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1 Introduction

In probability space (Ω,F ,P), besides the continuous stochastic processes xt = x(t, ω), we
are interested in generating the stochastic set of processes Xt = X(t, ω) ∈ KCC(Rn), where
t ∈ [0, T ] ⊂ R+ and KCC (Rn) are the family of all nonempty convex and compact subsets
of Euclidean n-dimensional space Rn with Hausdorff distance. We can find an extensive liter-
ature (see [2–8]), where attempts have been made to investigate stochastic set differential equa-
tions (SSDEs) and stochastic differential inclusions (SDIs). In [7] the authors have investigated the
problem of existence and uniqueness of stochastic set solutions of SSDEs under classical deriva-
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tive. In [8] the authors have investigated boundedness properties of these solutions of SSDEs under
Hukuhara derivative with selectors by many kinds of controls.

In this paper, we have investigated stability properties by quasi-expectation of stochastic set so-
lutions for SSDEs under Hukuhara derivative with selectors without any controls. We organize this
paper as follows. In section 2, we introduce some necessary notations, definitions and results about
stochastic set differential equations. In section 3 we consider many kinds of stability properties by
quasi-expectation.

2 Preliminaries

We recall some notations and concepts presented in detail in recent work of V. Lakshmikantham et
al. (see [1]). Let KCC(Rn) denote the collection of all nonempty compact convex subsets of Rn.
Given A,B ∈ KCC(Rn), the Hausdorff distance between A and B is defined by

dH(A,B) = max
{

sup
a∈A

inf
b∈B
‖a− b‖ , sup

b∈B
inf
a∈A
‖b− a‖

}
(2.1)

and {θn} – the zero points set in KCC (Rn). It is known that (KCC(Rn), dH) is a complete metric
space and KCC (Rn) is a complete and separable with respect to dH .

We define the magnitude of a nonempty subset A as

dH(A, θn) = ‖A‖ = sup{‖a‖, a ∈ A} (2.2)

The Hausdorff metric (2.1) satisfies the properties below:

dH(A+ C,B + C) = dH(A,B) and dH(A,B) = dH(B,A),

dH(λA, λB) = λ dH(A,B),

dH(A,B) ≤ dH(A,C) + dH(C,B),

dH(A+ C,B +D) ≤ dH(A,B) + dH(C,D)

for all A,B,C,D ∈ KCC(Rn) and λ ∈ R+. If α, β ∈ R and A,B ∈ KCC(Rn), then

α(A+B) = αA+ αB, α(βA) = (αβ)A, 1 ·A = A . (2.3)

Let A,B ∈ KCC(Rn). The set C ∈ KCC(Rn) satisfying A = B + C is called the Hausdorff
difference (the geometric difference) of the sets A and B and is denoted by A − B. Given an
interval I in R+, we say that the set stochastic mapping X : I × Ω → KCC(Rn) has a Hukuhara
derivative DHX(t0, ·) at a point t0 ∈ I , if

lim
h→0+

X(t0 + h, ·)−X(t0, ·)
h

and lim
h→0+

X(t0, ·)−X(t0 − h, ·)
h

(2.4)

exist in the topology of KCC(Rn) and are equal, to what we then call DHX(t0, ·).

By embedding KCC(Rn) as a complete cone in a corresponding Banach space and taking into
account results about the differentiation of Bochner integrals, we find that if

X(t, ·) = X0 +

∫ t

t0

Φ(s, ·) ds, X0 : Ω→ KCC(Rn), (2.5)
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where Φ : I × Ω → Kc(Rn) is integrable in the sense of Bochner, then DHX(t, ·) exists and the
equality DHX(t, ·) = Φ(t, ·) a.e on I × Ω holds.

The Hukuhara integral of X is given by∫
I
X(s, ·) ds = cl

[ ∫
I
x(s, ·) ds : x is a continuous selector of X

]
for any compact set I ⊂ R+.

Some properties of the Hukuhara integral are given in [8]. If X : I × Ω → KCC(Rn) is
integrable, one has∫ t2

t0

X(s, ·) ds =

∫ t1

t0

X(s, ·) ds+

∫ t2

t1

X(s, ·) ds, t0 ≤ t1 ≤ t2

and ∫ t

t0

λX(s, ·) ds = λ

∫ t

t0

X(s, ·) ds, λ ∈ R.

IfX1, X2 : I×Ω→ KCC(Rn) are integrable, then dH(X1(·, ·), X2(·, ·)) : I×Ω→ R is integrable
and

dH

(∫ t

t0

X1(s, ·) ds,

∫ t

t0

X2(s, ·) ds
)
≤
∫ t

t0

dH

(
X1(s, ·), X2(s, ·)

)
ds.

In [9], the authors considered stochastic differential equations (SDEs)

dxt = f(t, xt) dt+ g(t, xt) dwt (2.6)

and stochastic differential inclusions (SDIs), see [2, 3],

dxt ∈ F (t, xt) dt+G(t, xt) dwt (2.7)

where xt is a stochastic process, F (t, xt), G(t, xt) are mappings of set-valued stochastic processes,
wt is the Wiener process. Given a complete filtered probability space (Ω,F ,P) with a filtration
{Ft}t∈[0,T ] satisfying the usual conditions, i.e., {Ft}t>0 is an increasing and right continuous family
of σ-subalgebras of F and F0 contains all P–null sets. Let P(Ft) denote the smallest σ-algebra on
R+ × Ω with respect to which every continuous adapted process is measurable. An n-dimensional
stochastic process X is said to be predictable (progressively measurable, nonanticipating) if X is
P(Ft)-measurable. Let w(t), t ∈ [0, T ] be an Ft–adapted one-dimensional Wiener process defined
on (Ω,F ,P). We shall deal with measurable multifunctions defined on Ω with values in the family
of nonempty closed subsets of KCC(Rn). In [7] the authors have investigated the stochastic set
differential equation (SSDE) under classical derivative:

dX(t) = F (t,X(t)) dt+G(t,X(t)) dw(t) (2.8)

Denote byM(Ω,Ft,P;KCC(Rn)) the family of these mappings of set-valued stochastic processes,
whose range of the image belongs to KCC(Rn). In [8] the authors have considered stochastic set
differential equations (SSCDEs) under Hukuhara derivative with selectors:

DHXt = F (t,Xt, Ut) +G (t,Xt, Ut) ξ(t) (2.9)
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where Xt = X(t, ω) ∈ M(Ω,Ft,P;KCC(Rn)), t ∈ [0, T ] ⊂ R+, ξ(·) is one-dimensional “white
noise”, i.e., the time derivative of the Wiener process, and F,G ∈ M(Ω,Ft,P;KCC(Rn)) such
that:

F : [0, T ] ⊂ R+ × Ω×KCC (Rn)×KCC

(
Rd
)
→ KCC (Rn) ,

F (t,Xt, Ut) = F (t, ω,X(t, ω), U (t, ω))

is measurable and Aumann integrably bounded φt(ω) =
t∫
0

F (s,Xs, Us) ds.

G : [0, T ] ⊂ R+ × Ω×KCC (Rn)×KCC

(
Rd
)
→ KCC (Rn) ,

G (t,Xt, Ut) = G (t, ω,X(t, ω), U (t, ω))

is measurable and Itô integrably bounded, It (ω) =
t∫
0

G (s,Xs, Us) dws, where wt is an {Ft}–

adapted one-dimensional Wiener process with
dwt
dt

= ξ(t) defined on (Ω,F ,P).

Definition 2.1 A set-valued stochastic process Xt = X(t, ω) ∈ M(Ω,Ft,P;KCC(Rn)), with
ω ∈ Ω, t ∈ [0, T ] ⊂ R+, is called stochastic set solution to SSDE (2.8), if it satisfies

(i) Xt is a continuous mapping with respect to the metric dH .

(ii) for every t ∈ [0, T ],

Xt = X0 +

t∫
0

F (s,Xs) ds+

t∫
0

G (s,Xs) dws P–a.e.. (2.10)

where X0 : Ω→ KCC(Rn) is an F0-measurable multifunction.

Definition 2.2 (see [7]) A stochastic set solution Xt : [0, T ] × Ω → KCC (Rn) of SSDE (2.8) is
unique if for every t ∈ [0, T ]

Xt = Yt P–a.e.

where Yt : [0, T ]× Ω→ KCC (Rn) is any set solution of (2.8).

Assume that F,G : [0, T ]× Ω×KCC(Rn)→ KCC(Rn) satisfy the following conditions:

(FG1) For every set A ∈ KCC (Rn) the mappings F (�, �, A), G(�, �, A) are nonanticipating multi-
functions.

(FG2) There exists a constant L > 0, such that

max {dH(F (t, ω,A), F (t, ω,B)), dH(G(t, ω,A), G(t, ω,B))} ≤ L · dH(A,B).

(FG3) There exists a constant C > 0, such that

max {dH(F (t, ω,A), {θn}), dH(G(t, ω,A), {θn})} ≤ C · (1 + dH(A, {θn})) .

Theorem 2.3 (see [7]) Let X0 ∈ L2 (Ω,F ,P,KCC (Rn)) be an F0 measurable multifunction. If
F,G satisfy (FG1)–(FG3), then SSDE (2.8) has a unique solution Xt.
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Definition 2.4 Let Xt, Yt ∈ KCC(Rn) be set solutions of (2.9). We have:

(a) The distance between two stochastic set processes Xt, Yt ∈ KCC (Rn),

dH (Xt, Yt) = max
{

sup
xt∈Xt

inf
yt∈Yt

‖xt − yt‖ , sup
yt∈Yt

inf
xt∈Xt

‖yt − xt‖
}
. (2.11)

(b) The norm of a stochastic set process Xt,

‖Xt‖ = dH (Xt, {θn}) = r(t) . (2.12)

(c) The p-exponential norm of a stochastic set process Xt,

‖Xt‖p = dp
H

(Xt, {θn}) = rp(t) . (2.13)

(d) The p-quasi-expectation of a stochastic set process Xt is defined as

ET (‖Xt‖p) =

T∫
0

‖Xt‖p dt . (2.14)

(e) The stochastic set processes Xt = Yt if and only if

ET (‖Xt‖p) = ET (‖Yt‖p) a.e.. (2.15)

3 Main results

Let’s consider the stochastic set differential equations (SSDEs) under Hukuhara derivative and with
selectors,

DHXt = F (t,Xt) +G(t,Xt)ξ(t) (3.1)

where Xt = X(t, ω) ∈ KCC (Rn) , t ∈ J ⊂ R+, ω ∈ Ω and F (t,Xt), G (t,Xt) are mappings of
set-valued stochastic processes with selectors

F (t,Xt) = cl
{
f i(t, xt)

}
and G(t,Xt) = cl

{
gi(t, xt)

}
, i ∈ I ⊂ N . (3.2)

Equations (3.1) with (3.2) are the symbolic representation of the following integral expression:

Xt = X0 +

t∫
0

F (s,Xs) ds+

t∫
0

G (s,Xs) dws (3.3)

Definition 3.1 Let F1, F2 be mappings of set-valued stochastic processes with selectors. We define
the distance dp

H
(F1, F2) between these mappings as

dp
H

(F1, F2) = max
{

sup
i

inf
j

∥∥∥f i1(t, ω, xt)− f j2 (t, ω, yt)
∥∥∥p, sup

j
inf
i

∥∥∥f j2 (t, ω, yt)− f i1(t, ω, xt)
∥∥∥p}

where (t, ω) ∈ J × Ω and i, j ∈ I ⊂ N.
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Definition 3.2 A set-valued stochastic process with selectors is called stochastic set solution to the
SSDE (3.1) with selectors if it satisfies (3.1)–(3.3)

Xt = cl
{
xit = xi(t, ω) =

(
xi1(t, ω), xi2 (t, ω) , ..., xin (t, ω)

)
| i ∈ I ⊂ N

}
,

and
dp
H

(Xt, {θn}) = ‖Xt‖p = sup
{∥∥xit∥∥p | xit ∈ Rn | i ∈ I ⊂ N

}
.

Definition 3.3 The family of all Lp-selectors
{
xit
}

is denoted

Sp(X) =
{
xi (t, ω) ∈ Lp(Ω,F ,P,Rn) | i ∈ I ⊂ N, xit ∈ Xt ∈ KCC (Rn)

}
.

Remark 3.4 Let Xt ∈ KCC (Rn). If Sp(X) 6= ∅, then there exists a sequence
{
xik(t, ω)

}
k∈N

contained in Sp(X) such that Xt = cl
{
xik(t, ω) | i ∈ I ⊂ N, k ∈ N

}
.

Remark 3.5 If Sp(X) = Sp (Y ) 6= ∅, then Xt = Yt a.e., for all Xt, Yt ∈ KCC (Rn).

Definition 3.6 Let Xt ∈ KCC (Rn). We define a set-valued mapping Lt(X)

∀(t, ω) ∈ J × Ω : Lt (X) (ω) =

t∫
0

X (s, ω) ds.

Lemma 3.7 (see [8], Theorem 3.9) Let X = {Xt ∈ KCC(Rn), t ∈ J}. Then there exists a se-
quence of selectors-stochastic processes

{
xik(t, ω) | i ∈ I ⊂ N, k ∈ N

}
⊆ Sp(X) such that:

(a) Xt = cl
{
xi(t, ω) | i ∈ I ⊂ N

}
, a.e. (t, ω) ∈ J × Ω,

(b) Lt (X) (ω) = cl
{∫ t

0
xi (s, ω) ds | i ∈ I ⊂ N

}
, a.e. (t, ω) ∈ J × Ω,

(c) Lt (X) (ω) = cl
{
Lt1 (X) (ω) +

∫ t

t1

X (s, ω) ds
}
, a.e. (t, ω) ∈ J × Ω,

where the closure is taken in Rn.

Definition 3.8 Let Xt ∈ KCC (Rn), then for all t ∈ J we define:

(i) Lpt (X) (ω) = cl
{∫ t

0

∥∥xi (s, ω)
∥∥p ds | i ∈ I ⊂ N

}
.

(ii) Et (‖Xs‖p) =

∫ t

0
‖Xs‖p ds =

∫ t

0
rp(s) ds ,

Lemma 3.9 (see [8], Lemma 3.11) LetXt, Yt ∈ KCC (Rn). Then there exists a measurable subset
A ⊆ [0, T ]× Ω with (λ× µ) (A) = 0 so that the following holds:
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(a) Lpt (X) (ω) ⊆ cl
{
Lpt1 (X) (ω) +

∫ t

t1

dpH (Xt, {θn}) ds

}
.

(b) There exists γ(t) ∈ R such that dp
H

(Lt(X)(ω), Lt(Y )(ω)) 6 γ(t)Et(d
p
H

(X,Y )).

where the closure is taken in Rn .

Lemma 3.10 (see [8], Lemma 3.12) If Xt = cl
{
xit ∈ Sp(X)

}
, then

(a) Et (‖Xs‖p) > Lpt (X)(ω).

(b) ET (‖Xs‖p) > Et (‖Xs‖p), for t ∈ [0, T ].

(c) Et (‖Xs‖p) > Et
(∥∥xis∥∥p).

Now we investigate the some kinds of stability properties by Quasi-expectation (stability by
Lyapunov’s means (p-LS), p-equi-stability for mappings (p-S), ..., stability for mappings (p-LSM),
p-Lyapunov’s stability for selectors (p-LSS).

Definition 3.11 The trivial stochastic set solution of (3.1) is said to be

(p-LS) p-Lyapunov stable for mapping, if for each εmp > 0, there is t0 > 0 and ηmp =
ηmp (t0, εmp), such that Et0 (‖Xt‖p) ≤ ηmp implies ∀T ≥ t0 : ET (‖Xt‖p) < εmp.

(p-ALS) p-Asymptotical Lyapunov stable for mapping, if it is (p-LS) and lim
T→+∞

ET (‖Xt‖p) = 0.

(p-ELS) p-Exponent Lyapunov stable for mapping, if there exist α, β > 0, such that:

ET (‖Xt‖p) ≤ β · Et0 (‖Xt‖p) · exp [−α (T − t0)] .

Theorem 3.12 Suppose that the positive Lyapunov-like function V (t,Xt) ∈ C([0, T ]×KCC(Rn),
R+) satisfies the following conditions :

(i)
∣∣V (t,Xt)− V

(
t,Xt

)∣∣ 6 L · Et
(
dp
H

(Xt, Xt)
)

, where L > 0 is Lipschitz constant for all

Xt, Xt ∈ KCC (Rn) and t ∈ [0, T ].

(ii) The Dini derivative satisfies D+V (t,Xt) 6 g(t, V (t,Xt)), where g(t, 0) = 0, g ∈
C
([
R2
+,R

])
, and

D+V (t,Xt) = lim
h→0

inf
1

h

[
V
(
t+ h,Xt + h

(
F (t,Xt) +G(t,Xt)ξ(t)

))
− V (t,Xt)

]
.

IfXt is a stochastic set solution of SSDE (3.1), then V (t,Xt) 6 l (t, t0, k(t0)), where l (t, t0, k(t0))
is a maximal solution of the ordinary differential equation (ODE)

dl

dt
= g (t, k(t)) , k(t0) = k0 > 0.
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Proof. LetXt = X (t, ω, t0, X0) be any stochastic set solution of SSDE (3.1) existing on [t0, T ] ⊂
R+. Define the functionm(t) = V (t,Xt) so thatm(t0) = V (t0, Xt0) 6 k0. Now for small h > 0,
by our assumption it follows that

m(t+ h)−m(t) = V (t+ h,Xt+h)− V (t,Xt) .

Then we have ∀t > t0, D+m(t) = D+V (t,Xt) 6 g(t,m(t)), where m(t0) 6 k0, and the estimate
∀t > t0, m(t) 6 l(t, t0, k0). �

Corollary 3.13 If the Lyapunov-like function V (t,Xt) ∈ C ([0, T ]×KCC (Rn) ,R+) satisfies the
conditions in Theorem 3.12, then we have the estimate:

∀t > t0 > 0, V (t,Xt) 6 V (t0, Xt0) .

Theorem 3.14 Assume that F , G satisfy (FG1)–(FG3), there is a positive Lyapunov function
V (t,Xt) ∈ C ([0, T ]×KCC (Rn) ,R+) which satisfies the conditions of Theorem 3.12, and there
are a, b ∈ R+ such that bET (‖Xt‖p) ≤ V (t,Xt) ≤ aET (‖Xt‖p) . Then:

(a) If g (t, V (t,Xt)) ≤ 0, then the trivial stochastic set solution is (p-LS).

(b) If g (t, V (t,Xt)) < 0, then the trivial stochastic set solution is (p-ALS).

(c) If g (t, V (t,Xt)) ≤ −αV (t,Xt), then the trivial stochastic set solution is (p-ELS).

Proof. (a) If F,G satisfy (FG1)–(FG3) then SSDE (3.1) has a unique set solution Xt (3.3).
Next, we have to prove that:

∀εmp > 0, ∃ηmp (t0, εmp) : Et0 (‖Xt‖p) < ηmp → ET (‖Xt‖p) < εmp.

Because D+V (t,Xt) ≤ g (t, V (t,Xt)) ≤ 0, then using Corollary 3.13 we have ∀t ≥ t0 :
V (t,Xt) ≤ V (t0, Xt0). By assumptions of this Theorem, we infer

bET (‖Xt‖p) ≤ V (t,Xt) ≤ V (t0, Xt0) ≤ aEt0 (‖Xt‖p)

where T ≥ t > t0. Choosing ηmp = b
aεmp, we have ET (‖Xt‖p) < εmp.

(b) Suppose that g(t, V (t,Xt)) < 0. Then the trivial stochastic set solution is (p-LS). We have to
prove that lim

T→∞
ET (‖Xt‖p) = 0. If it is not true, take ε0 and η > 0 such that ET (‖Xt‖p) >

η and a ε0 ≤ b η.

On the other hand, we have

b η < bET (‖Xt‖p) ≤ V (t,Xt) ≤ a ε0 ≤ b η

This contradiction proves (p-ALS).

(c) Assume that g(t, V (t,Xt)) ≤ −αV (t,Xt), that means D+V ≤ −αV (t,Xt) and implies

∀t > t0 : V (t,Xt) ≤ V (t0, Xt0) · exp [−α (t− t0)] .

Thus, we have bET (‖Xt‖p) ≤ V (t,Xt) ≤ V (t0, Xt0) · exp [−α (t− t0)] ≤ aET (‖Xt‖p) ·
exp [−α (t− t0)] or ET (‖Xt‖p) ≤ β ET (‖Xt‖p) · exp [−α (t− t0)] , where β =

a

b
. The

proof is completed.

�
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Definition 3.15 The trivial stochastic set solution of SSDE (3.1) is said to be:

(p-S1) p-equi-stable, if for each ε > 0 and t0 > 0, there exists η = η(t0, ε) such that
Et0(‖Xs‖p) < η implies that Et(‖Xs‖p) < ε.

(p-S2) p-uniformly stable, if η in (p-S1) is independent of T0.

(p-S3) p-quasi-equi-asymptotically stable, if for each ε > 0, t0 > 0, there exist t′ = t′(t0, ε) and
η0 = η0(t0) such that Et0(‖Xt‖p) < η0 implies that ∀T ≥ t′ + t0 > 0, ET (‖Xt‖p) < ε.

(p-S4) p-quasi-uniformly-asymptotically stable, if η0 and t′ in (p-S3) are independent of t0.

(p-S5) p-equi-asymptotically stable, if (p-S1) and (p-S3) hold simultaneously.

(p-S6) p-uniformly asymptotically stable, if (p-S2) and (p-S4) hold simultaneously.

(p-S7) p-exponent-asymptotically stable, if there are α, β > 0 such that:

ET (‖Xs‖p) ≤ β Et0(‖Xs‖p) · exp [−α (T − t0)] .

Remark 3.16 According to Definitions 3.11 and 3.15, we can say that

(i) The stochastic set solution of SSDE (3.1) is (p-S1) if and only if it is (p-LS), i.e., (p-S1) ⇔
(p-LS).

(ii) (p-S6)⇔ (p-ALS).

(iii) (p-S7)⇔ (p-ELS).

(iv) (p-S6) or (p-ALS)⇒ (p-S6).

(v) (p-S6)⇒ (p-S4)

Thus we have to prove (p-S1), (p-S6) and (p-S7).

Theorem 3.17 Suppose that the positive Lyapunov-like function V (t,Xt) satisfies:

(i)
∣∣V (t,Xt)− V

(
t, X̄t

)∣∣ < L · ET (dp
H

(Xt, X̄t)) where L > 0 is Lipschitz constant for all Xt,
Xt ∈ KCC(Rn) and t ∈ [0, T ].

(ii) There exist a, b ∈ R+ such that: bEt(‖Xt‖p) ≤ V (t,Xt) ≤ aEt(‖Xt‖p).

(iii) D+V (t,Xt) ≤ g(t, V (t,Xt)).

Then:

(a) If g(t, V (t,Xt)) ≤ 0 , then (p-S1) holds.

(b) If g(t, V (t,Xt)) < 0 , then (p-S6) holds.

(c) If g(t, V (t,Xt)) < −αV (t,Xt) , then (p-S7) holds.
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Proof. We prove anologous as in Theorem 3.14 with the affirmation for (p-S1), (p-S6) and (p-S7)
are proved analogous proof of the affirmations for (p-LS), (p-ALS), (p-ELS), respectively. �

Definition 3.18 Let Xt ∈ KCC(Rn) be defined by equation (3.3). Then

(i) The family of all initial selectors
{
xit0
}

is denoted by the sets

Ŝ0(X) =
{
xi0(t0, ω) | xi0 ∈ X0 ∈ KCC(Rn), i ∈ I ⊂ N

}
(ii) The family of all solutions selectors

{
xit
}

is denoted by the sets

Ŝ(X) =
{
xit(t, ω) | xit ∈ Xt ∈ KCC(Rn), i ∈ I ⊂ N

}
Definition 3.19 Let Ŝ(X), Ŝ(Y ) be as in Definition (3.18). Then, we define:

(i) The distance between these two families of selectors,

dpH

(
Ŝ(X), Ŝ(Y )

)
= max

{
sup

xit∈Ŝ(X)

inf
yit∈Ŝ(Y )

∥∥xit − yit∥∥p , sup
yit∈Ŝ(Y )

inf
xit∈Ŝ(X)

∥∥xit − yit∥∥p} .
(ii) The distance between Ŝ(X) and θn is denoted by

dpH

(
Ŝ(X), θn

)
=
∥∥∥Ŝ(X)

∥∥∥p = sup
i

∥∥xit∥∥p = φ(t) .

Definition 3.20 The trivial stochastic set solution of (3.1) is said to be

(p-LSS) p-Lyapunov stable by selector, if for each ε > 0, there exist t0 > 0 and η = η(t0, ε), such

that
∥∥∥Ŝ0(X)

∥∥∥p ≤ η implies ∀T ≥ t0,
∥∥∥Ŝ(X)

∥∥∥p < ε.

(p-ALSS) p-Asymptotical Lyapunov stable for selector if it is (p-LSS) and lim
t→+∞

∥∥∥Ŝ(X)
∥∥∥p = 0 .

(p-ELSS) p-Exponent Lyapunov stable for selector if there exist α, β > 0, such that:∥∥Ŝ(X)
∥∥p ≤ β · ∥∥Ŝ0(X)

∥∥p · exp [−α (T − t0)] .

Theorem 3.21 According to Definitions 3.11 and 3.20, we can now say that:

(i) (p-LSS)⇒ (p-LS).

(ii) (p-LASS)⇒ (p-LAS).

(iii) (p-ELSS)⇒ (p-ELS).

Proof. (i) ET (‖Xt‖p) =
T∫
0

sup
{∥∥xit∥∥p |xit ∈ Rn, i ∈ I ⊂ N

}
dt 6 sup

{
T∫
0

∥∥∥Ŝ(X)
∥∥∥p dt

}
6

εmp, where we choose: εmp = T ·max {εi | i ∈ I ⊂ N}.
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(ii) lim
T→∞

ET (‖Xt‖p) = lim
T→∞

(
sup

{
T∫
0

sup
∥∥xit∥∥p dt

})
→ 0.

(iii) Suppose that T0 > t, then from ET0

(∥∥∥Ŝp(X)
∥∥∥) 6 ET0 (‖Xt‖p). Hence, affirmation (iii) is

clear.

�

Theorem 3.22 Suppose that the positive Lyapunov-like function V
(
t, xit

)
∈ C1,2 (J × Rn,R+)

satisfies the following conditions:

(i) |V (t, xit)−V (t, xit)| ≤ L
∥∥∥xit − xit∥∥∥p, where L is bounded Lipschitz constant, for all xit, x

i
t ∈

Rn and t ∈ J;

(ii) the Dini derivative D+V (t,Xt) 6 g(t, V (t, xit)).

If xit is selector stochastic solution xit ∈ Rn of SSDE (3.1) with selector and V (t0, x0) 6 k0 ,
then V (t, xit) 6 l (t, t0, l(t0)), where l (t, t0, l(t0)) is a maximal solution of the ordinary differential
equation (ODE)

dl

dt
= g (t, l(t)) , l (t0) = k0 > 0.

Proof. Let xit = x(t, ω, t0, x0) is any selector-stochastic solution xit ∈ EnN of SSDE (3.1) with
selectors existing on J . Define the function m(t) = V (t, xit) so that m(t0) = V (t0, x0) 6 k0. Now
for small h > 0, by our assumption follows that

m(t+ h)−m(t) = V (t+ h, xit+h)− V (t, xit)

then we have D+m(t) = D+V (t, xit) 6 g(t,m(t)), where ∀t > t0 : m(t0) 6 k0, and the estimate
∀t > t0 : m(t) 6 l(t, t0, k0). �

Corollary 3.23 If the Lyapunov-like function V (t, xit) satisfies conditions in Theorem 3.22, then we
have the estimate:

∀t > t0 > 0 : V
(
t, xit

)
6 V

(
t0, x

i
0

)
.

Theorem 3.24 Assume that the positive Lyapunov function V (t, xit) ∈ C1,2 ([0, T ]× Rn,R+) sat-
isfies the following conditions:

(i)
∣∣∣V (t, xit)− V (t, xit)

∣∣∣ < L · (‖xit − xit‖p)

(ii) There exist a, b ∈ R+ such that b · φ(t) ≤ V (t, xit) ≤ a · φ(t)

(iii) The Dini derivative D+V (t, xit) ≤ g(t, V (t, xit)), where g(t, 0) = 0, g ∈ C(R2
+,R).

Then:

(a) If g(t, V (t, xit)) ≤ 0, then the trivial stochastic set solution is (p-LSS).
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(b) If g(t, V (t, xit)) < 0, then the trivial stochastic set solution is (p-ALSS).

(c) If g(t, V (t, xit)) ≤ −αV (t, xit), then the trivial stochastic set solution is (p-ELSS).

Proof. (a) We have to prove that:

∀ε > 0, ∃η(t0, ε) :
∥∥∥Ŝ0(X)

∥∥∥p ≤ η implies ∀t ≥ t0 :
∥∥∥Ŝ(X)

∥∥∥p < ε.

Because D+V
(
t, xit

)
≤ g(t, V (t, xit)) ≤ 0, then ∀t ≥ t0, V (t, xit) ≤ V (t0, x

i
t0).

By (ii), this implies b · φ(t) ≤ V (t, xit) ≤ V (t0, x
i
t0) ≤ a · φ(t0).

Choosing η =
b

a
ε, we have

∥∥∥Ŝ(X)
∥∥∥p < ε.

(b) Suppose that g
(
t, V (t, xit)

)
< 0. Then the trivial stochastic set solution is (p-LSS). We have

to prove that lim
t→+∞

∥∥∥Ŝ(X)
∥∥∥p = 0 . If it is not true, there is ε0 such that

∥∥∥Ŝ(X)
∥∥∥p ≥ ε0 and

η < ε0. On the other hand, we have

b ε0 6 b φ(t) ≤ V (t, xit) ≤ V (t0, x
i
t0) ≤ aφ(t0) = a η < b ε0

This contradiction proves (p-ALSS).

(c) Assume that g(t, V (t, xit)) ≤ −αV (t, xit), that means D+V ≤ −αV (t, xit) and implies

∀t > t0 : V (t, xit) ≤ V (t0, x
i
t0) · exp [−α (t− t0)] .

Hence, we infer

b φ(t) ≤ V (t, xit) ≤ V (t0, x
i
t0) · exp [−α (t− t0)] ≤ a · φ(t0) · exp [−α (t− t0)],

or
∥∥∥Ŝ(X)

∥∥∥p ≤ β · ∥∥∥Ŝ0(X)
∥∥∥p · exp [−α (t− t0)], where β =

a

b
. We have (p-ELSS).

�

Definition 3.25 The trivial stochastic set solution of SSDE (3.1) is said to be:

(p-SS1) p-equi-stable by selector, if for each ε > 0, and t0 > 0 there exists a η = η (t0, ε) such

that
∥∥∥Ŝ0(X)

∥∥∥p < η implies that
∥∥∥Ŝ(X)

∥∥∥p < ε

(p-SS2) p-uniformly stable by selector, if η in (p-SS1) is independent of t0.

(p-SS3) p-quasi-equi-asymptotically stable, if for each ε > 0, t0 > 0, there exists a T ′ = T ′ (t0, ε)
and η0 = η(t0) such that, for t > t0 + T ′ and∥∥∥Ŝ0(X)

∥∥∥p < η0 implies that
∥∥∥Ŝ(X)

∥∥∥p < ε .

(p-SS4) p-quasi-uniformly-asymptotically stable by selector, if η0 and T ′ in (p-SS3) are indepen-
dent of t0.

(p-SS5) p-equi-asymptotically stable by selector, if (p-SS1) and (p-SS3) hold simultaneously.
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(p-SS6) p-uniformly asymptotically stable by selector, if (p-SS2) and (p-SS4) hold simultaneously.

Remark 3.26 According to Definitions 3.20 and 3.25, we can now say that:

(i) If a stochastic set solution of SSCDEs with selectors (3.1) is (p-SS1), then it is (p-LSS), that
means: (p-SS1)⇔ (p-LSS).

(ii) (p-SS6)⇔ (p-ALSS).

(iii) (p-SS6) or (p-ALS)⇒ (p-SS3).

(iv) (p-SS6)⇒ (p-SS4).

Putting Sρ(xi0) =
{
xit ∈ Ŝ(X)|

∥∥∥Ŝ(X)− Ŝ0(X)
∥∥∥p ≤ ρ, i ∈ I ⊂ N

}
, we have:

Theorem 3.27 Assume that for SSDE (3.1) with selectors, there exists the Lyapunov-like function
V (t, xit) which satisfies the conditions of theorem 3.12.

a) If there exist positive functions a(.), b(.) , strictly increasing such that:

(i) ∀t ∈ J ⊂ R+, xit ∈ Rn : b (φ(t))) ≤ V (t, xit) ≤ a (t, φ(t)))

and g(t, V (t, xit) ≤ 0, then (p-SS1) holds.

Then:

(ii) If g(t, V (t, xit)) ≤ −µ1, then (p-SS3) holds.

(iii) If g(t, V (t, xit)) < −µ1, then (p-SS5) holds.

b) If there exist positive functions a(.), b(.), strictly increasing such that:

(i) b (|φ(t)|)) ≤ V (t, xit) ≤ a (t, φ(t))) ,∀t ∈ [0;T ] ⊂ R+, xit ∈ Sρ(xi0)
and g(t, V (t, xit) ≤ 0, then (p-SS2) holds.

Furthermore, there exists η′ > 0 such that

(ii) If g(t, V (t, xit)) ≤ −η′V (t, xit), then (p-SS4) holds.

(iii) If g(t, V (t, xit)) < −η′V (t, xit), then (p-SS6) holds.

Proof. Let α > 0 and t0 be given, choosing β = β(t0, α) such that a(t0, α) < b(β) with this we
have (p-SS1). If this is not true, there would exists a the selector-stochastic solution xit ∈ Rn of
SSDE (3.1) with selectors and t > t0 such that:∥∥∥Ŝ0(X)

∥∥∥p = α and
∥∥∥Ŝ(X)

∥∥∥p > β with α < β.

Assumption (a)(i) shows that V (t, x(t)) ≤ V (t0, x0), ∀t ≥ t0 ≥ 0 and condition a(t0, α) < b(β)
as result, yield:

b(β) < b (φ(t))) ≤ V (t, xit) ≤ V (t0, x
i
0) ≤ a(t0, φ(t0)) ≤ a(t0, α) < b(β)
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This contradiction proves that (p-SS1) holds.

Next, we have to prove that for all α > 0, t0 ∈ J , there exists a B > 0 and number T ′ =

T ′(t0, α) > 0 such that, t > t0 + T ′ and
∥∥∥Ŝ0(X)

∥∥∥p < B implies that
∥∥∥Ŝ(X)

∥∥∥p < α.

Let α > 0 and t0 > 0. Choosing B = B(t0, α) such that a(t0, α) < b(B) we have (p-
SS3). There would exist a selector-stochastic solution xit ∈ Rn of SSDE (3.1) with selectors and
t > t0 + T ′ > t0 > 0 such that |φ(t0 + T ′)| = α and φ(t) > B with α < β.

Assumption (a-ii) of theorem 3.27 shows that ∀t > t0 > 0 : V (t, xit) ≤ V (t0, x
i
0), and yields:

b(B) < b (φ(t)) 6 V (t, xit) 6 V (t0, x
i
0)− µ1 6 a (t0, φ(t0))− µ1 < a(t0, α) < b(B).

This contradiction proves that (p-SS3) holds.

The affirmation for (p-SS5) is proved analogous to the proof of the affirmations for (p-SS1),
(p-SS3).

Next, we have to prove that (p-SS2) holds:

Because g(t, V
(
t, xit

)
) ≤ 0 implies V (t, xit) ≤ V (t0, x

i
0) and

∀t ≥ t0 : b(φ(t)) ≤ V
(
t, xit

)
≤ V (t0, x

i
0) ≤ a(t0, φ(t0)).

Thus, for all xit ∈ Sρ(xi0) and all t0 ∈ J the affirmation for (p-SS1) holds, that means the affirmation
for (p-SS2) holds.

Next, we have to prove that (p-SS4) holds. According to assumption b) of theorem 3.27

i) b(φ(t)) ≤ V (t, xit) ≤ a(t, φ(t))

ii) D+V (t, xit) ≤ g(t, V (t, xit)) ≤ −ηV (t, xit)

For all t0 ∈ J and t > t0, we have

V (t, xit) ≤ V (t0, x
i
0)exp[−η(t− t0)] ≤ a(t0, φ(t0))exp[−η(t− t0)].

As a result,
∀t ≥ t0 b (φ(t)) ≤ a(t0, φ(t0)) · exp[−η(t− t0)]

and (p-SS4) holds.

The affirmation for (p-SS6) is proved analogous to the proof of the affirmations for (p-SS2),
(p-SS4). �
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