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1 Introduction

Consider the following two-point boundary value problem:

y'(x) = f(z,y(2),¢'(x)),  x€la]
yla)=c, y(b)=d.

The existence and uniqueness of the solution of (1.1) on the real axis is studied in [4] and [29]
using the Perov’s fixed point theorem (see [29]). The framework of this fixed point theorem are
generalized metric spaces with vector-valued metric.

It is known that the two-point boundary value problem (1.1) is equivalent to the following
integro-differential equation :

(1.1

b
va) =52 d s e [ Gle) sy () ds welat]  a2)

a
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=a)(b=2) o<,
G(x,5) = ba =7
(@ ¢) { 7(1_5)_(5_8) ifs>x

where

is the well-known Green’s function. Differentiating the equation (1.2) we get

b
Y (x) = d—c —/8G - f (s,y(s),y'(s)) ds, € [a,}]

b—a ox
with (s—a)
oG -2 ifs <u,
—(x,s8) =
5z "?) { 09 it s > g

In what follows we denote ﬁ - (d —¢) = 3==. Denoting z = y' we obtain the following system
of Fredholm integral equations

y(@) = =2 - d+ =2 - c— [G(z,5) - f(s,9(s),2(s)) ds,
b “ z € [a, b). (1.3)
2(x) = f=¢ — [ 9C(x, (5,9(s),2(s)) ds,

To this system (1.3) is applied the Perov’s fixed point theorem.

It is well-known that the method of successive approximations was firstly applied to differential
equations by Picard and Lindel6f (see [19], [30]). For instance, the existence and uniqueness of the
solution of the boundary value problem

f(xay(fﬁ)) z € a, 0], (1.4)

y(b) = c,deR.

—N—
N

= =
Q 8
S~—
1

was proved by Picard using the method of successive approximations to the integral equation

y(zr) = r—a ~c—|—b:Z -d—/G(:v,s)-f(s,y(s)) ds, z € [a,b]. (1.5)

The study of the periodic solutions of two-point boundary value problems using the method of suc-
cessive approximations can be found in [36] and [39]. In this paper we apply the Perov’s fixed point
theorem to the boundary value problem (1.1) in Banach spaces to obtain the existence, unique-
ness and approximation of the solution. The approximation scheme is based on the technique of
successive approximations obtaining a convergent and stable algorithm.

In the last sixty years many numerical methods were developed for two-point boundary value
problems. The involved techniques are based on Nystrom methods (see [25]), shooting methods
(see [1], [24], [11], [12], [15], [20]), finite differences methods (see [11], [31], [40]), Rayleigh-Ritz
methods (see [28]), Galerkin methods (see [1], [3], [10]), interpolation techniques (see [23]), ex-
trapolation schemes (see [42]), iterative methods (see [43]), projection methods (see [33], [34]),
Adomian decomposition methods (see [14]), Taylor series methods (see [13]), spline functions
method (see [8], [17], [18], [22], [41]) and collocation methods (see [2], [26], [32], [35] and [21]
for Hammerstein integral equations which generalize the equation (1.5)). The method of successive
approximations is applied to the boundary value problem (1.4) in [16] and [27]. In the present paper
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we construct an approximation scheme for the solution of the boundary value problem (1.1) based
on the method of successive approximations.

The paper is organized as follows. Section 2 presents the notion of generalized metric space and
the Perov’s fixed point theorem. The properties of the sequence of successive approximations asso-
ciated to the boundary value problem (1.1) are obtained in Section 3. The approximation method
and the corresponding algorithm are developed in Section 4. The convergence of the method and the
stability properties of the approximate solution are proved in Section 5. Some concluding remarks
about the accuracy of the method are presented in Section 6.

2 Generalized metrics and the Perov’s fixed point theorem
Let X #0,neNandd: X x X — R} where,
R} ={z = (z1,...,2,) €eR":2; >0, Vi=1,n}.

Definition 2.1 (see [4]) The pair (X,d) is a generalized metric space iff the function d has the
following properties:

(gml) d(z,y)>0,Vr,y € X andd(x,y) =0<=z =1y,

(gm2) d(y,x) = d(z,y), Va,y € X,

(gm3) d(z,y) <d(z,z)+d(z,y), Vz,y,z € X.

The function d is then called a generalized metric.

The euclidean space R" is ordered by the relation :

r<y<=ux; <y, VYVi=1n,

forz = (z1,...,20),y = (Y1,...,yn) € R™
A generalized metric space is complete if any fundamental sequence in X is convergent. Let
M, (R ) the set of matrices with positive elements.

Definition 2.2 (see [4]) Let (X,d) be a generalized metric space. Amap T : X — X satisfy a
generalized Lipschitz inequality if there exists a matrix A € M, (R4.) such that :

d(T(z),T(y)) < Ad(z,y), Vz,yeX.

Remark 2.3 In matrix calculus, for a matrix A € M,(R.), the following properties are equiva-
lent:

(i) A™ — 0asm — oo,
(ii) all eigenvalues of A lie in the open unit ball of the complex plane,
(iii) the matrix (I, — A) is invertible and
(I, —A) P =T+A+A2 4. 4+ A"+ ...
Theorem 2.4 (see [29], [4]). Let (X,d) be a generalized metric space and A : X — X a map-

ping which has the generalized Lipschitz inequality property with a matrix Q@ € M, (Ry). If all
eigenvalues of Q lie in the open unit ball of the complex plane, then:

(i) The operator A has a unique fixed point ©* € X.
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(ii) For any xo € X, the sequence of successive approximations (T )men C X defined by
Tm = A(xm—1), Ym € N*, is convergent to z*.

(iii) The following inequalities hold:
AT, ") < Q™+ (In — Q)™ - d(wo, 1), Vm € N¥, (2.1)
Az, 2*) < Q- (I, — Q) - d(xp, Tr1), VYm € N*. (2.2)
As an application of the Perov’s fixed point theorem, I. A. Rus obtains the result:

Theorem 2.5 (of fiber generalized contractions, Rus [37], [38]). Let (X,d) be a metric space
(generalized or not) and (Y, p) be a complete generalized metric space ( p(x,y) € R’ ). Let
A: X XY — X XY be a continuous operator and C : X XY — Y an operator. Suppose that :

(i) B : X — X has an unique fixed point as limit of the sequence of successive approximations
associated to B,

(ii) A(z,y) = (B(z),C(x,y)), forallz € X,y €Y,
(iii) there exists a matrix Q € M, (R), with Q™ — 0 as m — oo, such that

p(C(z,y1),C(x,y2)) < Q- p(y1,y2),

forall x € X, y1 and yo € Y. Then, the operator A has an unique fixed point as limit of the
sequence of successive approximations associated to this operator.

This theorem of fiber generalized contractions is applied to obtain the smooth dependence by
parameters of the solution of operatorial equations (see [38]). The same theorem is applied in [6]
proving the smooth dependence of the solution of (1.1) by the end points a and b.

3 The method of successive approximations

Let X be a real Banach space. The following notations will be used:
C (la,b],X) =A{f :[a,b] = X | f is continuous on [a, b]}
C* ([a,b],X) = {f : [a,b] = X | f is k times differentiable on [a, b] with f*) continuous on [a, b]},
Lip ([a,b],X) = {f : [a,b] — X | f is Lipschitzian on [a, b]}.
Remember that f : [a,b] — X is Lipschitzian on [a, b] iff there exists L > 0 such that
| f(x) - f (az/)HX < L-|x—4/|, forany z,2’ € [a,b]

and f : [a,b] — X is bounded on [a, b] iff there exists M > 0 such that || f(z)| y < M for all
x € [a, b]. According to the boundary value problem (1.1) we consider the following conditions:

(i) feC(lab x X xX,X),andc,d € X,
(ii) there exist a;, 3 > 0 such that
17 o)~ F (o) o o=l + 8- o = v

for any u, v,u’,v' € X,
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(i) $(b—a)?+Z(b—a) < 1.

To prove the convergence of the method we impose the following supplementary condition:

(iv) There exist v > 0 such that

, forany z, 2’ € [a, b].

Hf(l’,u,?)) - f (ZE/,’LL,U)HX <7- ‘l’—fﬁl
Consider the generalized metric dc : X x X — R?, defined by

de((y1,21), (Y2, 22)) = ([y1 — v2lle » 21 — 22lle), V(y1,21), (y2,22) €Y
where Y = C' ([a, b], X) x C ([a,b], X) and

Iyl = max{|ly(z)| x : = € [a,b]} fory € C ([a,b], X).

Letg, h:[a,b] = X, g(z) = F2-d+ 22 ¢, h(z) = &£, z € [a,b]. We see that

notation

cllv + ||d tati
gl < max (el s dllx) "2, |ihfo < Il + 1y notation

b—a
and since f € C ([a,b] x X x X, X) we infer that the function fy : [a,b] — X
fo(s) = [ (s,9(s),h(s)), s €[a,b]
is bounded having || fo(s)|| y < My for all s € [a, b], where
My = max{||f (s,u,v)||x : s € [a,b],u € B,,v € By}

and B, ={u € X : |lul|y <r},B;={ue X :|uly <q}

Theorem 3.1 Under the conditions (i)-(iii), the boundary value problem (1.1) has an unique so-
lution in y* € C?%([a,b], X) and the sequence of successive approximations (Yms Zm)men C

C ([a,b], X) x C([a,b], X) given by

T —a b—x d—c
yo(:z:):b_a-d—i—b_a ¢, zo(x):b_a, x € [a, b
) b
r—a -z
(@) = § e [ Gla) F (moa(s)zna() ds, m e N

@) = () @) = 5= = [ S5 £ (s.m1(5),2mr(9) s, m e N

has the following properties:

() lim y(x) = y*(2) and lim 2, (2) = (5 (2) uniformly in C ([a, 1], X).

m—r0o0

(3.1)

(3.2)
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(ii) The following estimation holds: For all m € N¥,

ap_a 2 Bip a m—1
de((Ym, zm), (47, (y*)/)) < [S(b )+ Q(b )]

. b
1= [$0— a2+ 50— a) ¢ ( ) 3-3)

(b—a) 32
—a)Q—l-g(b—a)

-0 -d ms 2m )y (Ym—1, Zm—1)),
1[40 - a2+ 50 a) @ detlmszn)s s

de((Ym, zm), (%, (%))

IN
o|R
—~~

S

where

3.4
[ ep—ap b ay
Q‘<8 8w—a>>'

(iii) The terms of the sequence of successive approximations are uniformly bounded.

v
—~
S
|
IS
~—
@

3.5

Proof. For the case X = R, the properties (i) and (ii) are proved in [29], Theorem 7, page 256
For the case of arbitrary Banach space X we define the operator A : Y — Y, A = (A1, As),

b
r—a b—=x
Ar (u,0) (2) = T2 d+

e [ G suts) i) as
d F oG
Az (u,0) (2) = b :; - %(%3) - f(s,u(s),v(s)) ds

and using the fixed point technique, after elementary calculus, we get

«
41 (a1, 00) = Ar (1 22) e < G0 ) — el +
and

Sb— ) flor — wall

(0]
| Az (u1,v1) — Az (uz,v2)|l o < 5(17 —a)-

s
lur = wzlle + 5 (0 —a) - flor = v2fle
for any (u1,v1), (uz,v2) € Y. So,

ﬁ —a
8§(<bb_a)>2 ) - do((ur,vn); (v, v2)

and the eigenvalues of Q are \; = 0, Ay = $(b —a)? + g(b —a) < 1. Then, A is contraction
having an unique fixed point (y*, z*) € Y, that is

{y*(m):m_s'd—FH'

—a '€

= — [)G(x,5) - f (5,9%(5),2°(s)) ds

2(w) =8~ [P 98 (x,5) - f(5,7(5), 2% () ds,
Differentiating in (3.6) we obtain y* € C? ([a,b], X) and z*
we obtain

—a

Vz € [a,b]. (3.6)

(y*)'. Applying the Theorem 2.4,
2

. -d ,21), .20)), Vim € N*
- [8b—a2+ 50— @ dellon 20, G zo)), - ¥m €

[g(b —a)? + ﬁ(b — a)}m_l
de((Yms 2m), (0%, (7)) < 2
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dc((y17 Zl)7 (:‘/0) ZO)) < <
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[} 1G(,9)| - ILfo (5)] x ds (b—a)?. Mo
.ﬁ8G< ﬂHh(NXdS)S< (b—a)- f)

the properties (i) and (ii) follows and y* is the unique solution of the boundary value problem (1.1)

To prove the boundedness of the terms of the sequence of successive approximations we observe
that

a

[Ym (€) = ym—1(2) | x S/!G(x,S)I-(allym1—ym2llc+ﬁ\lzm 1= zm-2ll¢)

OO\Q

<2 (b= a)?- lymos — yroslle + (b — a)?

and

meZHC

vaw—anmmuéjﬁfw»w

<

(@lym—1 = ym-2llc + Bllzm-1 = zm-2llc)

(b—

|9 e

a) - [lym-1 = ym-2llc + 50— a) - llzm-1 = 2m-2llc
for any = € [a, b] and consequently, by induction we obtain

< [Ym = Ym-1llc > < ( &b—a)? 5(b—a) > _ < [Ym—1 = Ym—2[lc )
Hzm - Zm—1HC B %(b - g(b - CL) Hzm—l -
1

) zm—2ll¢c
<< (320 W%10) (e
fro-orego (878 B0) (55
Then,

< Hym_ylu(j’ > < Hym Ym— 1”0 ) +< Hymfl -
[2m — 21l | 2m —
< (4o-

Ym—2|lc ) +...+< ly2 — yille )
Zm— 1HC Hzm—l - Zm—QHC HZQ — ZlHC
m—1
5( (b—a)Q > . ( ly1 — yollo )
Sb—a) S0b-a) 21 = 20l
a m—2
n ( g(b—G)Q S(b—a)? > . ( ly1 = yollc >
Sb—a) 3(b—a) 121 = 20ll
+H_%(§w—af g@—af)_<Hm—yﬂc>
Sb-a) S0b-a) 1 - 2ol

< (Qm_1+Qm_2+"'+Q)'< ||y1_y0||C’>

21 — 20l
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—a)? _ m—2 N2 . m—3 B
< <[a(b a) N B(b a)] N [a(b a) n B(b G)] - 1) Q- <Hy1 yOHC>

8 2 8 2 121 — 20l

m—1
_1-[g0-a?+30-a) .Q'<Hm—yﬂo>
|21 — 20l

g e () ()

So,
( l4m = wollc ) - < M, >+ ( (b—a)*- 50 )

l2m = 20llc ) = \ Mj (b—a)'%

and
< 1ymllc > < ( |ym — volle > n ( lvollc >
lzmllc /= \ llzm — 20/l 20|
M1 (b— a)2 Mo r notation R

< 8 at ,

<(an ) (6omar )+ r) G
for any m € N*, O

Remark 3.2 The same conditions as in the previous theorem lead in the case X = R to the exis-
tence and uniqueness Theorem 7, page 256 in [29].

We define the functions F,, : [a,b] — X,
EFo(s) = f(s,ym(s),2m (s)), Vsé€la,b], VmeN.

Corollary 1 The solution of the boundary value problem (1.1) and its first and second derivative
are bounded. The functions F,,, m € N, are uniformly bounded.

Proof. Passing to limit for m — oo in the inequality
ly*[| 1Y = ymll [Ymllc

!/ < !/ +
1@l /= \ @) = 2mlle lzmllc

{%(b— a)?+ 5 (b - a)}m—1 (b—a)?. Mo R *
gl—[%(b—@ug(b_a)] 'Q'( (b—a)- 2 >+(R’>’ vm €N,

we get ||y*||o < R and H (y*)/HC < R'. Since the functions F,,, m € N, are continuous, it follows
that there exists M > 0 such that

|Finlle £ M = max{||f (s,u,v)||x : s € [a,b],u € B(0,R),ve B (O,R’)}, VYm € N,

where B (0,R) = {u € X : ||lul|y < R}and B(0,R') = {ve X : |jv||y < R'}.
Finally, since

)" (@) = f (2,5 (@), (y") (2))
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and
V(@) = £ (2 Y1 (2), s (), Vim € N,
we get ||y, || < M for all m € N and H(y*)”HC < M. Moreover,
-1

[%(b—a)Q—l-g(b—a)]m o 3
1[50 ap+ 30— 'P<M“_”&+“_@ﬁ

1) = ymlle <

B

+5(;w_aﬁ+4@—@ﬁ]Mm vmeN.  (8)

0

Remark 3.3 From the inequalities (3.3) and (3.8) it follows that lim y,,(x) = y* (x),
m—0o0
lim z,(2) = (v*) (z), lim y2(z) = (y*)" (z), Vo € [a,b], uniformly in C ([a,b], X). So,
m—00 m-—00
the terms of the sequence of successive approximations given in (3.1) and (3.2) approximate the

solution and its first derivative.

In order to compute the integrals from (3.1) and (3.2) we apply a quadrature rule considering an
uniform partition of the interval [a, ] :

Aca=zg<21 < <Tp1<xTp=0> 3.9
with (b
xi:a+u, 1=0,n.
n

On these knots the relations (3.1) and (3.2) can be written as follows:
b

i~ b— :
Ym (zi) = a;)_j ~d+ b—xa c— /G(J}Z‘,S) - f (8, Ym-1(9), 2m—-1(s)) ds, i=0,n, (3.10)
d / oG
Zm (:Bl) = b :CCL - % (xias) ' f (S,ym,I(S),mel(S)) dSa i = Oan- (311)

a

Define the functions H,, ;, Ky, i : [a,b] = X,

Hm,i(s) = G($i75) : Fm(s) = G(.Z‘Z, 5) ’ f(s,ym(s),zm(s)),Vs S [a7b]7 vmeN, i=0,n,

oG oG
Kni(s) = —(x4,8) - Frp(s) = —(x4,8) - £(8,Ym(8), zm(s)),Vs € [a,b], Ym € N, i =0, n.
’ Ox Ox
Proposition 3.4 Under the conditions (i)-(iv), the functions Fy,, m € N, are uniformly Lipschitz

with the Lipschitz constant

2
L0:7+a<10||)24_r£d\\x +M(b2 a) >+/5M

and the functions Hy, ;, Ky, 5, m € N, © = 0,n are Lipschitzian with the same Lipschitz constant
(uniformly Lipschitz)

L1:M+u.

4 b—a

d M (b—a)?
7+QCM&+””X+ <2(”>+5M
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and

M d M (b—a)?
e Mo (el M-
b—a b—a 2

respectively.
Proof. Firstly, we can see that

g @) =y (@) [ < l9imll - |2 = 2]

2
. (chx +ldl M<b2— a) ) Jo—dl| =5 fo—a

b—a

[2m (@) = zm (") | x = [[ym (@) = v (=) || x <

IFota) — o () < 7+ (”C”)gf !‘”'X)) o -7

and

[Fn(2) = Fn (2) | x <7+ [z = 2] + o [lym(@) = ym (27) || +
—l—B'Hzm(az)—zm( )HX (v+ad+ M) - ‘x—x”:Lo-‘x—x"

for any x, 2’ € [a,b] and m € N with

d M (b~ a)®
Lozwa(chXHr s, M0 )HBM

b—a
On the other hand,
H ( ) / HX = HG .CC,‘, f(S ym( )7zm(3)) - G(xivs/) ) f(sl7ym(sl)7zm(sl))HX
<M- |G (21, 8) — G, 8")| + |G, 8 (), 2m(5)) = F (', ym ("), 2m () ||
b—a ,
[M ) -Lo}-|s—s|:L1-‘s—s‘
and
[1m. i) = Ko i) = H‘?f(x $)-F(5sm(5)s2m(5)) = S 1, (5 yn ), () ]X

|06, 06
ox

)-‘s—s":L2~}s—s"

for any s, s’ € [a,b] and m € N with

N2
e (|c||x +ldly | M- a) ) + AN

oG

(74,8 + ‘ax(xi,s

/) : ‘f(saym(s)’zm(s)) - f(slvym(s/)vzm(sl))HX

L1=M—|—@'

I

b—a

M d M (b—a)?
Ly— tyta lellx + 114l x . (b—a) L BM.
b—a b—a 2
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4 The algorithm

To compute the Bochner integrals from (3.10) and (3.11) we apply the trapezoidal quadrature rule
on Banach spaces (see [5] and [7]):

[ rorae= Co S [ (o B0 (4 C20 0 )

=1

a

with the remainder estimation

L(b—a)® - ,
s < { e, LR, el )
NF'le if FeC([a,b], X), (see[7]).

The estimation in the case X = R was obtained in [9].
Applying the quadrature rule (4.1)-(4.2) to the integrals from (3.10) and (3.11) on the partition

(3.9) we obtain the following numerical method:
T, — @ b—x; d—c

yO(%‘):b_a'd+b_a'C, 20 (x;) = 1=0,n

Ym (x()) = C, Ym (mn) = d, m & N*

b
T, —a b—x;
m \Li) = : cC— Hm—i
Ym () — d+b—a c / 1,i(s)ds

_Ti—a d—&—b_xi —a
 b—a b—a

b
d—c
Zm(x;) = T /Kmu(s) ds

a

n
Z m—1,i x] +Hm lz(x] 1)]+Rm,i7
7j=1
i=1,n—1, m € N¥,

d—c b—a & - *
“bv—a  on ]Z::I [Km—l,i (zj) + Km—1,i (¥j-1) | + Wi, i =0,n, m € N*,
with
[V m o <m i—0.m. meN* (4.3)
myll x = in ’ myillx = An ’ — Uy Ty . .
These lead to the following algorithm:
Yo (x;) = % -d+ bb—_a;z - ¢, 20 (x;) = %, i=0,n 4.4)
Ym (330) =¢ Ym (xn> =d, me¢ N* 4.5)
T —a b—x; (b—a) <&
y(zi) = ——d+p—— e (G (i, 25) - f (5,90 (25) , 20 (25))

]_
+ G (zi,j-1) - f(zj-1,90 (Tj-1), 20 (Tj-1)) | + Rii = g1 (20) + Ry, i=1,n—1 (4.6)
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2 () = z:; - (b;na) > [Zf (@i, @5) - f (25,90 (25) , 20 (25)) +
j=1

oG )
+ o (i, zj-1) - f(2j-1,90 (7j-1), 20 (%‘1))] +wii =2 () twiy, i=0,n (47)

n
T, — a b—ux; b—a

yo (i) = 3—d+ 53— - — ‘Z[G(xial‘j)'f(xjayl(xj)+R1,j721(xj)+w1,j)

j=1

+ G (xj,xj-1) - f (%‘—17 y1 (xj—1) + R j—1, 21 (xj—1) + wl,j—l)} + Ry,

e e e Ll s (e A )

+ G(zi,xj-1) - f (l’j—l,yl(ﬂﬁj—l)vzl(l’j—l)ﬂ + R
:yQ(CI;Z) + RQ’/L', 1=1,n—-1 (48)

d—c b—a =[0G —
s(m) = = ) [ (w3, 25) - f (fcjvyl (w5) + Ruj, 21 () +w1,j> +

b—a 2n = Loz
- E;f (@i, xj-1) - f (xj—her Rl,j—th(fL’j_l)—i—ij_l)] twa
_ Z:; B (62—na> ]Zn; {gf (s, ;) - f (xj,yl (z;), 21 (a;j)) 4
- % (@isj-1)  f (513 (7o), (%‘1))] +Wag =20 (1) + @y, =0, (49)

and by induction for m > 3,

T, —a b—x;
Y (3) = b—a dr b—a ©
b—a

2n

. Z [G(m,,@) . f(xj,ym_l(xj) + Rm—Lja zm_l(xj) + wm_l,j)
)

+ Gz, rj-1) - f(@5-1, Ym-1(2j-1) + Rmn—1j-1, Zm-1(2j-1) + wmfl,jfl)} + R

n

T; —a b—x; b—a
= m'd+ b—a C— om Z [G(Cﬂiafj)‘f(xjaym1(33j)7zm1(55j))

=1

+G(xi, i) - f (mj—hym—l(fﬂj—l),Zm—l(wj—l)) } + R =Ym (@) + Rpnyiy, i=1,n-1
(4.10)

d—c b—a =[0G
Zm (x;) = " a on ]Zl |:8x(33i71'j) - f (l‘jaymfl(zj) + Rin—1,5, Zm—1(z5) +wm71,j)

oG
+ o (i, xj—1) - f (-ijlyymfl (€j—1) + Rm—1,j—1, Zm—1 (xj—1) + Wmfl,jfl) ] + Wi
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_ Z:CCL . (b;na) i [885 (x5, 25) - f (:L‘j,qu (x4), Zm—1 (SU]))

J=1

oG J—
+ D (xi,xj—1) - f (iﬂj—h Ym—1 (1), Zm—1 (%’-1))] + Wmi = Zm (Ti) + Wmi, ©=0,n.

4.11)
n approximating on the knots (3.9) the

The effective computed values are yy, (;), 2m (2;), i =
solution of the system (1.3).

S The convergence analysis

5.1 The error estimation

Theorem 5.1 Under the conditions (i)-(iv), if $ (b—a)?+B(b—a) < 1, then the effective computed

values Yy, (), zm (x;), i = 0,n, m € N* approximate the solution of the system (1.3) on the knots
(3.9) with the apriori error estimate:

| t)—ym< I\ [se-erde-a]" (e 400
[y @ -z, ) " 1-[a0-ar+ie-a] \ §E-0 5e-0
)2 Mo Cal-a)?  B-a)® \ ' [ =o)L
< ((bb—a)%%% >+ ( Cata) 1-p0—a ) ( =ty ) G-1

forany i = 0,n and m € N*,

Proof. According to the inequality (3.3) we have

) x Zm (T3) — 2m (24)

| *(t)—m ly* (£) = ym ()] Ym (21) = Ym (1)
H —zm(:ﬂﬁ <Hy _yzm I >+ b s

o 8

[§(b— a)® + 5 (b— a)}m*1 (b—a)? - Mo o | *
1—{%(1)_@)2_’_%(5_@)] 'Q.< (b—a).MT% >+< ||wmz||j§ )7 i1=0,n, m € N".

<

In order to estimate the remainders R,,, ;, W, ¢ = 0,1, m € N* we obtain from (4.10), (4.11) the
recurrences:

b—a) Yo
=) 316 ) - (o Rl + 8- Ioraly) +
j=1

< 1B,

1 Bmi

Ix

+ G (wiyzj1) - (- |Rn—1jo1||x + 8- lom—15-1llx)], @=0,n, meN,
b— L€ -
( 2na) Z[ax (i, ;) - ( ' HRm_lijX +8- ||Wm—1,jux) +

@il x <

oG - . ‘
+ e (@i, j-1) - (Oé' HRmfl,jfl”X +3- ||W||X)]7 it =0,n, meN
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and since
|G (, )| <

(b—a)’ ’8G <1, Vz,s€]a,b]

4 %(1‘7‘9)

using the estimates (4.3), it follows for any m € N* that:

J— 2. 2 2
| B ) (b=a) Ly a-a)?  B(b-a) | ( =P ) N
( [[@mill x S\ oeatr, )T a (b4— a) f (b4— a) lom—1llx /' +=0,m

4n
where
| R = max {|| Rl 5 =0}, @il = max { @iy : 5 = 0.}
Then,

IN

( [ Rai >
2] x

(b—i)2~L1 a(b—a)®  B(b—a)? (b—i)2~L1
4 4 . 7, =
olta )T\ ap-a) po-a) )\ Coelie

a (b—a)? B (b—a)?
where we wrote Qs = 4 4 ) , and

ab—a) Bb-a
— , i
Bl ) < (e Lo G\
( lmsalle ) S\ earne [ T2 Lo 1 ) T@ | ab, | T
’ 4n I
10 (b=a)®-Ly .
— [( 01 > +Q2+Q§] . ( (bj{;%-Lg , 1=0,n.
an
So, by induction for m > 3 we obtain,
R . r 2
HRm,iHX 1 0 I (b—i) I
( leom.illx >§ <0 1)+Q2+'”+Q2 | eaL
7 i an
(10 . U)fﬁ&
] 4n
[ -1 (b—a)* Ly
10 (0=a)”-Ln .
_<0 1>_Q2] <(b_3‘§%2> i=0,n
) 4in

a(b—a)® B (b—a)?
because the eigenvalues of the matrix (2 = 4 4 are Ay = 0 and Ay =
alb—a) B(b-a)

2(b—a)?+ B(b—a) < 1so that

Kcll (1)>+Qz+...+Q’2”‘1+...]:[((1) tf)_(aa((z{z); ;((;_a):)ﬂ_l-




APPROXIMATIONS FOR TWO-POINT BOUNDARY VALUE PROBLEMS 15

Remark 5.2 From the estimates (3.3) and (5.1) we infer that

. ‘1 y* (1) = m () ()

m—00,n—00 — Zm (:171) . 0

that is the convergence of the algorithm to the solution of the system (1.3).

Remark 5.3 We see that the apriori (3.3) and a posteriori (3.4) error estimates can offer a practical
stopping criterion of the algorithm. This can be stated as follows: for given e’ > 0 and givenn € N*
(previously chosen) we determine the first natural number m € N* for which

<€, foralli=1,n—1

om @) = gt G|

and

<€, foralli=0,n

|7 @) =z @

and we stop to this m retaining the approximations Y, (z;), zm (i), i = 0,n of the solution. The
demonstration of this criterion is the following. We denote

| _ al-a)? B(b—a)? -1 (b—a)®-L
0 = 4 4 . 4n,
—a(b—a) 1—p(b—a) (b_‘izl L2
and we have

v () Y (1)

o 0~z

&(b—ay+50-0) Q- (fonlegzvocstell ) (il )

< (g mely i (@1) = 1)

—zm ( HX Zm () — 2m (2;) N

AR FIC e BN EACORE O el
and
Y (1) = Ym—1 (23)]| Ym (i) — Ym (i)
(Jum oy Z e i) < B o1 I
(@ =@ Y (o @ - e @
[ @) =2 @)|| )\ [t @) = 2t (@)
[Fomi| B Y (i) = Ym-1 (@)
< (o) + (o) + @) - @
So,
‘ y* (i) — ym (2:) [ R
< )+
H(y*)'(ti)—zm (xi)ﬁx ( il x )
fb—aP+50b—a) [ eb-a? S-a? ) [ [[vm (@)= Ymr (@)
* ( 5(b—a) %(b*a) ) Zm (%) — 2m—1 (z;) B
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N ab—a)?+2(b—a) Q- K H%Hx ) +< [ B4 )}

1= [0 -a2+50-a) il x [
Then
| (1) = ym (1) 14+ 2(b—a)?+5(b-a) .<g(b—a)2 ga)_a)z)ﬂ
Jo @ -z, ) T 1-[a0-apri0-a] \ 5C-a) 5¢-a
20— +80-0)  (s0-ap Lo-ap ) [ @) -ma ]
+1_[g(b—a)2+§(b—a)] <‘2’<b—a) §(b—a>> \zm(wz)—zmA(wz)X
For given € > 0 we require
L+§0-a)P’+50b-a) (2b-a? Zb-a?) 5
1= [2-ap+ 00— a)] (o Yo )o<(l) o

and

olba)  B(b-a)

ab—ap+ 20 -a) ( ot ) o @ =y )
1-[§0— a2+ 50— a)

)<

X

)

(5.3)
From inequality (5.2) we determine the smallest natural number n for which this inequality holds.
Afterwards, we find the smallest natural number m for which the inequality (5.3) holds.

NI D™

7 250 ) e @) = 2 @)

Remark 5.4 Comparing the hypotheses in Theorems 3.1 and 5.1 we see that in Theorem 5.1 only
the supplementary Lipschitz condition (iv) appears and the inequality (b — a)? + g(b —a) <1
becomes $(b — a)* + B(b—a) < L

5.2 The numerical stability

In order to obtain the numerical stability of the method we consider the two-point boundary value
problem with the same second order differential equation, but with modified boundary values:

(@) = f (@y(2).y'(x)), € a]
{ g(a =, y(yb) ziz'. (5.4)

such that |c — (|| y < eand ||d — d'||yx <e.

For the boundary value problem (5.4) the sequence of successive approximations on the same
knots is:

C_ o r
Uo(fbi):'zl_:‘d/_}_i_'zl,d? wo(mi):i_;:’ 1=0,n
Um (20) = ¢, U (2n) =d', m e N*

T, — @ b—x;

U (25) = — -d+ — c—/G(mi,s)~f(s,vm_1(s),wm_1(s)) ds, i=1,n—1, meN*

a
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d / 0G
Wy, () = a0 | 92 (xi,8) - f(s,vm=-1(5),wm-1(s)) ds, i=0,n, meN
a

and the effective computed values are

Ti—a b—x; d—c .

vo(xi):bz_a-d b—az.c’ wo(a:i):b_a, i=0,n

Vm (20) = ¢, Om () =d',  m e N,
and vy, (x;), 1 = Ln—1, wy, (), @ ,n, m € N* with vy, (z;) = vp (2;) + R, and
Wiy, (25) = Wiy, (7) + W/, ;. We see that

llyo(z) —vo(z)| x < Hd d’HX + HC—C/HX <e+eg, forall z € [a,b]

and

1
|zo(x) — wo(z)| x < o (|[d=d|y +lc—¢|y) < fe’ forall z € [a, b].

Definition 5.5 We say that the proposed method is numerically stable if there exist p € N* and the
matrices K1, K9, K3 € R%_ such that

[ @) = v )

Hzm (i) — win ()

X | <Ki-e+ Ky e+ Kz-hP
X

foralli=0,n, m € N*, where h = T“

Theorem 5.6 Under the conditions of Theorem 5.1 the proposed method of successive approxima-
tions for the boundary value problem (1.1) is numerically stable

Proof. 'We have

[ @) = v )
|7 @) = w0 )

Yom (i) — Ym (22) . +<

. N 2m () — 2m (x3)

i (&) — 3 (a2
2o () — e () > *

[om (@) = v (@1)

/
N (o =m il Y (Pl ), |7
@) =@ | = e @) = el )"\ il )7\ [
X X
and
‘R;ni X 1 _ eb—a)’ Bb—a)® i %
' < o 4 T4 . n , Vi =0,n, c N*.
‘wim;’ ~\ —a(-a) 1-p(b-a) (bfiﬁ ! n,m
) X n

In inductive manner, according to the condition (b — a)? + g(b —a) < 1, we get

lyo(x) —vo(@)|lx < ||d—d||x + |l = ||y <e+e, forallz € [a,b],
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1 +
lzo(x) — wo(z)| x < o (||@ - d’HX + ||e - C/HX) < %, forall z € [a, b]

[Ym (20) — vim (z0)l|x < [l — €] <€

Yym (zn) — vm ($n)||x < Hd— d

HX <€
and

( |!|\gs((;f))_—zr:l((3;))\|\|); > < < [yo(z) — vo()| x >+

Iz0(x) — wo(x)llx

n ( fb: G (2, 8)] - [1f (8, ym—1(5), 2m-1(s)) = f (8, vm—1(s), wm—1(s))[| x ds )
fa (?9% (xv S)‘ ) Hf (Saymfl(s)vszl(s)) - f(s’vm*1(5)7wm*1(s))HX ds

< (L) (B0 %((bb—_ Y. (Jomose) sl ) o
(

IN

) [2m—1(2) = wm-1(2)lx

R N O E
Q

] ()
-[(6 )~ (8 S (o

ete > , Vx € la,b], Ym € N¥,
b—a

1 _ alb—a)’ B(b—a)? -1 (b—a)*-L
+ T4 4 . 2n,
—a(b—a) 1—p(b—a) (b—a)”-Lo

2n
<[ 4)- (i ()

_ a(b—a)? B(b—a)? -1 _
e B e .M.<L1>
2 —a(b—a) 1—-p(b—a)
=Ki-e+Ky-e+K3z-h, Vi=0,n, meN*.

Of course, in the same conditions the continuous dependence by data of the solution can be obtained
by using an analogous technique.

O

Corollary 2 The proposed method of successive approximations for the boundary value problem
(1.1) is convergent.

Proof.  The convergence results from Theorem 5.1, Remark 5.2 and Theorem 5.6.
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6 Concluding remarks

For the two-point boundary value problem (1.1) considered in Banach spaces, the application of
the Perov’s fixed point theorem permits to obtain the existence, uniqueness and boundedness of
the solution and to construct a convergent and stable approximation method for this solution. The
convergence of the method can be proved using only Lipschitz conditions, without smoothness or
boundedness conditions. These extend the applicability of the method. It is well-known that the
existing methods such as shooting, collocation, projection and spline functions methods require at
least the boundedness of the first order partial derivatives of the function f, usually imposing high
order smoothness conditions. To illustrate the accuracy of the method we choose the case X = R
and consider the following examples.

Example 6.1 The boundary value problem

{ y" () =2y(x) +y (x) — 3e™"
y(0)=0, y(@)=e'

has the exact solution y*(x) = xe™ and applying the presented algorithm for n = 10 and for

n = 100, we get the number of iterations m = 19. For n = 1000, the number of iterations is

m = 21. The order of effective errors confirms the convergence of the method and it is presented in
Table 1.

€ [0,1]

Example 6.2 For the boundary value problem

{ y' (1) = —y(x ) Y () + ly()®
y(0)=1, y(1)=3

the kernel function f(s,u,v) = —u- v+|u!3 is nonlinear and not differentiable. The exact solution is
y*(z) = +1 and applying the presented algorithm, the error approximation results are in Table 1.
For n = 10, n = 100, n = 1000, the number of iterations is m = 33, m = 34 and m = 35,
respectively.

, x€l0,1]

Example 6.3 The boundary value problem
{ y' () = y(z) + v (z)
y(0) =1, y(0.5) = e’

has the exact solution y*(x) = e and the error approximation results are in Table 1. For n =
10, 100 and 1000, we get the same number of iterations m = 8.

€ [0,0.5]

In Table 1, in the second, third and fourth column we present the order of effective errors

ci=T,n—1}

er = max{”y* (i) — ym () X

for the above presented three examples, corresponding to different stepsize h = b_T“.

h er, example 6.1 | er, example 6.2 | er, example 6.3
0.1 1.284x10~% 2.51x107% 8.276x107°
0.01 | 1.254x10°° 3.057x107° 8.648x10~ 7
0.001 | 1.28x107% 3.064x10~° 8.681x107Y

Table 1
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We see that for stepsize h = 0.1 the order of effective error is O (10™* + 107°), for stepsize
h = 0.01 this order is O (107% + 10~7) and for stepsize h = 0.001 this order is O (10~® + 10~?).
These confirm the convergence of the method. This method presented in Sections 3, 4 and 5 can be
particularized for the cases X = R and X = R", obtaining the method of successive approxima-
tions and the corresponding algorithm for scalar differential equations and for systems of differential
equations, respectively.
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