
Journal of Nonlinear Evolution Equations and Applications ISSN 2161-3680
Volume 2012, Number 3, pp. 29–40 (April 2012) http://www.jneea.com

GALERKIN METHOD FOR THE BOUSSINESQ
EQUATION WITH INTEGRAL CONDITION

A. GUEZANE-LAKOUD∗, N. BOUMAZA
Laboratory of Advanced Materials, Faculty of Sciences.

Badji Mokhtar-Annaba University, Annaba, Algeria

Received September 2, 2011, revised version December 3, 2011

Accepted November 29, 2011

Communicated by Alexander Pankov

Abstract. In this article, the Galerkin method is proposed for solving a Boussinesq type equation
with an integral condition. We construct a discrete numerical solution of the approximate prob-
lem. Then the convergence of the method and the well posedness of the problem under study are
established.
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1 Introduction

The aim of this paper is the investigation of a non-local problem generated by a Boussinesq equation
and an integral condition. Boussinesq equation is a nonlinear partial differential equation that arises
in hydrodynamics and some physical applications. It was subsequently applied to problems in
the percolation of water in porous subsurface strata. Recent developments in numerical schemes
for solving Boussinesq-type equation have placed immense interest in nonlinear dispersive wave
models. Various Boussinesq type equations can describe varying degrees of accuracy in representing
nonlinearity and dispersion. Boussinesq type equations are conventionally associated with relatively
shallow water. The present work deals with the application of the Galerkin method to determine a
function u = u(x, t), that satisfies the Boussinesq equation for all (x, t) ∈ Q = Ω× I

lu = utt + (b(x, t)ux)x − β∆utt = f(x, t), (1.1)

∗e-mail address: a guezane@yahoo.fr

c© 2012 Journal of Nonlinear Evolution Equations and Applications, JNEEA.com



30 A. Guezane-Lakoud, N. Boumaza, J. Nonl. Evol. Equ. Appl. 2012 (2012) 29–40

subject to the initial conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) (1.2)

and the integral condition of second kind

∀x ∈ ∂Ω :
∂u

∂η
|(x,t)∈∂Ω×I +

∫
Ω
k(x, ξ)u(ξ, t) dξ = 0. (1.3)

where x ∈ Ω a bounded domain in Rn with a smooth boundary ∂Ω, t ∈ I = (0, T ), ϕ(x), ψ(x),
k(x, ξ) are given functions and b(x, t) is a nonnegative continuous function such that |bt(x, t)| < b2,
b1 < b(x, t) < b0, for all (x, t) ∈ Q.

The coefficients in (1.1) are real-valued and are physically meaningful. The Boussinesq equation
(1.1) describe flow of shallow-water waves having small amplitudes. If β is negative then (1.1)
describes the irrotational flow of an inviscid liquid in a uniform rectangular channel.

Boussinesq equation (1.1) jointly with integral condition (1.3) is a new posed problem. Under
some assumptions on the kernel K and the function b, existence and uniqueness of the generalized
solution is established by using Galerkin method. Many physical phenomena can be modeled by
non-classical boundary value problems with nonlocal conditions. When the integrals appearing in
boundary conditions, we speak about integrals conditions. If the integrals appearing in the equation
itself we arrive at the integro-differential equations. The study of these problems is typical this is
due to the importance of non local conditions appearing in the mathematical modeling of various
phenomena of physics, ecology, biology,.... Non local conditions come up when values of the func-
tion on the boundary is connected to values inside the domain or when direct measurements on the
boundary are not possible. It is found that problems with nonlocal conditions have many applica-
tions in many problems such as population dynamics, the process of heat conduction, control theory,
etc.. In particular, the introduction of non-local conditions can improve the qualitative and quantita-
tive characteristics of the problem which lead to good results concerning existence, uniqueness and
regularity of the solution.

The presence of an integral term in a boundary condition complicates greatly the application
of standard functional or numerical methods. Various type of nonlocal problem with integral con-
ditions were studied by many authors using different methods. Guezane-Lakoud et al [12] have
applied the Galerkin method to a telegraph equation with an integral boundary condition and estab-
lished the existence, uniqueness of a weak solution. Bahuguna et al in [5] have studied a neutral
functional differential equation with a nonlocal initial condition via the Galerkin approximation.
Dabas et al in [8] have used Rothe method to establish the existence and uniqueness of a weak
solution. For more results on nonlocal problems we refer to [1–3, 6, 7, 9–11, 13–21].

The paper is organized as follows. In Section 2, we define the function spaces, state some
inequalities and precise sense of the desired solution. In Section 3, we established the uniqueness
of the solution. Finally, Section 4, is devoted to the construction of the approximate solution and its
existence via the Galerkin Method.

2 Function spaces

LetL2(Q) be the usual space of Lebesgue square integrable real functions onQwhose inner product
and norm will be denoted by ( , ) and ‖ .‖ respectively.
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W 1,2(Q) is the Sobolev space consisting of functions such that all derivatives lower than one
belong to L2(Q) equipped with the norm

‖u‖2W 1,2(Q) = ‖u‖2 + ‖∇u‖2 + ‖ut‖2.

We define the space W 1,2
T (Q) = {v(x, t) ∈W 1,2(Q), v(x, T ) = 0}.

Now we define the sense of generalized solution. Multiplying the equation (1.1) by the function
v ∈W 1,2

T (Q), and integrating by parts the resultant equality over Q, yields

(b∇u,∇v)L2(Q) + β(∇ut,∇vt)L2(Q) + (ut, vt)L2(Q)

= −(f, v)
L2(Q)

−
∫ T

0

∫
∂Ω
b(s, t) v(s, t)

∫
Ω
k(x, ξ)u(ξ, t) dξ dsdt

−β
∫ T

0

∫
∂Ω
vt(

∫
Ω
k(x, ξ)ut(ξ, t) dξ) ds dt

− (v(x, 0), ψ(x))L2(Ω) + β(v(x, 0),∆ψ(x))L2(Ω) (2.1)

Definition 2.1 By a generalized solution of problem (1.1)–(1.3) we mean a function u ∈ W 1,2(Q)
such that identity (2.1) holds for all v ∈W 1,2

T (Q) and u(x, 0) = ϕ(x).

We give some useful inequalities:

• Gronwall inequality. Let h(t) and y(t) be two nonnegative integrable functions on the interval
I with h(t) non decreasing. If for any t ∈ I , we have

y(t) ≤ h(t) + c

∫ t

0
y(τ) dτ

where c is a positive constant, then

y(t) ≤ h(t)ect.

• Cauchy–Schwarz inequality. If L2(Q)f, g ∈ L2(I), then

(

∫
I
f(t) g(t) dt)2 ≤ (

∫
I
|f(t)|2 dt)(

∫
I
|g(t)|2 dt).

• ε–Cauchy inequality. For all α, β ∈ R and ε ∈ R∗+, we have

|αβ| ≤ ε

2
α2 +

1

2ε
β2.

• Trace inequality. If v ∈W 1,2(Ω), where Ω is a bounded domain in Rn with smooth boundary
∂Ω, then ∫

∂Ω
|v|2 ds ≤

∫
Ω

(ε|∇v|2 + c(ε)|v|2) dx,

where c(ε) is a positive constant that depends only on ε and on the domain Ω.
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3 Uniqueness of the generalized solution

Now we shall show that the generalized solution of problem (1.1)–(1.3), if it exists, is unique.

Theorem 3.1 Assume that ϕ,ψ ∈ W 1,2(Ω), f ∈ L2(Q), K ∈ C(Ω × Ω) such that max
Q
|K| ≤ k0

and the derivatives
∂K

∂ξi
exist. Then the generalized solution of problem (1.1)–(1.3), if it exists, is

unique.

Proof. Suppose that there exist two different generalized solutions u1 and u2 for the problem (1.1)–
(1.3). Then the difference U = u1 − u2 is a generalized solution of the problem (1.1)–(1.3) with
homogeneous equation and homogeneous conditions, that is f = ϕ = ψ = 0. We shall prove that
U = 0 in Q. Let v ∈ W 1,2

T (Q) and denote Qτ = {(x, t); 0 < x < 1, 0 < t ≤ τ ≤ T}. Consider
the function

v(x, t) =

{∫ τ
t U(x, s) ds 0 ≤ t ≤ τ,

0 τ ≤ t ≤ T.

The identity (2.1) becomes

(b∇U,∇v)L2(QT ) + β(∇Ut,∇vt)L2(QT ) + (Ut, vt)L2(QT )

= −
∫ T

0

∫
∂Ω
b(s, t)v(s, t)

∫
Ω
k(x, ξ)U(ξ, t) dξ ds dt (3.1)

− β
∫ T

0

∫
Ω
vt(

∫
Ω
k(x, ξ)Ut(ξ, t) dξ) ds dt

Substituting v into (3.1), integrating by parts, then using the fact that vt(x, t) = −U(x, t), it follows

−
∫

Ω
b(x, 0)(∇v)2(x, 0) dx+ β

∫
Ω

(∇U)2(x, τ) dx+

∫
Ω

(U)2(x, τ) dx

=

∫ τ

0

∫
Ω
bt(∇v)2 dx dt+ 2

∫ τ

0

∫
∂Ω
b(s, t) v(s, t)

∫
Ω
k(x, ξ)U(ξ, t) dξ dsdt

+ 2β

∫ τ

0

∫
∂Ω
vt(s, t)(

∫
Ω
k(x, ξ)Ut(ξ, t) dξ) ds dt (3.2)

Using the assumption on the functions K and b we get

−b0
∫

Ω
(∇v)2(x, 0) dx+ β

∫
Ω

(∇U)2(x, τ) dx+

∫
Ω

(U)2(x, τ) dx

≤ b2‖∇v‖2L2(Q) + 2b0k0

∫ τ

0

∫
∂Ω
|v(s, t)|

∫
Ω
|U(ξ, t|) dξ dsdt

+ 2βk0

∫ τ

0

∫
∂Ω
|vt(s, t)|(

∫
Ω
|Ut(ξ, t)| dξ)dsdt. (3.3)

Now, apply the Cauchy–Schwarz inequality to the two last terms in the right hand side of (3.3),
use the ε–Cauchy inequality with ε = 1, and the trace inequality. Remarking that ‖v‖2L2(Qτ ) ≤
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T 2‖U‖2L2(Qτ ), we obtain

−b0
∫

Ω
(∇v)2(x, 0) dx+ β

∫
Ω

(∇U)2(x, τ) dx+

∫
Ω

(U)2(x, τ) dx

≤ (b2 + b0k0ε)‖∇v(x, t)‖2L2(Qτ ) + βk0ε‖∇U‖2L2(Qτ ) + βk0‖Ut‖2L2(Qτ )

+ (b0k0 + b0k0c(ε)T
2 + βk0c(ε))‖U‖2L2(Qτ ) (3.4)

Let κ ∈W 1,2
T (Q) such that

κ(x, t) =

{
U(x, t) 0 ≤ t ≤ τ ,
0 τ ≤ t ≤ T .

Substituting κ into (3.1) then integrating by parts the resultant equality to get

b1‖∇U‖2L2(Qτ ) + β‖∇Ut‖2L2(Qτ ) + ‖Ut‖2L2(Qτ )

= −
∫ τ

0

∫
∂Ω
b(s, t)U(s, t)

∫
Ω
k(x, ξ)U(ξ, t) dξ ds dt

− β
∫ τ

0

∫
∂Ω
Ut(

∫
Ω
k(x, ξ)Ut(ξ, t) dξ) ds dt .

Using the same argument as previously we obtain

b1‖∇U‖2L2(Qτ ) + β‖∇Ut‖2L2(Qτ ) + ‖Ut‖2L2(Qτ )

≤ b0k0ε‖∇U‖2L2(Qτ ) + b0k0(c(ε) + 1)‖U‖2L2(Qτ ) + εβk0‖∇Ut‖2L2(Qτ ) (3.5)

+ βk0(c(ε) + 1)‖Ut‖2L2(Qτ )

Summing (3.4) and (3.5) yields∫
Ω

[−b0∇v2(x, 0) + β∇U2(x, τ) + U2(x, τ)] dx

≤ (b2 + b0k0ε)‖∇v(x, t)‖2L2(Qτ ) + (2βk0ε− b1)‖∇U‖2L2(Qτ ) (3.6)

+ (2b0k0 + b0k0c(ε)T
2 + b0k0c(ε) + βk0c(ε))‖U‖2L2(Qτ )

+ (2βk0 − 1 + βk0c(ε))‖Ut‖2L2(Qτ ) + (εβk0 − β)‖∇Ut‖2L2(Qτ )

Now choosing ε such that εk0 ≤ 1 and βk0(2 + c(ε)) ≤ 1, inequality (3.6) becomes∫
Ω

(−b0∇v2(x, 0) + β∇U2(x, τ) + U2(x, τ)) dx (3.7)

≤ (b2 + b0k0ε)‖∇v(x, t)‖2L2(Qτ ) + (2βk0ε− b1)‖∇U‖2L2(Qτ )

+ (2b0k0 + b0k0c(ε)T
2 + b0k0c(ε) + βk0c(ε))‖U‖2L2(Qτ ).

Let us denote C1 = max(b2 + b0k0ε, 2βk0ε− b1, 2b0k0 + b0k0c(ε)T
2 + b0k0c(ε) +βk0c(ε)), then

(3.8) gives ∫
Ω

(−b0∇v2(x, 0) + β∇U2(x, τ) + U2(x, τ)) dx

≤ C1(‖∇v(x, t)‖2L2(Qτ ) + ‖∇U‖2L2(Qτ ) + ‖U‖2L2(Qτ )) . (3.8)
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Consider the function

w(x, t) =

{
−
∫ t

0 u(x, s) ds 0 ≤ t ≤ τ ,
0 τ ≤ t ≤ T .

It is easy to see that v(x, t) = w(x, t) − w(x, τ), ∇w(x, τ) = −∇v(x, 0) and ∇v2(x, t) ≤
2∇w2(x, τ) + 2∇w2(x, t), consequently, substituting w in (3.8), we get∫

Ω
((b0 − 2τC1)∇w2(x, τ) + β∇U2(x, τ) + U2(x, τ)) dx

≤ C1(2‖∇w2(x, τ)‖2L2(Qτ ) + ‖∇U‖2L2(Qτ ) + ‖U‖2L2(Qτ )) . (3.9)

Since τ is arbitrary chosen, let 1− 2τC1 > 0, then (3.9) becomes∫
Ω

(∇w2(x, τ) +∇U2(x, τ) + U2(x, τ)) dx

≤ C2

∫ τ

0

∫
Ω

((∇w)2 +∇U2 + U2) dx dt ,

where C2 =
2C1

min((b0 − 2τC1), β, 1)
. Applying Gronwall inequality, we get for all τ ∈

]
0, 1

C2

[
,

∫
Ω

(∇w2(x, τ) +∇U2(x, τ) + U2(x, τ)) dx ≤ 0,

we conclude that U(x, τ) = 0, for all x ∈ Ω and τ ∈
]
0,

1

C2

[
. If T ≤ 1

C2
, then U = 0 in Q.

In the case where T ≥ 1

C2
, we see that

]
0, T

[
⊂ ∪n=n0

n=1

]n− 1

C2
,
n

C2

[
, where n0 = [C2T ] + 1,

[C2T ] is the entire part of C2T , then repeating the preceding reasoning for τ ∈
]n− 1

C2
,
n

C2

[
, we

get U(x, τ) = 0, for all τ ∈
]n− 1

C2
,
n

C2

[
and then U(x, t) = 0 in Q. Thus, the uniqueness is

proved. �

4 Existence of generalized solution

In this section, we shall prove the existence of a generalized solution of problem (1.1)–(1.3) by
using Galerkin’s method.

Theorem 4.1 Assume that the assumptions of Theorem 3.1 hold, then problem (1.1)–(1.3) has a
unique solution u ∈W 1,2(Q).

Proof. Let {wk(x)} be a fundamental system in W 1,2(Ω), such that
(wk, wi)L2(Ω) = δk,i. Now we will try to find an approximate solution of the problem (1.1)–(1.3)
in the form

un(x) =

n∑
k=1

dk(t)wk(x). (4.1)
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The approximations of the functions ϕ(x) and ψ(x) are denoted respectively by

ϕ(n)(x) =
n∑
k=1

ϕkwk(x), ψ(n)(x) =
n∑
k=1

ψkwk(x) (4.2)

dk(0) = ϕk, d
′
k(0) = ψk.

Substituting the approximate solution in equation (1.1), multiplying both sides by wl, yields∫
Ω
wlu

n
tt dx+

∫
Ω
wl(bu

n
x)x dx−

∫
Ω
β∆unttwl dx =

∫
Ω
fwl dx . (4.3)

Integration by parts with respect to x over Ω yields

(untt, wl)L2(Ω) − (b∇un,∇wl)L2(Ω) + β(∇untt,∇wl)L2(Ω)

−
∫
∂Ω
bwl(x)

∫
Ω
k(x, ξ)un(ξ, t) dξ ds

+ β

∫
∂Ω
wl(x) (

∫
Ω
k(x, ξ)untt(ξ, t) dξ) ds = (f, wl)

L2(Ω)
, (4.4)

substituting (4.1) in (4.4) gives for l = 1, n

(f, wl)
L2(Ω)

=
n∑
k=1

d′′k(t) (wk, wl)L2(Ω) −
n∑
k=1

dk(t)((b∇wk,∇wl)L2(Ω)

+

∫
∂Ω
b(s, t)wl(s)

∫
Ω
k(x, ξ)wk(ξ) dξ ds) (4.5)

+ β

n∑
k=1

d′′k(t) ((∇wk,∇wl)L2(Ω) +

∫
∂Ω
wl(s)

∫
Ω
k(x, ξ)wk(ξ) dξ ds) .

Let

γkl(t) = −
(

(b∇wk,∇wl)L2(Ω) +

∫
∂Ω
b(s, t)wl(s)

∫
Ω
k(x, ξ)wk(ξ) dξ ds

)
,

χkl = (∇wk,∇wl)L2(Ω) +

∫
∂Ω
wl(s)

∫
Ω
k(x, ξ)wk(ξ) dξ ds ,

fl = (f, wl) .

Then (4.5) can be written as

n∑
k=1

d′′k(t)(δkl + βχkl) + dk(t)γkl(t) = fl(t) .

We obtain a system of differential equations of second order with respect to the variable t with
smooth coefficients and the initial conditions dk(0) = αk, d′k(0) = βk, consequently we get a
Cauchy problem of linear differential equations with smooth coefficients that is uniquely solvable.
So it has a unique solution u(n) satisfying (4.3). �

Lemma 4.2 The sequence u(n)is bounded.
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Proof. Multiplying each equation of (4.4) by the appropriate d′k(t), summing over k from 1 to n,
then integrating the resultant equality with respect to t from 0 to τ , with τ ≤ T , yields

1

2

∫
Ω

[(unt (x, τ))2 + b(x, t)|∇un(x, τ)|2 + β|∇unt (x, τ)|2] dx

=
1

2

∫
Ω

[unt (x, 0)2 + β|∇unt (x, 0)|2 + b|∇un(x, 0)|2] dx (4.6)

+

∫
∂Ω

∫ τ

0
btu

n(x, t)

∫
Ω
k(x, ξ)un(ξ, t) dξ dtds

+

∫
∂Ω

∫ τ

0
bun(x, t)

∫
Ω
k(x, ξ)unt (ξ, t) dξ dtds

+

∫
∂Ω
b(x, 0)un(x, 0)

∫
Ω
k(x, ξ)un(ξ, 0) dξ ds

+ β

∫
∂Ω
unt (x, τ)(

∫
Ω
k(x, ξ)unt (ξ, τ) dξ) ds

−
∫
∂Ω
b(x, τ)un(x, τ)

∫
Ω
k(x, ξ)un(ξ, τ) dξ ds

− β
∫
∂Ω
unt (x, 0)(

∫
Ω
k(x, ξ)unt (ξ, 0) dξ) ds

+
1

2

∫ τ

0

∫
Ω
bt(∇un)2 dx dt+

∫ τ

0

∫
Ω
funt dx dt.

With the help of Cauchy–Schwarz inequality, ε–Cauchy inequality, trace inequality and remark-
ing that ‖un(x, τ)‖2L2(Ω) = ‖unt (x, t)‖2

L2(Qτ )
+‖un(x, 0)‖2

L2(Ω)
, we can estimate the last eight terms

in the right hand side of (4.6) as follows:

(1) =

∫
∂Ω

∫ τ

0
(btu

n(x, t)

∫
Ω
k(x, ξ)un(ξ, t) dξ) dt ds

≤ b2k0
ε

2
‖∇un(x, t)‖2

L2(Qτ )
+ b2k0(

c(ε)

2
+

1

2
)‖un(x, t)‖2

L2(Qτ )

(2) =

∫ τ

0

∫
∂Ω
bun(x, t)

∫
Ω
k(x, ξ)unt (ξ, t) dξ dt ds

≤ b0k0
ε

2
‖∇un(x, t)‖2

L2(Qτ )
+ b0k0

c(ε)

2
‖∇un(x, t)‖2

L2(Qτ )

+
1

2
‖unt (x, t)‖2

L2(Qτ )

(3) =

∫
∂Ω
b(x, 0)un(x, 0)

∫
Ω
k(x, ξ)un(ξ, 0) dξ ds

≤ b0k0
ε

2
‖∇un(x, 0)‖2

L2(Ω)
+ b0k0(

c(ε)

2
+

1

2
)‖un(x, 0)‖2

L2(Ω)

(4) = β

∫
∂Ω
unt (x, τ)

∫
Ω
k(x, ξ)unt (ξ, τ) dξ ds

≤ βk0
ε

2
‖∇unt (x, τ)‖2

L2(Ω)
+ βk0(

c(ε)

2
+

1

2
)‖unt (x, τ)‖2

L2(Ω)
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(5) = −
∫
∂Ω
b(x, τ)un(x, τ)

∫
Ω
k(x, ξ)un(ξ, τ) dξ ds

≤ b0k0
ε

2
‖∇un(x, τ)‖2

L2(Ω)
+ b0k0(

c(ε)

2
+

1

2
)‖unt (x, t)‖2

L2(Qτ )

+b0k0(
c(ε)

2
+

1

2
)‖un(x, 0)‖2

L2(Ω)

(6) = −β
∫
∂Ω
unt (x, 0)

∫
Ω
k(x, ξ)unr (ξ, 0) dξds

≤ βk0
ε

2
‖∇unt (x, 0)‖2

L2(Ω)
+ βk0(

c(ε) + 1

2
)‖unt (x, 0)‖2

L2(Ω)

(7) =

∫ τ

0

∫
Ω
funt dx dt ≤ 1

2
‖f(x, t)‖2

L2(Qτ )
+

1

2
‖unt (x, t)‖2L2(Qτ )

(8) =

∫ τ

0

∫
Ω
bt(∇un)2 dx dt ≤ b2‖∇un(x, t)‖2

L2(Qτ )
.

Substituting the eight integrals in (4.6) yields

(1− βk0(c(ε) + 1))‖unt (x, τ)‖2
L2(Ω)

+ (β − βk0ε)‖∇unt (x, τ)‖2
L2(Ω)

+ (b1 − b0k0ε)‖∇un(x, τ)‖2
L2(Ω)

≤ ‖f(x, t)‖2L2(Qτ ) + (β + βk0ε)‖∇unt (x, 0)‖2
L2(Ω)

+ (β + βk0(c(ε) + 1))‖unt (x, 0)‖2
L2(Ω)

+ (βb0 + b0k0ε)‖∇un(x, 0)‖2
L2(Ω)

+ 2 b0 k0(c(ε) + 1) ‖un(x, 0)‖2
L2(Ω)

+ (b0 + b2)k0ε‖∇un(x, t)‖2
L2(Qτ )

+ (b2k0c(ε) + 1)‖un(x, t)‖2
L2(Qτ )

+ (1 + b0k0(c(ε) + 1))‖unt (x, t)‖2
L2(Qτ )

.

Choosing ε such that βk0(c(ε) + 1) ≤ 1, k0ε ≤ 1, setting
m = min(βk0(c(ε) + 1), β(1 − k0ε), (b1 − b0k0ε)), M = max(1 + b2k0c(ε), k0ε(b0 + b2),

1 + b0k0(c(ε) + 1), 2b0k0(c(ε) + 1), βb0 + b0k0ε, β + βk0(c(ε) + 1), β + βk0ε) and M1 =
M

m
,

then using elementary estimates, (4.7) becomes

‖unt (x, τ)‖2
L2(Ω)

+ ‖∇un(x, τ)‖2
L2(Ω)

+ ‖un(x, τ)‖2
L2(Ω)

≤ M1(‖unt (x, t)‖2
L2(Qτ )

+ ‖∇un(x, t)‖2
L2(Qτ )

(4.7)

+ ‖un(x, t)‖2
L2(Qτ )

+ ‖∇unt (x, 0)‖2
L2(Ω)

+ ‖unt (x, 0)‖2
L2(Ω)

+ ‖∇un(x, 0)‖2
L2(Ω)

+ ‖un(x, 0)‖2
L2(Ω)

+ ‖f‖2L2(Qτ )).

Applying the Gronwall inequality to (4.7) we obtain

‖unt (x, τ)‖2
L2(Ω)

+ ‖∇un(x, τ)‖2
L2(Ω)
‖un(x, τ)‖2

L2(Ω)

≤ eM1T (‖ψn‖2
L2(Ω)

+ ‖∇ψn‖2
L2(Ω)

+ ‖ϕn‖2
L2(Ω)

+ ‖∇ϕn‖2
L2(Ω)

+ ‖f‖2L2(Qτ ))

Integrating (4.8) with respect to τ on [0, T ] yields

‖un‖2W 1,2(Q) ≤ Te
M1T (‖ϕ‖2W 1,2(Ω) + ‖ψ‖2W 1,2(Ω) + ‖f‖2

L2(Q)
).

Consequently the sequence {un} in W 1
2 (Qτ ), therefore we can extract a subsequence which we

denote by {u(nk)} that is weakly convergent, then we prove that its limit is the desired solution of
the problem (1.1)–(1.3). �
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Lemma 4.3 The limit of the subsequence {u(nk)} is the solution of the problem (1.1)–(1.3).

Proof. For this, we prove that the limit of the subsequence {u(nk)} satisfies the identity (2.1)
for any function v =

∑n
i=1 vi(t)wi(x) ∈ W 1,2

T (Q). Since the set Sn = {v(x, t) =∑n
k=1 vk(t)wk(x), vk(t) ∈ C2(0, T ), vk(T ) = 0} is such that ∪∞n=1Sn = W 1,2

T (Q), it suffices
to prove (2.1) for v ∈ Sn. Multiplying (4.4) by vi(t) ∈W 1,2(0, T ), vi(T ) = 0, then taking the sum
from i = 0 to n, we obtain∫

Ω
(u

(nk)
tt v − b∇u(nk)∇v + β∇u(nk)

tt ∇v) dx

−
∫
∂Ω
bv(

∫
Ω
K(x, ξ)u(nk)(ξ, t) dξ) ds

+ β

∫
∂Ω
v(

∫
Ω
k(x, ξ)untt(ξ, t) dξ) ds =

∫
Ω
fv dx . (4.8)

Integrating by parts (4.8) on [0, T ] we get

−(u
(nk)
t , vt)L2(Q) − (bu(nk),∇v)L2(Q) − β(∇u(nk)

t ,∇vt)L2(Q)

−(ψ(nk), v(x, 0))L2(Ω) − β(∇ψ(nk),∇v(x, 0))L2(Ω)

−
∫ T

0

∫
∂Ω
b(s, t) v(s, t)(

∫
Ω
K(x, ξ)u(nk)(ξ, t) dξ) dsdt

−β
∫
∂Ω
v(s, 0)(

∫
Ω
k(x, ξ)ψ(nk)(ξ) dξ) ds

−β
∫ T

0

∫
∂Ω
vt(s, t)(

∫
Ω
k(x, ξ)unt (ξ, t) dξ) dsdt = (f, v)L2(Q) . (4.9)

Using the condition (1.3) we see that (4.9) is equivalent to

−(u
(nk)
t , vt)L2(Q) − (bu(nk),∇v)L2(Q) − β(∇u(nk)

t ,∇vt)L2(Q)

−(ψ(nk), v(x, 0))L2(Ω) + β(∆ψ(nk), v(x, 0))L2(Ω)

−
∫ T

0

∫
∂Ω
b(s, t) v(s, t)(

∫
Ω
K(x, ξ)u(nk)(ξ, t) dξ) ds dt

−β
∫ T

0

∫
∂Ω
vt(s, t)(

∫
Ω
k(x, ξ)unt (ξ, t) dξ) ds dt = (f, v)L2(Q) . (4.10)

Denote the weak limit of the subsequence {u(nk)} by u. When k tends
to infinity, we see that

∫ T
0

∫
∂Ω bv(

∫
ΩK(x, ξ)u(nk)(ξ, t) dξ) ds dt tends to∫ T

0

∫
∂Ω bv(

∫
ΩK(x, ξ)u(ξ, t) dξ) ds dt and β

∫ T
0

∫
∂Ω vt(s, t)(

∫
Ω k(x, ξ)unkt (ξ, t) dξ) ds dt tends to

β
∫ T

0

∫
∂Ω vt(s, t)(

∫
Ω k(x, ξ)ut(ξ, t) dξ) ds dt. Indeed, using the Cauchy–Schwarz inequality, we

have ∫ T

0

∫
∂Ω
bv(

∫
Ω
K(x, ξ)u(nk)(ξ, t) dξ) ds dt−

∫ T

0

∫
∂Ω
bv(

∫
Ω
K(x, ξ)u(ξ, t) dξ) ds dt

=

∫ T

0

∫
∂Ω
v(

∫
Ω
K(x, ξ)(u(nk)(ξ, t)− u(ξ, t)) dξ) dsdt

≤ b0k0|∂Ω|(
∫ T

0

∫
∂Ω
|v|2 dsdt)

1
2 × (

∫ T

0

∫
Ω
|u(nk)(ξ, t)− u(ξ, t)|2 dξ dt)

1
2 → 0.
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Doing the same reasoning for the second limit, then by passing to the limit in (4.10), we get that u
satisfies (2.1). �
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