) and (4.14) that

P(9(x) + h(z) — T(z), 22, ..., Tn,t)
>, P(f(a:) —T(x),xa,... ,xn,t) *LP(g(J:) + h(x) — f(z),x2,. .. ,xn,t)

0 i+1
a'™
>, HM(I’,SL’Q,...,QZ‘n, W)*L\P(x,xg,...,mn,t) * U(0,22,...,2,t)
i=1
00 i+1
a'™
ZL EM<$7$2’ <oy I, W)

For the uniqueness of T, let 7" : X — Y be another additive mapping such that
P(T'(z) = f(z), 22, ..., xn,t) =, M(x,22,...,2n,1).
Then we have for all x, x2,...,2, € X and t > 0,
P(T(x) —T'(x),z2,...,7n,t)

n T mn €z
> P(T(z)—2* Fg) 2, 1) x P(2F f(%)—T’(x),xg,...,xn,t).

Therefore we conclude from (4.12), that 7" = T". This completes the proof. g

Proposition 4.3 Let K be a non-Archimedean field, X a vector space over K and (Y, P, *. ) a non-
Archimedean L—fuzzy Banach space over K. Let f : X — Y be a V—approximately pexiderized
quadratic mapping in non-Archimedean L—fuzzy n—normed space. Suppose that f,g and h are even
and f(0) = g(0) = h(0) = 0. If there exist an o € R (a > 0) and an integer k, k > 2 with
12F| < a and |2| # 0 such that

\11(2*]“3;,2*]“:52, ... ,Q*ka:n,t) >, V(z,x9,...,Tp,at), Vr,x9,..;2y € X, t >0,

and

. .
alt
lim HM(x,xg,...ja:n, )=1g, Vz,29,. 2 € X, t>0,

m—oo - |ﬂ@
j=m
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then there exists a quadratic mapping () : X — Y such that

o) i+1t
P(f(z) — Q(x), 22, ..., p,t) >, HM($,$2, ey T, 0\42?)’ Vo, x9,...,op € X, t >0,
i=1
(4.15)
and
> it
P(Q(x) - 9(1“),1132’ o 7xn7t) ZL il;[lM(xax% <oy In, ’2‘]% )a
and
> Xans
P(Q(x) — h(z), @, ..., 2p0,t) >, HM(:c,xz,..-,:cn,—mki ),

=1

where Vx,xo,...,x, € X, t > 0,
M(x, 22, .. 20, t) = V(2, 22, .., T, 1) %, W (22,29, ..., Tp, 1), e,
* \11(2k_11:,952, vy T, t) % U(0,z9,...,2n,t) Vr,z9,....0n € X,t>0.

Proof. Putx = yin (4.1). Then for all x, zs,...,x, € X and t > 0,
P(f(2z) —2g(z) — 2h(x), 22, .., Tn,t) >, V(2,T2,...,%n,1).

Put x = 0 in (4.1), we get

P2 f(y) = 2h(y), 2, .. Tn,t) >, W(0,29,...,70,1), (4.16)
for all , xa,...,x, € X and t > 0. For y = 0, (4.1) becomes

P2 f(x) —29(x), 22, ... Tn,t) >, V(2 22,...,2n,1). (4.17)
Combining (4.1), (4.16) and (4.17) we get

P(fle+y)+ fle—y) —2f(x) =2f(y), x2,..., n,1)
>, P(flxz+y)+ flx —y) —29(x) — 2h(y), z2, ..., Tps 1) %,

x P2 f(y) —2h(y), 22, ..., 20, ), P(f(27) — 29(2), 22, ..., p,t)
> U(z,x9,...,2Tn,1) *L‘P(O,xg,...,xn,t). (4.18)

We show by induction on j, that forx € X,;¢ > 0and j > 1,
P(f(2jm) — 4jf(m),x2, ey Ty) >, M;(x,x2,...,Tn,t). (4.19)
Similarly to the proof of Proposition 4.2, we can obtain the results. Here, by (4.15) and (4.17) we
get
P(Q(z) — g(x),xa, ..., xp,t)
ZL P(Q($) - f($),l’2, ) .’L'n,t) *L P(f(.’L') - g(x)a Z, ... 7xn>t)

O a’i-‘rlt
> HM(w,xg,...,mn,w)*L\Il(x,xg,...,xn,t)
i=1
o0 i+1
a'm
- HM($,$2,...7$n,W).
i=1

A similar inequality holds for h. U]
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Theorem 4.4 Let K be a non-Archimedean field, X a vector space over K and (Y, P, * ) a non-
Archimedean L—fuzzy Banach space over K. Let f : X — Y be a V—approximately quadratic
mapping in non-Archimedean L—fuzzy n—normed space. Suppose that f(0) = 0. If there exist an
a € R (a > 0) and an integer k, k > 2 with |2¥| < o and |2| # 0 such that

Ve, x9,....tn € X,t >0 : ‘11(2_k33,2_k:z2, e ,2_kxn,t) >, U(z,x9,...,Tn,at),
and

a alt
lim HM(:c,xg,...,xn, =1g,

j=n

then there are unique mappings I" and Q) from X to'Y such that T is additive, Q) is quadratic and

ai+1t

PU@) = T() = Q) z, st t) 2y [ M2, (o

=1

), (4.20)

forall x,xo,...,x, € X and all t > 0, where

M(z, 29, .. 20, t) = (2,22, ., T, 1) %, W (22,22, T, B), ooy
% W2 e oy, t) x U(0,22,...,2n,t) Vr,22,.. ;70 € X, >0.

Proof. Passing to the odd part f° and even part f€ of f we deduce from (4.1) that
P(fo(z+y)+ fo(x—y) —2 f(x) — 2 f°(x),22,...,Zn, 1) >, U(z,z2,...,20).
And
P(fz+y) + f(r—y)—2f(x) =2 f(y), ®2,...,Tn,1) > V(x,32,...,7n).

Using the proof of Proposition 4.2 and 4.3, we get a unique additive mapping 7' and a unique
quadratic mapping @ satisfying

o i attlt
V&, 2, ...,an € X, >0: P(f(x) — T(x),22,...,%p,t) >, il:[l./\/l(x,xg,...,xn,pw) ,
also
a 't
Vo, 29, ....,2n € X,t >0 P(fe(x) —Q(x), 2, ... ,xn,t) >, HM(m,xg, e, T, W ,
i=1
therefore
P(f(l') - T(x) - Q(-’E),ZL‘Q, s 7l‘n7t)
ZL P(fo<'r) - T(l’),JJQ, e xTMt) *L'P(fe(g;‘) - Q(-’B),Z'Q, ceey xnat)
al 't
ZL EM(@’,%Q,...,LL’”,W .
O

Remark 4.5 By replacing V(x,x2, ..., Tn,t) with V(z, 22, ..., Tn, 1) %, V(y, 22, ..., T, 1) in the
right hand of inequalities (3.1) and (4.1) in Definitions 3.1 and 4.1 we can have similar results
as in Theorem 3.2, Propositions 4.2, 4.3 and Theorem 4.4.
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