BASICS OF RIGHT NABLA FRACTIONAL CALCULUS ON TIME SCALES

GEORGE A. ANASTASSIOU*

Department of Mathematical Sciences, University of Memphis Memphis, TN 38152, U.S.A.

Received October 18, 2011

Accepted October 23, 2011

Communicated by Maximilian F. Hasler

Abstract. We develop the right nabla fractional calculus on time scales. We introduce the related Riemann-Liouville type fractional integral and Caputo like fractional derivative and prove a fractional Taylor formula with integral remainder.

Keywords: Fractional calculus on time scales.

2010 Mathematics Subject Classification: 26A33, 39A12, 93C70.

1 Background

For the basics of times scales the reader is referred to [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Let \mathbb{T} be a time scale, and $\widehat{h}_k: \mathbb{T}^2 \to \mathbb{R}$, $k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, such that $\forall s, t \in \mathbb{T}$, $\widehat{h}_0(t, s) = 1$,

$$\widehat{h}_{k+1}(t,s) = \int_{s}^{t} \widehat{h}_{k}(\tau,s) \nabla \tau.$$
(1.1)

Here \hat{h}_k are ld-continuous in t, and

$$\widehat{h}_{k}^{\nabla}\left(t,s\right) = \widehat{h}_{k-1}\left(t,s\right), \ k \in \mathbb{N}, t \in \mathbb{T}_{k},$$

with
$$\hat{h}_1(t,s) = t - s, \forall s, t \in \mathbb{T}$$
.

From [3], we write down Taylor's formula in terms of nabla polynomials:

^{*}e-mail address: ganastss@memphis.edu

Theorem 1 Assume that $\mathbb{T} = \mathbb{T}_k$. Let $f \in C^m_{ld}(\mathbb{T}, \mathbb{R})$, $m \in \mathbb{N}$, $b, t \in \mathbb{T}$. Then

$$f(t) = \sum_{k=0}^{m-1} \widehat{h}_k(t, b) f^{\nabla^k}(b) + \int_b^t \widehat{h}_{m-1}(t, \rho(\tau)) f^{\nabla^m}(\tau) \nabla \tau.$$
 (1.2)

Call

$$R_{m}^{b}\left(f\right)\left(t\right) := \int_{b}^{t} \widehat{h}_{m-1}\left(t,\rho\left(\tau\right)\right) f^{\nabla^{m}}\left(\tau\right) \nabla \tau = -\int_{t}^{b} \widehat{h}_{m-1}\left(t,\rho\left(\tau\right)\right) f^{\nabla^{m}}\left(\tau\right) \nabla \tau. \tag{1.3}$$

Following [3], we define

$$\widehat{g}_{0}(t,s) = 1,$$

$$\widehat{g}_{n+1}(t,s) = \int_{s}^{t} \widehat{g}_{n}(\rho(\tau),s) \nabla \tau, \quad n \in \mathbb{N}, s, t \in \mathbb{T}.$$
(1.4)

Notice here

$$\widehat{g}_{n+1}^{\nabla}(t,s) = \widehat{g}_n(\rho(t),s), \quad t \in \mathbb{T}_k,$$

$$\widehat{g}_1(t,s) = t - s, \quad \forall s, t \in \mathbb{T}.$$

From [3] we need

Theorem 2 If $\mathbb{T} = \mathbb{T}_k = \mathbb{T}^k$, and $n \in \mathbb{N}_0$, then

$$\widehat{h}_n(t,s) = (-1)^n \,\widehat{g}_n(s,t), \ \forall \, s,t \in \mathbb{T}. \tag{1.5}$$

By Theorem 2 we get

$$R_{m}^{b}\left(f\right)\left(t\right) = (-1)^{m} \int_{t}^{b} \widehat{g}_{m-1}\left(\rho\left(\tau\right), t\right) f^{\nabla^{m}}\left(\tau\right) \nabla \tau. \tag{1.6}$$

We make

Definition 3 Let $\alpha \geq 0$ real number. We consider the continuous functions

$$\widehat{a}_{\alpha}: \mathbb{T}^2 \to \mathbb{R}$$
.

such that

$$\widehat{g}_{0}(t,s) = 1,$$

$$\widehat{g}_{\alpha+1}(t,s) = \int_{s}^{t} \widehat{g}_{\alpha}(\rho(\tau),s) \nabla \tau, \ \forall s,t \in \mathbb{T}.$$
(1.7)

We are motivated by the formula

$$\int_{t}^{x} \frac{(x-s)^{\mu-1}}{\Gamma(\mu)} \frac{(s-t)^{\nu-1}}{\Gamma(\nu)} ds = \frac{(x-t)^{\mu+\nu-1}}{\Gamma(\mu+\nu)},$$
(1.8)

where $\mu, \nu > 0$ and Γ the gamma function.

We make

Assumption 4 Let $\alpha, \beta > 1$ and $x < t \le \tau$, $x, t, \tau \in \mathbb{T}$. We assume that

$$\int_{x}^{\rho(\tau)} \widehat{g}_{\alpha-1}(\rho(t), x) \widehat{g}_{\beta-1}(\rho(\tau), t) \nabla t = \widehat{g}_{\alpha+\beta-1}(\rho(\tau), x).$$
(1.9)

We call for $\alpha, \beta > 1$ and $x < t \le \tau$,

$$\gamma\left(x,\tau\right):=\int_{\rho\left(\tau\right)}^{\tau}\widehat{g}_{\alpha-1}\left(\rho\left(t\right),x\right)\widehat{g}_{\beta-1}\left(\rho\left(\tau\right),t\right)\nabla t.$$

It holds

$$\gamma(x,\tau) = \nu(\tau)\,\widehat{g}_{\alpha-1}(\rho(\tau),x)\,\widehat{g}_{\beta-1}(\rho(\tau),\tau), \qquad (1.10)$$

where $\nu(\tau) := \tau - \rho(\tau)$, the backward graininess, see [9], p. 332, under the assumption $\mathbb{T} = \mathbb{T}_k$.

2 Results

We need

Definition 5 Let $a, b \in \mathbb{T}$, $\alpha \geq 1$ and $f : [a, b] \cap \mathbb{T} \to \mathbb{R}$. Here $f \in L_1((a, b] \cap \mathbb{T})$ (Lebesgue ∇ -integrable function on $(a, b] \cap \mathbb{T}$). We define the right ∇ -Riemann-Liouville type fractional integral

$$J_{b-}^{\alpha}f\left(t\right) := \int_{t}^{b} \widehat{g}_{\alpha-1}\left(\rho\left(\tau\right), t\right) f\left(\tau\right) \nabla \tau, \tag{2.1}$$

for $t \in [a, b] \cap \mathbb{T}$. Here $\int_t^b \cdot \nabla \tau = \int_{(t, b]} \cdot \nabla \tau$.

By [8] we get that $J_{b-}^{1}f(t)=\int_{t}^{b}f(\tau)\nabla\tau$ is absolutely continuous in $t\in[a,b]\cap\mathbb{T}$.

Lemma 6 Let $\alpha > 1$, $f \in L_1((a,b] \cap \mathbb{T})$, $f : [a,b] \cap \mathbb{T} \to \mathbb{R}$. Assume that $\widehat{g}_{\alpha-1}(\rho(\tau),t)$ is Lebesgue ∇ -measurable on $([a,b] \cap \mathbb{T})^2$; $a,b \in \mathbb{T}$. Then $J_{b-}^{\alpha} f \in L_1([a,b] \cap \mathbb{T})$, that is $J_{b-}^{\alpha} f$ is finite a.e.

Proof. By Tietze's extension theorem of General Topology we easily derive that the continuous function $\widehat{g}_{\alpha-1}$ on $([a,b]\cap\mathbb{T})^2$ is bounded, since its continuous extension $G_{\alpha-1}$ on $[a,b]^2$ is bounded. Notice that $([a,b]\cap\mathbb{T})^2$ is a closed subset of $[a,b]^2$.

So there exists M > 0 such that $|\widehat{g}_{a-1}(s,t)| \leq M, \forall (s,t) \in ([a,b] \cap \mathbb{T})^2$.

Let id denote the identity map. We see that

$$(\rho, id) (((a, b] \cap \mathbb{T}) \times ([a, b] \cap \mathbb{T})) \subseteq ([a, b] \cap \mathbb{T})^2.$$

Therefore $|\widehat{g}_{\alpha-1}\left(\rho\left(\tau\right),t\right)|\leq M,\ \forall\ \left(\tau,t\right)\in\left(\left(a,b\right]\cap\mathbb{T}\right)\times\left(\left[a,b\right]\cap\mathbb{T}\right),\ \mathrm{since}\ \left(\rho\left(\tau\right),t\right)\in\left(\left[a,b\right]\cap\mathbb{T}\right)^{2}.$

Define $K: \Omega := ([a,b] \cap \mathbb{T})^2 \to \mathbb{R}$, by

$$K\left(\tau,t\right):=\left\{ \begin{array}{l} \widehat{g}_{\alpha-1}\left(\rho\left(\tau\right),t\right),\text{ if }a\leq t<\tau\leq b,\\ 0,\text{ if }a\leq\tau\leq t\leq b, \end{array} \right.$$

where $t, \tau \in \mathbb{T}$.

Clearly K is Lebesgue ∇ -measurable on Ω , since the restriction of a measurable function to a measurable subset of its domain is measurable function and the union of two measurable functions over disjoint domains is measurable. Notice that $|K(\tau,t)| \leq M, \forall (\tau,t) \in ([a,b] \cap \mathbb{T})^2$.

Next we consider the repeated double Lebesgue ∇ -integral

$$\int_{a}^{b} \left(\int_{a}^{b} |K(\tau,t)| |f(\tau)| \nabla t \right) \nabla \tau = \int_{a}^{b} |f(\tau)| \left(\int_{a}^{b} |K(\tau,t)| \nabla t \right) \nabla \tau$$

$$\leq M(b-a) \int_{a}^{b} |f(\tau)| \nabla \tau = M(b-a) \|f\|_{L_{1}((a,b] \cap \mathbb{T})} < \infty.$$

By Tonelli's theorem we derive that $(\tau,t) \to K(\tau,t) f(\tau)$ is Lebesgue ∇ -integrable over Ω .

Let now the characteristic function

$$\chi_{(t,b]}\left(\tau\right) = \left\{ \begin{array}{ll} 1, & \text{if } \tau \in (t,b] \\ 0, & \text{else,} \end{array} \right.$$

where $\tau \in [a, b] \cap \mathbb{T}$.

Then the function $(\tau, t) \to \chi_{(t,b]}(\tau) K(\tau, t) f(\tau)$ is Lebesgue ∇ -integrable over Ω .

Hence by Fubini's theorem we get that

$$\int_{a}^{b} \chi_{(t,b]}(\tau) K(\tau,t) f(\tau) \nabla \tau = \int_{t}^{b} \widehat{g}_{\alpha-1}(\rho(\tau),t) f(\tau) \nabla \tau = J_{b-}^{\alpha} f(t)$$

is Lebesgue ∇ -integrable on $[a,b] \cap \mathbb{T}$, proving the claim.

We make

Assumption 7 From now on we assume that $\widehat{g}_{\alpha-1}\left(\rho\left(\cdot\right),\cdot\right)$ is continuous on $([a,b]\cap\mathbb{T})^2$, for any $\alpha>1$.

We give

Definition 8 Let $f \in L_1((a,b] \cap \mathbb{T})$. We define the right backward graininess deviation functional of f as follows

$$\theta\left(f,\alpha,\beta,b,\mathbb{T},x\right) := \int_{x}^{b} f\left(\tau\right)\gamma\left(x,\tau\right)\nabla\tau. \tag{2.2}$$

It holds

$$\theta\left(f,\alpha,\beta,b,\mathbb{T},x\right) = \int_{x}^{b} f\left(\tau\right)\nu\left(\tau\right)\widehat{g}_{\alpha-1}\left(\rho\left(\tau\right),x\right)\widehat{g}_{\beta-1}\left(\rho\left(\tau\right),\tau\right)\nabla\tau,\tag{2.3}$$

under the assumption $\mathbb{T} = \mathbb{T}_k$.

If
$$\mathbb{T} = \mathbb{R}$$
, then $\theta(f, \alpha, \beta, b, \mathbb{T}, x) = 0$.

We give the following semigroup property of right ∇ -Riemann-Liouville type fractional integrals.

Theorem 9 Let the time scale \mathbb{T} such that $a, b \in \mathbb{T}$, $f \in L_1((a, b] \cap \mathbb{T})$; $\alpha, \beta > 1$. Then

$$J_{b-}^{\alpha}J_{b-}^{\beta}f\left(x\right) = J_{b-}^{\alpha+\beta}f\left(x\right) + \theta\left(f,\alpha,\beta,b,\mathbb{T},x\right), \ \forall x \in [a,b] \cap \mathbb{T}.$$
 (2.4)

Proof. For $\beta > 1$ we have

$$J_{b-}^{\beta}f\left(t\right) = \int_{t}^{b} \widehat{g}_{\beta-1}\left(\rho\left(\tau\right), t\right) f\left(\tau\right) \nabla \tau.$$

We observe that

$$J_{b-}^{\alpha}J_{b-}^{\beta}f\left(x\right) = \int_{x}^{b}\widehat{g}_{\alpha-1}\left(\rho\left(t\right),x\right)J_{b-}^{\beta}f\left(t\right)\nabla t =$$

$$\int_{x}^{b}\widehat{g}_{\alpha-1}\left(\rho\left(t\right),x\right)\left(\int_{t}^{b}\widehat{g}_{\beta-1}\left(\rho\left(\tau\right),t\right)f\left(\tau\right)\nabla\tau\right)\nabla t =$$

$$\int_{x}^{b}\left(\int_{t}^{b}\widehat{g}_{\alpha-1}\left(\rho\left(t\right),x\right)\widehat{g}_{\beta-1}\left(\rho\left(\tau\right),t\right)f\left(\tau\right)\nabla\tau\right)\nabla t =: (*).$$

Clearly here it holds

$$|\widehat{g}_{\alpha-1}(\rho(t),x)| \leq M_1, \ \forall t,x \in [a,b] \cap \mathbb{T},$$

and

$$|\widehat{g}_{\beta-1}(\rho(\tau),t)| \leq M_2, \ \forall \tau,t \in [a,b] \cap \mathbb{T},$$

where $M_1, M_2 > 0$.

Hence

$$\left|J_{b-}^{\alpha}J_{b-}^{\beta}f\left(x\right)\right| \leq \int_{x}^{b} \left(\int_{t}^{b} \left|\widehat{g}_{\alpha-1}\left(\rho\left(t\right),x\right)\right| \left|\widehat{g}_{\beta-1}\left(\rho\left(\tau\right),t\right)\right| \left|f\left(\tau\right)\right| \nabla \tau\right) \nabla t \leq M_{1}M_{2} \left(\int_{x}^{b} \left(\int_{t}^{b} \left|f\left(\tau\right)\right| \nabla \tau\right) \nabla t\right) \leq M_{1}M_{2} \left(\int_{x}^{b} \left(\int_{a}^{b} \left|f\left(\tau\right)\right| \nabla \tau\right) \nabla t\right) \leq M_{1}M_{2} \left(b-a\right) \left\|f\right\|_{L_{1}((a,b)\cap \mathbb{T})} < \infty.$$

Therefore $J_{b-}^{\alpha}J_{b-}^{\beta}f(x)$ exists, $\forall x \in [a,b] \cap \mathbb{T}$. Consequently by Fubini's theorem we have

$$(*) = \int_{x}^{b} \left(\int_{x}^{\tau} \widehat{g}_{\alpha-1} \left(\rho \left(t \right), x \right) \widehat{g}_{\beta-1} \left(\rho \left(\tau \right), t \right) f \left(\tau \right) \nabla t \right) \nabla \tau =$$

$$\int_{x}^{b} f \left(\tau \right) \left(\int_{x}^{\tau} \widehat{g}_{\alpha-1} \left(\rho \left(t \right), x \right) \widehat{g}_{\beta-1} \left(\rho \left(\tau \right), t \right) \nabla t \right) \nabla \tau$$

 $(x < t \le \tau)$

$$\stackrel{(1.9)}{=} \int_{x}^{b} f(\tau) \left(\widehat{g}_{\alpha+\beta-1} \left(\rho(\tau), x \right) + \int_{\rho(\tau)}^{\tau} \widehat{g}_{\alpha-1} \left(\rho(t), x \right) \widehat{g}_{\beta-1} \left(\rho(\tau), t \right) \nabla t \right) \nabla \tau$$

$$= \int_{x}^{b} \widehat{g}_{\alpha+\beta-1} \left(\rho(\tau), x \right) f(\tau) \nabla \tau + \int_{x}^{b} f(\tau) \gamma(x, \tau) \nabla \tau$$

$$= J_{b-}^{\alpha+\beta} f(x) + \int_{x}^{b} f(\tau) \gamma(x, \tau) \nabla \tau.$$

So we have that

$$J_{b-}^{\alpha}J_{b-}^{\beta}f\left(x\right) = J_{b-}^{\alpha+\beta}f\left(x\right) + \int_{x}^{b}f\left(\tau\right)\gamma\left(x,\tau\right)\nabla\tau$$
$$= J_{b-}^{\alpha+\beta}f\left(x\right) + \theta\left(f,\alpha,\beta,b,\mathbb{T},x\right),$$

proving the claim.

We make

Remark 10 Let $\mu > 2: m-1 < \mu \leq m \in \mathbb{N}$, i.e. $m = \lceil \mu \rceil$ (ceiling of number), $\widetilde{\nu} = m - \mu$ ($0 \leq \widetilde{\nu} < 1$). Let $f \in C^m_{ld}([a,b] \cap \mathbb{T})$. Clearly here ([10]) f^{∇^m} is a Lebesgue ∇ -integrable function. We define the right nabla fractional derivative on \mathbb{T} of order $\mu - 1$ as follows:

$$\nabla_{b-}^{\mu-1} f(t) = (-1)^m \left(J_{b-}^{\widetilde{\nu}+1} f^{\nabla^m} \right)(t) = (-1)^m \int_t^b \widehat{g}_{\widetilde{\nu}} \left(\rho(\tau), t \right) f^{\nabla^m}(\tau) \nabla \tau, \tag{2.5}$$

 $\forall t \in [a, b] \cap \mathbb{T}.$

Notice $\nabla_{b-}^{\mu-1} f \in C([a,b] \cap \mathbb{T})$, by a simple argument using the dominated convergence theorem in Lebesgue ∇ -sense.

If $\mu = m$, then $\tilde{\nu} = 0$, then

$$\nabla_{b-}^{m-1} f(t) = (-1)^m \int_t^b f^{\nabla^m}(\tau) \, \nabla \tau = (-1)^m \left(f^{\nabla^{m-1}}(b) - f^{\nabla^{m-1}}(t) \right). \tag{2.6}$$

More generally, by [8], given that $f^{\nabla^{m-1}}$ is everywhere finite and absolutely continuous on $[a,b]\cap\mathbb{T}$, then f^{∇^m} exists ∇ -a.e. and is Lebesgue ∇ -integrable on $(t,b]\cap\mathbb{T}$, \forall $t\in[a,b]\cap\mathbb{T}$, and one can plug it into (2.5).

Remark 11 We observe that

$$J_{b-}^{\mu-1} \nabla_{b-}^{\mu-1} f(t) = (-1)^m \left(J_{b-}^{\mu-1} J_{b-}^{\tilde{\nu}+1} f^{\nabla^m}(t) \right)$$

$$\stackrel{(2.4)}{=} (-1)^m \left(J_{b-}^{\mu-1+\tilde{\nu}+1} f^{\nabla^m}(t) + \theta \left(f^{\nabla^m}, \mu - 1, \tilde{\nu} + 1, b, \mathbb{T}, t \right) \right)$$

$$= (-1)^m \left(J_{b-}^m f^{\nabla^m}(t) + \theta \left(f^{\nabla^m}, \mu - 1, \tilde{\nu} + 1, b, \mathbb{T}, t \right) \right). \tag{2.7}$$

Hence we proved that

$$J_{b-}^{\mu-1} \nabla_{b-}^{\mu-1} f(t) + (-1)^{m+1} \theta \left(f^{\nabla^m}, \mu - 1, \widetilde{\nu} + 1, b, \mathbb{T}, t \right) =$$

$$(-1)^m \left(J_{b-}^m f^{\nabla^m}(t) \right) = (-1)^m \left(\int_t^b \widehat{g}_{m-1} \left(\rho(\tau), t \right) f^{\nabla^m}(\tau) \nabla \tau \right)$$

$$\stackrel{(1.6)}{=} \left(R_m^b(f) \right) (t), \qquad (2.8)$$

under the assumption $\mathbb{T} = \mathbb{T}_k = \mathbb{T}^k$.

We have established the following right nabla time scales Taylor formula.

Theorem 12 Assume $\mathbb{T} = \mathbb{T}_k = \mathbb{T}^k$. Let $f \in C^m_{ld}(\mathbb{T})$, $m \in \mathbb{N}$, $a, b \in \mathbb{T}$, with $\mu > 2 : m - 1 < \mu \leq m$, $\widetilde{\nu} = m - \mu$. Then

$$f(t) = \sum_{k=0}^{m-1} \widehat{h}_k(t, b) f^{\nabla^k}(b) + J_{b-}^{\mu-1} \nabla_{b-}^{\mu-1} f(t) + (-1)^{m+1} \theta(f^{\nabla^m}, \mu - 1, \widetilde{\nu} + 1, b, \mathbb{T}, t),$$
(2.9)

 $\forall \ t \in [a,b] \cap \mathbb{T}.$

Remark 13 One can rewrite (2.9) as follows

$$f(t) = \sum_{k=0}^{m-1} \widehat{h}_k(t, b) f^{\nabla^k}(b) +$$

$$(-1)^{m+1} \int_t^b f^{\nabla^m}(\tau) \nu(\tau) \widehat{g}_{\mu-2}(\rho(\tau), t) \widehat{g}_{\widetilde{\nu}}(\rho(\tau), \tau) \nabla \tau$$

$$+ \int_t^b \widehat{g}_{\mu-2}(\rho(\tau), t) \left(\nabla_{b-}^{\mu-1} f\right) (\tau) \nabla \tau, \tag{2.10}$$

 $\forall t \in [a, b] \cap \mathbb{T}.$

Corollary 14 In the assumptions of Theorem 12, additionally assume that $f^{\nabla^k}(b) = 0$, k = 0, 1, ..., m - 1. Then

$$A(t) := f(t) + (-1)^m \theta \left(f^{\nabla^m}, \mu - 1, \widetilde{\nu} + 1, b, \mathbb{T}, t \right)$$

$$= \int_t^b \widehat{g}_{\mu-2} \left(\rho(\tau), t \right) \left(\nabla_{b-}^{\mu-1} f \right) (\tau) \nabla \tau, \tag{2.11}$$

 $\forall t \in [a, b] \cap \mathbb{T}.$

Remark 15 Notice (by [8]) that $\left(J_{b-}^{\mu-1}\nabla_{b-}^{\mu-1}f\right)(t)$ and $\theta(f^{\nabla^m},\mu-1,\widetilde{\nu}+1,b,\mathbb{T},t)$ are absolutely continuous functions on $[a,b]\cap\mathbb{T}$.

One can use (2.10) and (2.11) to establish right fractional nabla inequalities on time scales of Poincaré type, Sobolev type, Opial type, Ostrowski type and Hilbert-Pachpatte type, etc, analogous to [1]. To keep the article short we avoid this similar task.

Our theory is not void because it is valid when $\mathbb{T} = \mathbb{R}$, see also [1].

References

[1] G. A. Anastassiou, *Foundations of Nabla Fractional Calculus on Time Scales and Inequalities*, Computers & Mathematics with Applications **59** no. 12 (2010), 3750–3762.

- [2] G. A. Anastassiou, *Nabla Time Scales Inequalities*, Editor Al. Paterson, special issue on Time Scales, International Journal of Dynamical Systems and Difference Equations 3 no. 1–2 (2011), 59–83.
- [3] D. R. Anderson, *Taylor Polynomials for nabla dynamic equations on times scales*, Panamerican Mathematical Journal **12** no. 4 (2002), 17–27.
- [4] D. Anderson, J. Bullok, L. Erbe, A. Peterson, H. Tran, *Nabla Dynamic equations on time scales*, Panamerican Mathematical Journal **13** no. 1 (2003), 1–47.
- [5] F. Atici, D. Biles, A. Lebedinsky, *An application of time scales to economics*, Mathematical and Computer Modelling **43** (2006), 718–726.
- [6] M. Bohner, G. S. Guseinov, *Multiple Lebesgue integration on time scales*, Advances in Difference Equations **2006** (2006), Article ID 26391, pp. 1–12, DOI 10.1155/ADE/2006/26391.
- [7] M. Bohner, G. Guseinov, *Double integral calculus of variations on time scales*, Computers and Mathematics with Applications **54** (2007), 45–57.
- [8] M. Bohner, H. Luo, *Singular second-order multipoint dynamic boundary value problems with mixed derivatives*, Advances in Difference Equations **2006** (2006), Article ID 54989, pp. 1–15, DOI 10.1155/ADE/2006/54989.
- [9] M. Bohner, A. Peterson, *Dynamic equations on time scales: An Introduction with Applications*, Birkhäuser, Boston (2001).
- [10] G. Guseinov, *Integration on time scales*, Journal of Mathematical Analysis and Applications **285** (2003), 107–127.
- [11] S. Hilger, *Ein Maßketten-Kalkül mit Anwendung auf Zentrumsmannigfaltigkeiten*, PhD. thesis, Universität Würzburg, Germany (1998).
- [12] N. Martins, D. Torres, *Calculus of variations on time scales with nabla derivatives*, Nonlinear Analysis **71** no. 12 (2009), 763–773.