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Abstract. We develop the right nabla fractional calculus on time scales. We introduce the related
Riemann-Liouville type fractional integral and Caputo like fractional derivative and prove a frac-
tional Taylor formula with integral remainder.
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1 Background

For the basics of times scales the reader is referred to [2, 3, 4, 5,6, 7, 8,9, 10, 11, 12].
Let T be a time scale, and &y, : T2 — R, k € Ng = NU {0}, such thatV s,t € T, ho (t,s) =1,

~ t/\
hk+1 (t,S):/ hk(T,S)VT. (1.1)

Here /Iik are [d-continuous in ¢, and
hY (t,8) = hp_1(t,s), k €N, t €Ty,

with 7 (t,s)=t—s,Vs,teT.

From [3], we write down Taylor’s formula in terms of nabla polynomials:
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Theorem 1 Assume that T = Ty,. Let f € C]} (T,R), m € N, b,t € T. Then

m—1

F) =S B0 £ 0+ [ B o) 17 ()9

k=0

Call

Rb

Following [3], we define
go (t,s) =1,

t
§n+1(t,s):/ gn(p(7),8) VT, neN,s,teT.
S

Notice here
/g\rY—&-l (tv 5) = b\n (p (t) 78) ’ te Tkv
g1(t,s)=t—s, Vs, teT.

From [3] we need

Theorem 2 IfT =T, = T*, and n € Ny, then

~

hn (t,s) = (=1)"gn (s,1), Vs, t €T.

By Theorem 2 we get

b
R (f) (1) = (~1)™ / Gt (p(1) ) 17" ()

t

We make

Definition 3 Ler o > 0 real number. We consider the continuous functions

Go : T2 5 R,
such that
g0 (t,s) =1,

t
Jot+1 (t,s):/ o (p(1),8) VT, Vs,teT.

We are motivated by the formula

/x (:L' _ S),u,—l (S _ t)l/—l e (1: _ t),u—i-u—l
¢ T T — T(et+v) '

where p, v > 0 and I' the gamma function.

We make

t N b .
b(f) (1) = /b ot (£, (7)) £ (7) Vi = — / 1 (6,0 (7)) 17" (7) 7.

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

1.7

(1.8)
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Assumption 4 Leta, 5> landx <t <7, x,t,7 € T. We assume that
(1) N N
[ 8t (0. ) 51 (1), 0Vt =G (0 (7) ). (1.9)
xX

Wecallfora, 3 >1andz <t <,
vy (z,7) = /( )ﬁa—l (p(t),x)gs—1(p(7),t) Vt.
p(T
It holds
’7(1‘77-) = V(T) /.dafl (p (T),$)§5_1 (P (T)aT)a (110)

where v (1) := 7 — p(7), the backward graininess, see [9], p. 332, under the assumption T = T}.

2 Results
We need

Definition 5 Leta,b € T, « > land f : [a,b) N T — R. Here f € L1 ((a,b] NT) (Lebesgue V-
integrable function on (a,b] N'T). We define the right V-Riemann-Liouville type fractional integral

b
o f(t) = / Gar (p(7),1) £ (1) VT, @.1)

fort € [a,b] NT. Here ftb V7 = f(t o VT

By [8] we get that J}_f (t) = ftb f (1) V7 is absolutely continuous in ¢ € [a,b] N'T.

Lemma 6 Letr v > 1, f € L1 ((a,b]NT), f : [a,b] N T — R. Assume that go—1 (p(7),1t) is
Lebesgue V-measurable on ([a,b] N'T)*; a,b € T. Then Ji' f € L ([a,b]N'T), that is J* [ is
finite a.e.

Proof. By Tietze’s extension theorem of General Topology we easily derive that the continu-
ous function §,_; on ([a,b] N'T)? is bounded, since its continuous extension G,_; on [a,b]? is
bounded. Notice that ([a, b] N T)? is a closed subset of [a, b]°.

So there exists M > 0 such that [§,_1 (s, )] < M,V (s,t) € ([a,b] N'T)%.
Let id denote the identity map. We see that
(psid) (((a, 5] N T) x ([a, 6] N'T)) < ([a, ] N'T)*.

Therefore |go—1 (p(7),t)] < M,V (1,t) € ((a,b]NT) x ([a,b]NT), since (p(7),t) €
([a,b] N'T)%.

Define K : Q := ([a,b] N T)? = R, by

 Ga—(p(r),t), iffa<t<T<Dh,
K(T’t)‘_{ 0, ifa<7<t<b,
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where ¢, 7 € T.

Clearly K is Lebesgue V-measurable on {2, since the restriction of a measurable function to a
measurable subset of its domain is measurable function and the union of two measurable functions
over disjoint domains is measurable. Notice that |K (7,t)| < M,V (r,t) € ([a,b] N'T)?.

Next we consider the repeated double Lebesgue V-integral

/ab (/ab|K(T,t)| |f(T)!Vt> VT = /ablf(T)] </ab|K(7-,t)|Vt> Vr

b
gA4@—@/Nfuan=Mahnnvawmm<m.

By Tonelli’s theorem we derive that (7,t) — K (7,t) f (7) is Lebesgue V-integrable over (2.

Let now the characteristic function

1, if 7 € (tb]
X(tp] (T) :{ 0. clse,

where 7 € [a,b] N T.
Then the function (7,t) — x5 (7) K (7,1) f (7) is Lebesgue V-integrable over ().
Hence by Fubini’s theorem we get that

b b
/MWmmemw=j%mmmwmw=mm>

is Lebesgue V-integrable on [a, b] N T, proving the claim. O
We make

Assumption 7 From now on we assume that Go—1 (p (+) ,-) is continuous on ([a,b] N'T)?, for any
a>1.

We give

Definition 8 Ler f € Ly ((a,b] N'T) . We define the right backward graininess deviation functional
of f as follows

b
0(f,a,B8,b,T, ) ::/ f(r)y(z,7) VT 2.2)

It holds

b
0 (f7 «, Bv bv T) l‘) = / f (T) v (T) /g\a,1 (p (7-) 71:> /g\,B—l (p (7-) 77_) VT7 (23)
under the assumption T = Ty.
If T =R, then 0 (f,c,3,b,T,z) =0.

We give the following semigroup property of right V-Riemann-Liouville type fractional inte-
grals.
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Theorem 9 Let the time scale T such that a,b € T, f € L1 ((a,b] NT); o, 3 > 1. Then

JE I f (@) =T f () +0(f,0,8,0,T,2), Vaela,bNT. (2.4)
Proof. For 8 > 1 we have

b
JEf () = / Go-1(p (1), 1) F (1) V7.

We observe that

b
e JPf (2) = / Gor (0 (1) .2) JPf () Vit =
b b
JEaE ( [ a1 6@.07e vf) Vi =

/zb </tb Ga-1(p(t),2) g1 (p(7),t) f (T) w) Vit =: ().

Clearly here it holds
a1 (p(t),2)] < My, Vt,z € a,b]NT

and
l98—1 (p(7),t)| < Ma, V7,t € a,b]NT

where My, My > 0.

Hence

g @) < [ ([ 180 00051 000117 0 97 ) v <

([ o ([ (Frm)e)-

MMz (b —a) || £, (ap)m) < o°-

Therefore J;* Jf_ f (x) exists, V = € [a,b] N'T. Consequently by Fubini’s theorem we have
b T
= [ ([ 301600081601, 9) 97 =

[ 10 ([[301 002551 00,05 vr

(x<t<T)

(E’)Lbfm(

Q)
+
E
»—A
%\
é
+
—
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So we have that )
JEJPf (@) = TP (n) + / f (@) (@) Vr

= S0 (@) + 6 (f.. 8,5, T, ),
proving the claim. ([l

We make

Remark 10 Let pp > 2:m—1 < pu <m €N, i.e. m = [u] (ceiling of number), v = m — p
(0 < v <1). Let f € C ([a,b]NT). Clearly here ([10]) f¥" is a Lebesgue V-integrable
function. We define the right nabla fractional derivative on T of order 1 — 1 as follows:

7. m b m
Vi) = (0 () () = (<) / G (@0 (V@)

Vtéela,bNT.

Notice V;f:l f € C(la,b] NT), by a simple argument using the dominated convergence theo-
rem in Lebesgue V-sense.

If u = m, then v = 0, then

b
V0= )" [T @ = 0 (T m - 0). @)

More generally, by [8], given that fvm_1 is everywhere finite and absolutely continuous on
a,b| N 'L, then exists V-a.e. and is Lebesgue V-integrable on (2,6| T,V ¢ € |a,b N'T, an

b]N'T, then fV" exists V d is Lebesgue V-integrabl bNT,V b N'T, and
one can plug it into (2.5).

Remark 11 We observe that
— _]_ m — 17 m
HVEE ) = (0 (T )

L iy (T 0 40 (1 = 17+ L))

= (D)™ (Y@ +0 (Y - 1,7+ 1,b,T,¢)). 2.7)

Hence we proved that

TR+ ()™ e (Y = 1,74+ 1,0, T, t) =
b
(=)™ (S SV () = (=)™ (/t Gm—1(p (), ) fV" (1) VT)

(R ) o, 8)

under the assumption T = T}, = T*.

We have established the following right nabla time scales Taylor formula.
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Theorem 12 Assume T = Ty = T Let f € C*(T), m € N, a,b € T, withpy >2:m —1 <
w<m,v=m— u. Then

m— 1
B (£,0) £¥° (0) + SV () +
k=0
(71)m+16(fvm7:u71vg+1ava7t>7 (29)

Vtea,bNT.

Remark 13 One can rewrite (2.9) as follows

>—‘

m—

k=

o

+ [ G2 lom.0 (Vi) )9, 210

Vte[a,bNT.

Corollary 14 In the assumptions of Theorem 12, additionally assume that ka b)) =0 k =
0,1,...,m — 1. Then

A):=fO)+ (Dm0 (Y, p—1,7+1,b,T,1)

/ ) (V@L ! f) (1) Vr, @2.11)

Vtela,bNT

Remark 15 Notice (by [8]) that (Jé‘__lvg__lf) (t)and (f¥" , u—1,041,b, T, t) are absolutely

continuous functions on [a,b] N T.

One can use (2.10) and (2.11) to establish right fractional nabla inequalities on time scales of
Poincaré type, Sobolev type, Opial type, Ostrowski type and Hilbert-Pachpatte type, etc, analogous
to [1]. To keep the article short we avoid this similar task.

Our theory is not void because it is valid when T = R, see also [1].
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