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Abstract. In this paper, we shall deal with the existence and uniqueness of µ-pseudo almost auto-
morphic solutions to a nonautonomous semilinear evolution equation in Banach spaces. We obtain
our main results by the interpolation theory and properties of µ-pseudo almost automorphic func-
tions.
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1 Introduction

The concept of almost automorphy was first introduced in the literature by Bochner in [8],
which is a natural generalization of almost periodicity [9]. For more details about this topic, we
refer to [14, 21, 22]. The concept of asymptotically almost automorphic functions was introduced
by N’Guérékata in [20]. Liang, Xiao and Zhang in [16, 25] presented the concept of pseudo al-
most automorphy. In [23], N’Guérékata and Pankov introduced another generalization of almost
automorphic functions-Stepanov-like almost automorphic functions. Such a notation, subsequently,
was applied to investigate the existence of weak Stepanov-like almost automorphic solutions to
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some parabolic evolution equations. Blot et al. introduced the notion of weighted pseudo almost
automorphic functions in [6], which generalizes that of pseudo-almost automorphic functions. Xia
and Fan presented the notation of Stepanov-like weighted pseudo almost automorphic function in
[24]. Zhang, Chang and N’Guérékata investigated some properties and new composition theorems
of Stepanov-like weighted pseudo almost automorphic functions in [27, 28].

Recently, Blot, Cieutat and Ezzinbi in [7] applied the measure theory to define an ergodic func-
tion and they investigated many interesting properties of µ-pseudo almost automorphic functions.
Thus, the classical theory of pseudo almost automorphy becomes a particular case of their approach
in [7]. In this work, we investigate the existence of µ-pseudo almost automorphic mild solutions to
the following nonautonomous semilinear evolution equation:

u′(t) = A(t)u(t) + f(t, u(t− h)), t ∈ R, (1.1)

where h ≥ 0 is a fixed constant, and {A(t)}t∈R satisfies the Acquistapace-Terreni condition in [1],
U(t, s) generated by A(t) is exponentially stable, and f : R × X → X is a suitable continuous
function. Our main results are based upon the interpolation theory developed in [11, 12, 13].

The rest of this paper is organized as follows. In section 2, we present some basic definitions,
lemmas, and preliminary results which will be used throughout this paper. In section 3, we prove
the existence and uniqueness of µ-pseudo almost automorphic mild solutions to the nonautonomous
semilinear evolution equation (1.1).

2 Preliminaries

This section is devoted to some preliminary results needed in the sequel. Throughout the paper,
the notations (X, ‖ · ‖) and (Y, ‖ · ‖Y) are two Banach spaces and BC(R,X) denotes the Banach
space of all bounded continuous functions from R to X, equipped with the supremum norm ‖f‖∞ =
supt∈R ‖f(t)‖. Let Xα be an intermediate space between D(A) and X . B(R,Xα) for α ∈ (0, 1)
stands for the Banach space of all bounded continuous functions ϕ : R→ Xα when equipped with
the α-sup norm:

‖ϕ‖α,∞ := sup
t∈R
‖ϕ(t)‖α

for ϕ ∈ BC(R,Xα).

Throughout this work, we denote by B the Lebesgue σ-field of R and byM the set of all positive
measures µ on B satisfying µ(R) = +∞ and µ([a, b]) < +∞, for all a, b ∈ R(a < b).

Definition 2.1 [8] A continuous function f : R → X is said to be almost automorphic if for every
sequence of real numbers {s′n}n∈N, there exists a subsequence {sn}n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. The collection of all such functions will be denoted by AA(X).
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Definition 2.2 [26] A continuous function f(t, s) : R× R→ X is called bi-almost automorphic if
for every sequence of real numbers {s′n}n∈N, there exists a subsequence {sn}n∈N such that

g(t, s) := lim
n→∞

f(t+ sn, s+ sn)

is well defined for each t, s ∈ R, and

lim
n→∞

g(t− sn, s− sn) = f(t, s)

for each t, s ∈ R. The collection of all such functions will be denoted by bAA(R× R,X).

Define

PAA0(R,X) =

{
φ ∈ BC(R,X) : lim

T→∞

1

2T

∫ T

−T
‖φ(σ)‖ dσ = 0

}
.

In the same way, we define PAA0(R × X,X) as the collection of jointly continuous functions
f : R× X→ X which belong to BC(R× X,X)) and satisfy

lim
T→∞

1

2T

∫ T

−T
‖φ(σ, x)‖ dσ = 0

uniformly in compact subset of X.

Definition 2.3 [17, 26] A continuous function f : R → X (respectively R × X → X)
is called pseudo-almost automorphic if it can be decomposed as f = g + φ, where g ∈
AA(R,X)(respectively AA(R × X,X)) and φ ∈ PAA0(R,X)(respectively PAA0(R × X,X)).
Denote by PAA(R,X) (respectively PAA(R× X,X)) the set of all such functions.

Definition 2.4 [7] Let µ ∈ M. A bounded continuous function f : R → X is said to be µ-ergodic
if

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

‖f(t)‖dµ(t) = 0.

We denote the space of all such functions by ε(R,X, µ).

Definition 2.5 [7] Let µ ∈ M. A continuous function f : R → X is said to be µ-pseudo almost
automorphic if f is written in the form: f = g + φ, where g ∈ AA(R,X) and φ ∈ ε(R,X, µ). We
denote the space of all such functions by PAA(R,X, µ).

Obviously, we have AA(R,X) ⊂ PAA(R,X, µ) ⊂ BC(R,X).

Lemma 2.1 [7, Proposition 2.13] Let µ ∈M. Then (ε(R,X, µ), ‖ · ‖∞) is a Banach space.

Lemma 2.2 [7, Theorem 4.1] Let µ ∈ M and f ∈ PAA(R,X, µ) be such that f = g + φ, where
g ∈ AA(R,X) and φ ∈ ε(R,X, µ). If PAA(R,X, µ) is translation invariant, then {g(t) : t ∈
R} ⊂ {f(t) : t ∈ R}, (the closure of the range of f ).
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Lemma 2.3 [7, Theorem 2.14] Let µ ∈M and I be a bounded interval (eventually I = ∅). Assume
that f ∈ BC(R,X). Then the following assertions are equivalent:
(i) f ∈ ε(R,X, µ);
(ii) limr→+∞

1
µ([−r,r]\I)

∫
[−r,r]\I ‖f(t)‖dµ(t) = 0;

(iii) For any ε > 0, limr→+∞
µ({t∈[−r,r]\I:‖f(t)‖>ε})

µ([−r,r]\I) = 0.

Lemma 2.4 [7, Theorem 4.7] Let µ ∈ M. Assume that PAA(R,X, µ) is translation invariant.
Then the decomposition of a µ-pseudo almost automorphic function in the form f = g + φ where
g ∈ AA(R,X) and φ ∈ ε(R,X, µ), is unique.

Lemma 2.5 [7, Theorem 4.9] Let µ ∈ M. Assume that PAA(R,X, µ) is translation invariant.
Then (PAA(R,X, µ), ‖ · ‖∞) is a Banach space.

Theorem 2.1 [10] Let µ ∈M and f = g + h ∈ PAA(R× X,X, µ). Assume that
(a1) f(t, x) is uniformly continuous on any bounded subset K ⊂ X uniformly in t ∈ R.
(a2) g(t, x) is uniformly continuous on any bounded subset K ⊂ X uniformly in t ∈ R.
Then the function defined by F (·) := f(·, φ(·)) ∈ PAA(R,X, µ) if φ ∈ PAA(R,X, µ).

Now, we introduce some notions and properties about evolution families and intermediate
spaces.

Let X and Z be Banach spaces, with norms ‖ · ‖, ‖ · ‖Z respectively, and suppose that Z is
continuously embedded in X , that is, Z ↪→ X.

(H1) The family of closed linear operators A(t) for t ∈ R on X with domain D(A(t)) (pos-
sibly not densely defined) satisfy the so-called Acquistapace-Terreni conditions, that is, there exist
constants ω ∈ R, θ ∈ (π/2, π), L , K > 0 and µ, v ∈ (0, 1] with µ+ v > 1 such that

Σθ ∪ {0} ⊂ ρ(A(t)− ω) 3 λ, ‖R(λ,A(t)− ω)‖ ≤ K

1 + |λ|
for all t ∈ R

and

‖(A(t)− ω)R(λ,A(t)− ω)[R(ω,A(t))−R(ω,A(s))]‖ ≤ L
|t− s|µ

|λ|υ

for t, s ∈ R, λ ∈ Σθ := {λ ∈ C\{0} : | arg λ| ≤ θ}.

Among other things, Acquistapace-Terreni Conditions ensure that there exists a unique evolu-
tion family:

U = {U(t, s) : t, s ∈ R such that t ≥ s}

on X associated with A(t) such that U(t, s)X ⊆ D(A(t)) for all t, s ∈ R with t ≥ s, and
(a) U(t, s)U(s, r) = U(t, r) for t, s ∈ R such that t ≥ s ≥ r;
(b) U(t, t) = I for t ∈ R where I is the identity operator of X;
(c) (t, s)→ U(t, s) ∈ B(X) is continuous for t > s.

Definition 2.6 (Baroun et al. [4]) An evolution family U is said to have an exponential dichotomy
(or is hyperbolic) if there are projections P (t)(t ∈ R) that are uniformly bounded and strongly
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continuous in t and constants δ > 0 and N ≥ 1 such that
(e) U(t, s)P (s) = P (t)U(t, s);
(f) The restriction UQ(t, s) : Q(s)X→ Q(t)X of U(t, s) is invertible (we then set ŨQ(s, t) :=

UQ(t, s)−1); and
(g) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) and ‖ŨQ(s, t)Q(t)‖ ≤ Ne−δ(t−s) for t ≥ s and t, s ∈ R.

In what follows, we introduce the interpolation spaces for A(t). The following facts are most
from the monograph [14]. One can also refer to [2, 15, 18] for further details.

Let A be a sectorial operator on X (Assumption (H1) holds when A(t) is replaced with A) and
let α ∈ (0, 1). Define the real interpolation space:

XAα := {x ∈ X : ‖x‖Aα := sup
r>0
‖rα(A− ω)R(r,A− ω)x‖ <∞},

which is a Banach space when endowed with the norm ‖ · ‖Aα . For convenience we further write

XA0 := X, ‖X‖A0 := ‖x‖, XA1 := D(A)

and ‖x‖A1 := ‖(ω − A)x‖. Moreover, let X̂A := D(A) of X. In particular, we will adopt the
following continuous embedding

D(A) ↪→ XAβ ↪→ D((ω −A)α) ↪→ XAα ↪→ X̂A ⊂ X, (2.1)

for all 0 < α < β < 1, where the fractional powers are defined in the usual way.

In general, D(A) is not dense in the spaces XAα and X. However, we have the following contin-
uous injection:

XAβ ↪→ D(A)
‖·‖Aα (2.2)

for 0 < α < β < 1.

Definition 2.7 [13] Given the family of linear operators A(t) for t ∈ R, satisfying (H1), we set

Xtα := XA(t)α , X̂t := X̂A(t)

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms. Then the embedding in Eq. (2.1) holds
with constants independent of t ∈ R.

These interpolation spaces are of class Jα [18, Definition 1.1.1] and it can be shown that

‖y‖tα ≤ K αL 1−α‖y‖1−α‖A(t)y‖α, y ∈ D(A(t)),

where K , L are the constants appearing in (H1).

Lemma 2.6 [4] For x ∈ X, 0 ≤ α ≤ 1, the following hold:
(i) There is a constant c(α), such that

‖U(t, s)P (s)x‖tα ≤ c(α)e−(δ/2)(t−s)(t− s)−α‖x‖, t > s. (2.3)

(ii) There is a constant m(α), such that

‖ŨQ(s, t)Q(s)x‖sα ≤ m(α)e−δ(t−s)‖x‖, t ≤ s. (2.4)
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Throughout this manuscript, we assume that the function R × R 7→ X, (t, s) 7→ U(t, s)x ∈
bAA(R × R,X) uniformly for x in any bounded subset of X. For the problem (1.1), we list the
following assumptions:
(H2) There exists 0 ≤ α < β < 1 such that

Xtα = Xα

for all t ∈ R, with uniform equivalent norm.

If 0 ≤ α < β < 1, then we let k1 be the bound of the embedding Xα ↪→ X, that is

‖u‖ ≤ k1‖u‖α for u ∈ Xα.

(H3) Let 0 ≤ α < β < 1 and the function f : R × X → X belongs to PAA(R,X, µ). Moreover,
the function f is uniformly Lipschitz with respect to the second argument in the following sense:
there exists K > 0 such that

‖f(t, u)− f(t, v)‖ ≤ K‖u− v‖

for all u, v ∈ X and t ∈ R.

3 Main results

In the sequel, we suppose that there exist two real numbers α, β such that 0 < α < β < 1 with

2β > α+ 1.

Moreover, we denote by Γ1 and Γ2 the nonlinear integral operators defined by

(Γ1u)(t) :=

∫ t

−∞
U(t, s)P (s)f(s, u(s− h)) ds,

(Γ2u)(t) :=

∫ ∞
t

UQ(t, s)Q(s)f(s, u(s− h)) ds,

Since the space ε(R,X, µ) is translation invariant, we can easily obtain the following lemma.

Lemma 3.1 If u ∈ PAA(R,X, µ) and h ≥ 0. Then u(· − h) ∈ PAA(R,X, µ)

Lemma 3.2 Let µ ∈ M, let u ∈ PAA(R,Xα, µ). Under assumptions (H1)-(H3), the integral
operators Γ1 and Γ2 defined above map PAA(R,Xα, µ) into itself.

Proof. Let u ∈ PAA(R,Xα, µ). Setting p(t) = f(t, u(t − h)) and by Theorem 2.1 and Lemma
3.1, it follows that p ∈ PAA(R,X, µ) for each u ∈ PAA(R,Xα, µ). Now write p = φ + ζ where
φ ∈ AA(R,X) and ζ ∈ ε(R,X, µ). Thus Γ1u can be rewritten as

(Γ1(u)(t)) :=

∫ t

−∞
U(t, s)P (s)φ(s) ds+

∫ t

−∞
U(t, s)P (s)ζ(s) ds.
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Set Φ(t) =
∫ t
−∞ U(t, s)P (s)φ(s) ds and Ψ(t) =

∫ t
−∞ U(t, s)P (s)ζ(s) ds for each t ∈ R.

Now, we shall show that Φ ∈ AA(R,Xα). Let us take a sequence (s′n)n∈N, since φ ∈ AA(R,X),
there is a subsequence (sn)n∈N such that

‖φ(t+ sn − sm)− φ(t)‖ ≤ εv for each t ∈ R,

where v = δ1−α/c(α)21−αΓ(1− α) with Γ being the classical Γ function.

Furthermore,

Φ(t+ sn − sm)− Φ(t)

=

∫ t+sn−sm

−∞
U(t+ sn − sm, s)P (s)φ(s) ds−

∫ t

−∞
U(t, s)P (s)φ(s) ds

=

∫ t

−∞
U(t+ sn − sm, s+ sn − sm)P (s+ sn − sm)φ(s+ sn − sm) ds−

∫ t

−∞
U(t, s)P (s)φ(s) ds

=

∫ t

−∞
U(t+ sn − sm, s+ sn − sm)P (s+ sn − sm)φ(s+ sn − sm) ds

−
∫ t

−∞
U(t+ sn − sm, s+ sn − sm)P (s+ sn − sm)φ(s) ds

+

∫ t

−∞
U(t+ sn − sm, s+ sn − sm)P (s+ sn − sm)φ(s) ds−

∫ t

−∞
U(t, s)P (s)φ(s) ds

=

∫ t

−∞
U(t+ sn − sm, s+ sn − sm)P (s+ sn − sm)(φ(s+ sn − sm)− φ(s)) ds

+

∫ t

−∞
(U(t+ sn − sm, s+ sn − sm)P (s+ sn − sm)− U(t, s)P (s))φ(s) ds.

Using [5, 19] it follows that

∥∥∥∥∫ t

−∞
(U(t+ sn − sm, s+ sn − sm)P (s+ sn − sm)− U(t, s)P (s))φ(s) ds

∥∥∥∥
α

≤ 2‖φ‖∞
δ

ε.

Similarly, using Eq. (2.3), it follows that

∥∥∥∥∫ t

−∞
U(t+ sn − sm, s+ sn − sm)P (s+ sn − sm)(φ(s+ sn − sm)− φ(s)) ds

∥∥∥∥
α

≤ ε.

Therefore,

‖Φ(t+ sn − sm)− Φ(t)‖α ≤
(

1 +
2‖φ‖∞
δ

)
ε for each t ∈ R

and hence, Φ ∈ AA(R,Xα).
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To complete the proof for Γ1, we have to show that Ψ(t) ∈ ε(R,Xα, µ). We have

1

µ([−r, r])

∫
[−r,r]

‖Ψ(t)‖α dµ(t)

=
1

µ([−r, r])

∫
[−r,r]

‖
∫ t

−∞
U(t, s)P (s)ζ(s) ds‖α dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

∫ t

−∞
‖U(t, s)P (s)ζ(s)‖α dsdµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

∫ t

−∞
c(α)e−(δ/2)(t−s)(t− s)−α‖ζ(s)‖ dsdµ(t)

≤ c(α)

∫ ∞
0

s−αe−(δ/2)s

(
1

µ([−r, r])

∫
[−r,r]

‖ζ(t− s)‖ dµ(t)

)
ds.

By the fact that the space ε(R,X, µ) is translation invariant, it follows that t 7→ ζ(t− s) belongs to
ε(R,X, µ) for each s ∈ R and hence

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

‖ζ(t− s)‖dµ(t) = 0.

One completes the proof by using the well-known Lebesgue dominated convergence theorem and
the fact limr→+∞ c(α)

∫∞
0 s−αe−(δ/2)s

(
1

µ([−r,r])
∫
[−r,r] ‖ζ(t− s)‖ dµ(t)

)
ds = 0. The proof is

now completed. �

The proof for Γ2u is similar to that of Γ1u. However one makes use of Eq. (2.4) rather than Eq.
(2.3).

The rest of this section is devoted to the existence of µ-pseudo almost automorphic solutions to
the Eq. (1.1).

Definition 3.1 Let α ∈ (0, 1). A continuous function u : R → Xα is said to be a mild solution
to Eq. (1.1) provided that the function s → U(t, s)P (s)f(s, u(s − h)) is integrable on (s, t),
s→ U(t, s)Q(s)f(s, u(s− h)) is integrable on (t, s) and

u(t) = U(t, s)u(s) +

∫ t

s
U(t, s)P (s)f(s, u(s− h)) ds−

∫ s

t
U(t, s)Q(s)f(s, u(s− h)) ds

for each t ≥ s and for all t, s ∈ R.

Theorem 3.1 Let µ ∈M. Under Assumptions (H1)-(H3), the evolution equation (1.1) has a unique
µ-pseudo almost automorphic mild solution whenever K is small enough.

Proof. Consider the operator Λ : PAA(R,Xα, µ)→ PAA(R,Xα, µ) such that

Λu(t) :=

∫ t

−∞
U(t, s)P (s)f(s, u(s− h)) ds−

∫ ∞
t

U(t, s)Q(s)f(s, u(s− h)) ds.

As we have previously seen, for every u ∈ PAA(R,Xα, µ), f(·, u(· − h)) ∈ PAA(R,Xα, µ). In
view of Lemma 3.2, it follows that Λ maps PAA(R,Xα, µ) into itself. To complete the proof one
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has to show that Λ has a unique fixed point.
Let v, w ∈ PAA(R,Xα, µ)

‖Γ1(v)(t)− Γ1(w)(t)‖α

≤
∫ t

−∞
‖U(t, s)P (s)[f(s, v(s− h))− f(s, w(s− h))]‖α ds

≤
∫ t

−∞
c(α)(t− s)−αe−

δ
2
(t−s)‖f(s, v(s− h))− f(s, w(s− h))‖ds

≤ k1c(α)K

∫ t

−∞
(t− s)−αe−

δ
2
(t−s)‖v − w‖α ds

≤ k1c(α)K(2δ−1)1−αΓ(1− α)‖v − w‖α,∞
and

‖Γ2(v)(t)− Γ2(w)(t)‖α

≤
∫ ∞
t
‖UQ(t, s)Q(s)[f(s, v(s− h))− f(s, w(s− h))]‖α ds

≤
∫ ∞
t

m(α)eδ(t−s)‖f(s, v(s− h))− f(s, w(s− h))‖ds

≤ k1m(α)K

∫ ∞
t

eδ(t−s)‖v − w‖α ds

≤ k1m(α)Kδ−1‖v − w‖α,∞.

Combining previous inequalities it follows that

‖Λv − Λw‖α,∞ ≤ KΘ‖v − w‖α,∞,

where
Θ := k1c(α)(2δ−1)1−αΓ(1− α) + k1m(α)δ−1.

Therefore, if K is small enough, that is, K < Θ−1, then Eq. (1.1) has a unique solution, which
obviously is its only µ-pseudo almost automorphic mild solution. �

From [3], we have the following results.

Remark 3.1 We consider a locally bounded function L : Xα × Xα → [0,∞) such that for every
r ≥ 0 there is a constant k(r) ≥ 0 such that L(x, y) ≤ k(r), for all x, y ∈ Xα with ‖x‖α ≤ r and
‖y‖α ≤ r.

Corollary 3.1 Let µ ∈ M. Let also f = g + p ∈ PAA(R,Xα, µ), assume that there is a locally
bounded function L : Xα × Xα → [0,∞) such that for every x, y ∈ Xα we have

‖f(t, x)− f(t, y)‖ ≤ L(x, y)(1 + ‖x‖l−1α + ‖y‖l−1α )‖x− y‖α, (t ∈ R),

‖g(t, x)− g(t, y)‖ ≤ L(x, y)(1 + ‖x‖l−1α + ‖y‖l−1α )‖x− y‖α, (t ∈ R),

where l ≥ 1. If there is R ≥ 0 such that

Θ = K(R)
(
c(α)(2δ−1)1−αΓ(1− α) +m(α)δ−1

)
< 1,

where K(R) := k(R)(1 + 2Rl−1), with k(R) as in Remark 3.1, and c(α) and m(α) are the
constants given in Lemma 2.6. Then Eq. (1.1) has a unique µ-pseudo almost automorphic mild
solution.
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